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Abstract

Reduction in the category of Poisson manifolds is defined and some basic properties are de-
rived. The context is chosen to include the usual theorems on reduction of symplectic manifolds,
as well as results such as the Dirac bracket and the reduction to the Lie-Poisson bracket.

1 Introduction

Reduction in the symplectic context is a natural outgrowth of the classical theorems of Jacobi and
Liouville on the elimination of phase space variables for Hamiltonian systems possessing conserved
quantities. Generalizations of these results to a geometric context culminate from work of Smale
[1970], Kostant [1970], Souriau [1970], Nehoroshev [1972], Meyer [1973], and Marsden and Weinstein
[1974]. Further contributions are due to Marle [1976], Kazhdan et al. [1978], Kummer [1981], and
others. Expositions of this theory can be found in Abraham and Marsden [1978], Arnold [1978],
Woodhouse [1980], Marsden [1981], and Guillemin and Sternberg [1984].

Reduction has many applications which we cannot review here, as they are too extensive. We
just mention the papers of Cushman and Rod [1982], Guillemin and Sternberg [1982], Iwai [1982,
1985], Marsden and Weinstein [1982, 1983], Marsden et al. [1983], Deprit [1983], Arms et al. [1981],
Marsden et al. [1984] as representative of just some of the interesting applications. Some of the
basic ideas relevant to the general theory of reduction in the Poisson context are already given in
Marsden and Weintein [1982, 1983], Marsden et al. [1983], and Montgomery et al. [1984] (see also
Tulczjew [1985]).

One of the main reduction theorems in the symplectic context states that if (P,Ω) is a symplectic
manifold, J : P → g∗ is an Ad∗-equivariant momentum map for a canonical G-action, µ ∈ g∗ is
a regular value of J (or a “clean” value of J)1 and if the isotropy group Gµ of µ acts freely and
properly on J−1(µ), then there is a unique symplectic structure Ωµ on

Pµ = J−1(µ)/Gµ

such that
i∗µΩ = π∗

µΩµ,

where iµ : J−1(µ) → P is the inclusion and πµ : J−1(µ) → Pµ is the projection. In this context, the
Poisson brackets on Pµ are given as follows. Let f and h be smooth real valued functions on Pµ and
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1“Clean values” are what Marsden and Weinstein [1974] call “weakly regular values”.
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let F and H be G-invariant extensions of f ◦ πµ and h ◦ πµ. Then

{F, H}P ◦ iµ = {f, h}Pµ ◦ πµ.

For this to be valid, F and H must be extensions of f ◦ πµ and h ◦ πµ off J−1(µ) which are G-
invariant; the brackets are not related this way if arbitrary extensions (or Gµ invariant extensions)
are used. The purpose of this Letter is to provide a Poisson context general enough to include this
example as well as others, such as Dirac brackets (see, e.g., Sniatycki [1974] and Flato et al. [1976])
and the Lie-Poisson bracket (see, e.g., Marsden et al. [1983]).

2 Poisson Reduction

Let (P, { , }P ) be a Poisson manifold2, M ⊂ P a submanifold and i : M → P the inclusion. Let
E ⊂ TP |M be a subbundle of the tangent bundle of P restricted to M . We make some assumptions
at the outset:

(A1) E ∩ TM is an integrable subbundle of TM , so defines a foliation Φ on M .

(A2) The foliation Φ is regular, so the space of leaves M/Φ is a manifold with projection π : M →
M/Φ a submersion.

(A3) The bundle E leaves { , }P invariant in the sense that if K, L are smooth functions on P with
differentials vanishing on E then d{K, L}P also vanishes on E.

Definition 2.1 We say (P, M, E) is Poisson reducible if M/Φ has a Poisson structure { , }M/Φ such
that for any (locally defined) smooth functions f, h on M/Φ, and (locally defined) smooth extensions
F, H of f ◦ π, h ◦ π with differentials vanishing on E, we have

{F, H}P ◦ i = {f, h}M/Φ ◦ π. (1)

Under suitable technical hypotheses (as in Chernoff and Marsden [1974]), the results of this
Letter hold in infinite dimensions, but we work in the finite-dimensional case for simplicity.

Theorem 2.2 (Poisson Reduction) Let assumptions (A1)-(A3) hold and regard the Poisson struc-
ture on P as a map B : T ∗P → TP . The triple (P, M, E) is Poisson reducible if and only if

B(E0) ⊂ TM + E, (2)

where E0
x = {αx ∈ T ∗

x P |αx(Ex) = 0} is the annihilator of E.

Proof First assume (P, M, E) is Poisson reducible. Let βx ∈ E0
x, where x ∈ M and let F be C∞

in a neighborhood of x such that dF vanishes on E and equals βx at x. Let αx ∈ E0
x ∩ (TxM)0 =

(Ex + TxM)0 and choose an extension K of the zero function on M such that dK(x) = αx and dK
vanishes on E. Thus,

〈αx, Bx(βx)〉 = {K, F}P (x) = {0, f}M/Φ(π(x)) = 0,

where F is the function on M/Φ induced from F |M . Thus, Bx(βx) ∈ Ex + TxM .
Conversely, assume B(E0) ⊂ TM +E. Let f, h ∈ C∞(M/Φ), the C∞ functions on M/Φ and let

F, H be extensions of π∗f = f ◦ π and π∗h = h ◦ π whose differentials vanish on E. By condition
(A3), {F, H}P is constant on the leaves of Φ and so induces a function on M/Φ. We now show

2A Poisson manifold is a manifold whose ring of C∞ functions is a Lie algebra whose bracket is also a derivation
with respect to the usual ring structure. These key properties are explicitly isolated in Dirac [1964], p. 10, but are
implicit in the works of Lie. The term “Poisson manifold” was coined by Lichnerowicz [1977] and Bayen et al. [1978].
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that this induced function is independent of the extensions, thereby defining a function {f, h}M/Φ

satisfying (2.1). Let H ′ be another extension of π∗h satisfying dH ′|E = 0. Thus, H − H ′ vanishes
on M , so its differential vanishes on E + TM . Thus, by (2.2),

〈d(H − H ′)(x), Bx(dF (x))〉 = 0

and so
{F, H}P (x) = {F, H ′}P (x).

Thus, {F, H}P (x) is independent of how h◦π is extended, as long as the differential of the extension
vanishes along E. By antisymmetry of the bracket, it is also independent of the f ◦ π extension.
Thus, {f, h}M/Φ is well defined and is uniquely determined by (2.1). It remains to show that M/Φ
is a Poisson manifold with this bracket. Antisymmetry, bilinearity and the derivation properties of
the bracket are directly inherited from these properties on P and uniqueness. For Jacobi’s identity,
notice that if F and H are extensions of f ◦ π and h ◦ π whose differentials vanish along E, then so
does d{F, H}P by (A3), so {F, H}P is an extension of {f, h}M/Φ ◦π that we can use in (2.1) to give
the identity

π∗{{f, h}M/Φ, k}M/Φ = i∗{{F, H}P , K}p

and so Jacobi’s identity on M/Φ is inherited from that on P . �

The functorality property of Poisson reduction is given by the following.

Corollary 2.3 Let (Pi, Mi, Ei) be Poisson reducible i = 1, 2, and assume that φ : P1 → P2 is a
Poisson map such that φ(M1) ⊂ M2, Tφ(E1) ⊂ E2, and φ maps the leaves of Φ1 into leaves of Φ2.
Then φ induces a unique Poisson map φ̂ : M1/Φ1 → M2/Φ2 satisfying π2 ◦ φ = φ̂ ◦ π1 called the
reduction of φ.

Proof Since φ maps leaves into leaves, the map φ̂ exists, is smooth, and is unique with the given
property. To show that it is Poisson, let f, h : M2/Φ2 → R be smooth (local) functions and let
F, H : P2 → R be smooth (local) extensions of f ◦ π2 and h ◦ π2 whose differentials vanish on E2.
Then any v ∈ E1 we have

d(F ◦ φ) ◦ v = dF · Tφ(v) = 0,

since Tφ(E1) ⊂ E2. Therefore, F ◦ φ and H ◦ φ are smooth (local) extensions of f ◦ φ̂ and h ◦ φ̂
whose differentials vanish on E1. Therefore,

π∗
1 φ̂∗{f, h}M2/Φ2 = {f, h}M2/Φ2 ◦ π2 ◦ φ

= {F, H}P2 ◦ φ ◦ i1

= {F ◦ φ, H ◦ φ}P1 ◦ i1

= {f ◦ φ̂, h ◦ φ̂}M1/Φ1 ◦ π1

= π∗
1{φ̂∗f, φ̂∗h}P1 ,

which, since π1 is onto, shows that φ̂ is a Poisson map. �

Next we study the dynamic counterpart of the Poisson reduction theorem. If F : P → R is a smooth
Hamiltonian, we say that the submanifold M ⊂ P is conserved for F , if XF (x) ∈ TxM for all x ∈ M .
For example, if B(E0) ⊂ TM , then M is conserved for all functions F whose differentials annihilate
E. As we shall see in the next section, in many examples B(E0) ⊂ TM holds.

Theorem 2.4 (Dynamic Poisson Reduction) Let (P, M, E) be Poisson reducible and H : P → R

be a smooth function for which M is conserved. Then the flow φt of XH induces Poisson diffeo-
morphisms φ̂t on M/Φ. The vector field on M/Φ whose flow is φ̂t equals Xh, where h : M/Φ → R

is uniquely determined by H via h ◦ π = H|M . In addition, the vector fields HH |M and Xh are
π-related.
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Proof Since M is conserved for H, the flow φt of XH leaves M invariant, so by the previous
corollary φ̂t is a flow of Poisson diffeomorphisms on M/Φ. Therefore, if Y is the vector field on M/Φ
whose flow is φ̂t, XH , and Y are π-related.

Now let f : M/Φ → R be an arbitrary smooth map and let F : P → R be an extension of f ◦ π
to P such that dF ∈ E0. Then for any x ∈ M we have

df(π(x)) · Xh(π(x)) = {f, h}M/Φ(π(x))
= {F, H}P (x) = dF (x) · XH(x)
= df(π(x)) · Tπ(x) · XH(x)

and so Xh(π(x)) = Tπ(x) · XH(x) i.e., XH |M and Xh are also π-related, which in turn implies
Xh = Y . �

Thus, if B(E0) ⊂ TM , the dynamics of XH on M projects to that of Xh on M/Φ. If the leaves of
Φ are orbits of a Poisson group action, then the dynamics of XH on M can be reconstructed from
the reduced dynamics of Xh and the group action, as in the symplectic case (Abraham and Marsden
[1978], p. 305).

3 Examples and Remarks

A. Let P = T ∗G where G is a Lie group, M = P and E be the tangent space to the left G-orbits.
Then (P, M, E) is Poisson reducible and M/Φ = g∗ with the (−) Lie-Poisson structure:

{F, G}(µ) = −
〈

µ,

[
δF

δµ
,
δG

δµ

]〉

for µ ∈ g∗ and δF/δµ ∈ g the functional derivative. (For the right G-orbits we get the (+) Lie-
Poisson structure.) See, for example, Marsden et al. [1983] for the proof. This is the Poisson
reduction (implicitly) used by Arnold [1966] in passing from material to spatial coordinates in fluid
dynamics, and by Marsden and Weinstein [1982] for the Vlasov equation. More generally, if G acts
on P canonically, then P/G is the Poisson reduction of M = P with E the tangent bundle to the
G-orbits.

B. Let P be a Poisson manifold and J : P → g∗ an Ad∗-equivariant momentum map for the
canonical action of a Lie group G. Let µ be a regular (or clean) value of J and M = J−1(µ). Let E
be the tangent spaces to the G-orbits. Then (P, M, E) is Poisson reducible. Indeed, to check (A1)
we observe that E ∩TM consists of the tangent spaces to the Gµ-orbits by equivariance of J . Thus,
(A1) is satisfied and (A2) holds if Gµ acts freely and properly, so M/Φ = J−1(µ)/Gµ is a manifold.
(A3) holds since the G-action is canonical and B(E0) ⊂ TM (so (2.2) holds) since J is conserved
for G-invariant functions.

Thus, J−1(µ)/Gµ inherits a unique Poisson structure satisfying (2.1). If P is symplectic, the
Poisson structure on J−1(µ)/Gµ is that of the reduced symplectic structure Ωµ. This follows from
the fact that from either point of view, G-invariant functions produce Hamiltonian vector fields
π-related to their reductions (proved above in the Poisson case and in Marsden and Weinstein [1974]
in the symplectic case).

C. In Example B, if we let M = J−1(O), where O is a coadjoint orbit and E be the tangent
bundle to the G-orbits, then (P, M, E) is also Poisson reducible. Here, M/Φ = J−1(O)/G. For
a description of the symplectic structure in the symplectic case, see Marle [1976], Kazhdan et al.
[1978], and Marsden [1981]. Both structures coincide in this case and J−1(O)/G is canonically
diffeomorphic to J−1(µ)/Gµ for µ ∈ O. (This requires some proof, but is routine to supply.)
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D. Let P be a Poisson manifold, M ⊂ P a submanifold and let E = B((TM)0). Then (P, M, E)
is Poisson reducible (assuming E ∩ TM is a subbundle).

First of all, the characteristic distribution E ∩ TM is integrable. Indeed, by Frobenius’ theorem
and the fact that Hamiltonian vector fields XF with dF |TM = 0 span B((TM)0) pointwise, it is
enough to show that [XF , XH ] ∈ E ∩ TM for two such XF , XH . Clearly [XF , XH ] ∈ TM . To show
it lies in E just notice that by Jacobi’s identity,

[XF , XH ] = −X{F,H}P
(3)

so if we can show d{F, H}P vanishes on TM , we will be done with (A1). However, {F, H}P (x) =
dF (x) · XH(x) vanishes at points of M since dF annihilates TM and XH is tangent to M . We
assume (A2) holds and note that (A3) follows from (3.1). Finally, B(E0) ⊂ TM follows from the
general fact that for a subspace Fx ⊂ TxP ,

Bx((Bx(F 0
x ))0) ⊂ Fx,

as is readily verified. (In the symplectic case, Bx(F 0
x ) is the symplectic orthogonal complement to

Fx).
If P is symplectic and M ⊂ P is a symplectic submanifold, then E = B((TM))0 is the symplectic

orthogonal complement of TM and thus E ∩ TM = {0}, so the Poisson structure induced on
M/Φ = M is the same as the one determined by the symplectic structure on M .

If P is symplectic and M ⊂ P is Lagrangian, then E ∩ TM = TM , so the reduced Poisson
manifold M/Φ is trivial.

E. Let (P,Ω) be symplectic and i : M ↪→ P a submanifold. Let E be the characteristic distribution
of i∗Ω. Then (P, M, E) is Poisson reducible if and only if M is coisotropic. (The “if” part is given
in Guillemin and Sternberg [1984], p. 177.) It is well-known that M/Φ is also symplectic in this case
(Abraham and Marsden [1978], p. 298). The Poisson structure on M/Φ is that of the symplectic
structure when M is coisotropic. For P a Poisson manifold and E = B((TM)0) ∩ TM, (P, M, E) is
also Poisson reducible if and only if M is coisotropic (in the Poisson sense). All these statements
are routinely verified.

F. Reduction in Symplectic Leaves. Let (P, M, E) be Poisson reducible and let S ⊂ P be a
symplectic leaf (see Kirillov [1976]), with S ∩ M �= φ. Assume that the leaves of Φ intersect S
cleanly (Guillemin and Sternberg [1984], p. 180). Then S ∩ Φ defines a foliation on S and the
symplectic leaves in M/Φ are given by the connected components of S ∩ M/S ∩ Φ. For example, if
P is a symplectic manifold and the Lie group G acts freely and properly on P with Ad∗-equivariant
momentum map J , the symplectic leaves of the Poisson manifold P/G are the reduced manifolds
J−1(O)/G, for O a coadjoint orbit. See Marsden et al. [1984] for further examples involving
semidirect products.

G. Let P be a Poisson manifold and M = J−1(O), as in Example C. Now let E = B((TM)0), so
E ∩ TM is the characteristic distribution of M . Thus, M/Φ is Poisson, by Example D. As in the
symplectic case (Marle [1976], Kazhdan et al. [1978]), one can show M/Φ is Poisson diffeomorphic
to [J−1(O)/G] ×O.

H. An example arising in coupled systems is as follows (Krishnaprasad and Marsden [1978]). Let
P be a Poisson manifold and G a group acting canonically on P (on the left). Then G also acts
canonically on the Poisson manifold (T ∗G × P )/G. The map φ : T ∗G × P → g∗ × P ;φ(αg, x) =
((TLg)∗αg, g

−1 · x) identifies (T ∗G × P )/G with g∗ × P . Thus g∗ × P is a Poisson manifold. One
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computes the inherited bracket to be

{F, H}(µ, x) = −
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
+ {F, H}P − dxF ·

(
δH

δµ

)
P

− dxH ·
(

δF

δµ

)
P

, (4)

where the first term is the (−) Lie-Poisson bracket, δF/δµ ∈ g is the functional derivative, and for
ξ ∈ g, ξP is its infinitesimal generator on P . If P = h∗, the dual of another Lie algebra h, (3.2) is
the Lie-Poisson bracket of the dual of the semidirect product of g with h. If the action of G on P
has an Ad ∗-equivariant momentum map J : P → g∗, the map α : g∗ × P → g∗ × P defined by

α(µ, x) = (µ + J(x), x)

transforms the bracket (3.2) into the decoupled bracket

{F, H} = −
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
+ {F, H}P . (5)

Of course, this example is closely related to the Hamiltonian structures used for the description of a
particle in a Yang-Mills field. See Sternberg [1977], Weinstein [1978], and Montgomery [1984]. For
an account of this from the Poisson reduction point of view, see Montgomery et al. [1984].

I. The previous example gives an easy proof of the Adler-Kostant-Symes Theorem: If G is a Lie
group, H, K are subgroups such that G = HK with g = h ⊕ t as a vector space direct sum, then
Casimir functions of g∗ are in involution on the product Poisson manifold h∗

− × t∗+. Indeed, K
acts on the right on G and, hence, by lift on T ∗G, so that by (3.3) the reduced Poisson manifold
(T ∗G)/K 
 (T ∗H × T ∗K)/K 
 T ∗H × t∗+ has the sum Poisson bracket. Now H acts on this
manifold trivially on t∗+ and by lift of left translation, on T ∗H. The reduced Poisson manifold
H\(T ∗H × t∗+) equals, therefore, the product h∗

− × t∗+. If F is a Casimir on g∗, then it is Ad∗-
invariant and, therefore, its extension to T ∗G by left or right translations is both left and right
invariant. Therefore, F induces by right invariance a function on T ∗H × t∗+ and by left invariance a
function on h∗

−×t∗+. Since reduction preserves the involutivity of functions, the stated result follows.
By taking the infinitesimal version of this proof, it is easy to see that only g, h, t enter and not the
Lie groups G, H, K.

We remark in passing that the Adler-Kostant-Symes theorem applied to the central extension of
a Lie algebra ḡ by an element ε ∈ g∗, i.e., ḡ = g×R with the bracket [(ξ, a), (η, b)] = ([ξ, η], 〈ε, [ξ, η]〉),
yields the involution theorem of Mishchenko and Fomenko [1978].

J. Dirac Brackets. Let P be a Poisson manifold and M a nondegenerate submanifold of P , i.e.,
B((TM)0) ∩ TM = {0}. Then M is a symplectic manifold. If E = B((TM)0), example D insures
that M/Φ is a Poisson manifold. But since E ∩ TM = {0}, the leaves of Φ are points, i.e.,
M/Φ = M . If M = ψ−1{0} for 0 ∈ R

2l, ψ = (ψ1, . . . , ψ2l), and the matrix C = (Cij = {ψi, ψj}) is
nondegenerate, a direct computation shows that the bracket on M is given by Dirac’s formula:

{F, H}M (x) = {F̃ , H̃}P (x) −
2l∑

i,j=1

{F̃ , ψi}(x)Cij(x){ψj , H̃}(x) (6)

where C−1 = (Cij) and F̃ , H̃ are arbitrarily smooth extensions of F and H to P . If P is symplectic
and N is any submanifold of P , Sniatycki [1974] has shown that there exists a symplectic submanifold
M in which N is embedded coisotropically. Then the Dirac bracket on M induces a Poisson structure
on the reduced manifold N by example E. In Dirac’s language M , are second-class constraints and
N is the final constraint manifold (see also Flato et al. [1976]).
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Finally, we remark that if M is a transverse manifold to the symplectic leaf S through x0 with
S ∩ M = {x0} and M = ψ−1(0) and if the matrix C is nondegenerate, then the above formula for
the Poisson bracket on M still holds. This follows from the fact that every symplectic leaf of M is
the intersection of a symplectic leaf in P with M . This formula applied to the case of P = g∗ shows
that the transverse structure is linear if gµ defines a reductive splitting of g (Weinstein and Molino)
and is at most quadratic if the isotropy gµ has a complement in g which is a Lie subalgebra (this
result is due to Oh).

Acknowledgement We thank Ted Courant, Richard Montgomery, Jedrzej Sniatycki, and Alan
Weinstein for helpful discussions.
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