Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations

Holmes, P. J., J. E. Marsden and J. Scheurle


Contemp. Math., 81, (1988), 213-244

Abstract:

Both upper and lower estimates are established for the separatrix splitting of rapidly forced systems with a homoclinic orbit. The general theory is applied to the equation

$\displaystyle \ddot{{\phi}}$ + sin$\displaystyle \phi$ = $\displaystyle \delta$sin$\displaystyle \bigl($t $\displaystyle \varepsilon^{{-1}}_{}$$\displaystyle \bigr)$

for illustration. There are two types of results. First, fix $ \eta$ > 0 and let 0 < $ \varepsilon$ $ \leq$ 1 and 0 $ \leq$ $ \delta$ $ \leq$ $ \delta_{{0}}^{{}}$ where $ \delta_{0}^{}$ is sufficiently small. If the separatrices split, they do so by an amount that is no more than

C$\displaystyle \delta$exp$\displaystyle \bigl($ - $\displaystyle \varepsilon^{{-1}}_{}$($\displaystyle {\textstyle\tfrac{1}{2}}$$\displaystyle \pi$ - $\displaystyle \eta$)$\displaystyle \bigr)$

where C = C($ \delta_{0}^{}$) is a constant depending on $ \delta_{0}^{}$ but is uniform in $ \varepsilon$ and $ \delta$ . Second, if we replace $ \delta$ by $ \varepsilon^{p}_{}$$ \delta$ , with p $ \geq$ 8 , then we have the sharper estimate

C2 $\displaystyle \varepsilon^{p}_{}$$\displaystyle \delta$ e-$\scriptstyle \pi$$\scriptstyle \varepsilon$/2 $\displaystyle \leq$ splitting distance $\displaystyle \leq$ C1 $\displaystyle \varepsilon^{p}_{}$$\displaystyle \delta$ e-$\scriptstyle \pi$$\scriptstyle \varepsilon$/2

for positive constants C1 and C2 depending on $ \delta_{0}^{}$ alone. In particular, in this second case, the Melnikov criterion correctly predicts exponentially small splitting and transversal intersection of the separatrices. After developing this theory we discuss some of its applications, concentrating on a 2 : 1 resonance that occurs in a KAM (Kolmogorov, Arnold, and Moser) situation and in the forced saddle node bifurcation described by

$\displaystyle \ddot{{x}}$ + $\displaystyle \mu$x + x2 + x3 = $\displaystyle \delta$ f (t) .

pdf.gif