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Abstract. We show that the evolution equations for a perfect fluid coupled to
general relativity in a general lapse and shift,, are Hamiltonian relative to a
certain Poisson structure. For the fluid variables, a Lie-Poisson structure
associated to the dual of a semi-direct product Lie algebra is used, while the
bracket for the gravitational variables has the usual canonical symplectic
structure. The evolution is governed by a Hamiltonian which is equivalent to
that obtained from a canonical analysis. The relationship of our Hamiltonian
structure with other approaches in the literature, such as Clebsch potentials,
Lagrangian to Eulerian transformations, and its use in clarifying linearization
stability, are discussed.

Introduction

The purpose of this paper is to study the Hamiltonian nature of the Einstein-Euler
field equations, which govern the "Eulerian" description of general relativistic
perfect fluids. We show that the corresponding evolution equations, when written
in a general lapse and shift, are Hamiltonian with respect to a Poisson bracket
given by the Dirac-ADM canonical Poisson bracket for the gravitational variables
(Dirac, 1959, Arnowitt et al., 1962) and by a "Lie-Poisson" bracket for the fluid
variables.

A Lie-Poisson bracket is a noncanonical Poisson bracket defined by a Lie
algebraic structure associated with the symmetries of a Hamiltonian system. For
non-relativistic fluids, these brackets are due to Morrison and Greene (1980) and
Dzyaloshinski and Volovik (1980). The group theoretic origin of Lie-Poisson
brackets for Hamiltonian systems and their derivation from canonical brackets in
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Lagrangian coordinates by reduction is due to Arnold (1966), Marsden and
Weinstein (1982, 1983), Marsden et al. (1983) and Marsden et al. (1984a). The fact
that the brackets for nonrelativistic compressible fluids are Lie-Poisson brackets
for a semidirect product Lie algebra was well-known by 1980 and is an instance
of the general results of Ratiu (1980) and Guillemin and Sternberg (1980). This fact
was shown to also hold in magnetohydrodynamics and other systems by Holm
and Kupershmidt (1983). In these papers, and in references cited therein, the
equations for the Eulerian descriptions of plasma physics, magnetohydrodynamics,
elasticity theory, and other theories from classical continuum mechanics are also
shown to be Hamiltonian with respect to brackets closely associated to Lie-Poisson
brackets. It is therefore not surprising that the Poisson bracket for the Hamiltonian
structure of general relativistic perfect fluids involves a Lie-Poisson bracket for
the fluid variables.

The Lie-Poisson formalism automatically builds in the "Lin constraints,"
conditions needed for a variational principle in the Eulerian picture; see Seliger
and Witham (1968) and Bretherton (1970). The Lin constraints are exactly the
coadjoint orbits—constraint manifolds naturally associated with the Lie-Poisson
structure (see, for instance, Marsden et al. 1983).

Other Hamiltonian structures have been proposed for the Einstein-Euler field
equations which differ from the one presented in this paper. The original variational
principles for relativistic fluids, based on varying the particles' world lines, are due
to Taub (1948). (See Misner et al. 1973 for further references). Schutz (1970, 1971)
has proposed a canonical Hamiltonian structure based on the use of nonphysical
Clebsch potentials. (The relationship between the Lie-Poisson approach and
Clebsch potentials is described in Holm and Kupershmidt (1983) and in Marsden
and Weinstein (1983); see Sect. 5 below.) Moncrief (1974, 1977) has proposed a
canonical Hamiltonian structure in which the spacetime coordinates are tied to
the fluid by a set of coordinate conditions introduced by Taub (1969), thereby
allowing Moncrief to formally eliminate the explicit appearance of any independent
fluid variables. Walton (1979, 1980) proposed a noncanonical Hamiltonian
structure which also has the unique feature that it uses a parametrization of the
general relativistic gauge algebra relating the spacetime coordinates to the
streamlines of the fluid rather than to the normal congruence of the spacelike
slicing of spacetime. The relationship between these "other" Hamiltonian structures
for general relativistic perfect fluids and the one presented in this paper will be
discussed in the final section of this paper.

One of the features of this paper is to establish a Hamiltonian formalism which
allows an arbitrary gauge or coordinate condition. Indeed, in some numerical
work it is not always desirable to use comoving coordinates; see Smarr et al. (1980).

Moncrief (1974) has used his Hamiltonian structure for general relativistic
perfect fluids to investigate the stability of spherically symmetric neutron star cores.
Walton (1979) used his Hamiltonian structure to investigate adiabatic linear
perturbations of spatially-flat, Robertson-Walker universes, Lund (1973) used
Schutz's Hamiltonian structure to quantize the dynamics of a spherically symmetric,
gravitationally collapsing star. The Hamiltonian structure for the Einstein-Euler
field equations presented in this paper should also find applications in astrophysics
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and cosmology as well as in other more theoretical investigations of the Einstein-
Euler system. Among the latter applications we include the linearization stability
problem which is posed by the question: when is a solution of the linearized
Einstein-Euler field equations tangent to a curve of exact solutions?

We believe that if the perturbations are confined to Lin constraint surfaces
(the coadjoint orbits) then the basic results connecting symmetry with linearization
instabilities and singularities in the space of solutions hold (Fischer et al. 1980;
Arms et al., 1981, 1982 and references therein). However, if perturbations off the
coadjoint orbits are allowed, this link is destroyed (DΈath, 1974 and Arms, 1979*).

A second application is to the study of dynamic stability of equilibrium
solutions. Since the Poisson bracket structure is the same as in the nonrelativistic
case, the methods used there should carry over (see, for example, Arnold, 1966b;
Holm et al. 1983, 1984; Abarbanel et al, 1984).

Finally, we mention that the generalization of our work to the case of general
relativistic plasmas, MHD and elasticity now seems straightforward, given the
nonrelativistic literature available (cf. Bialynicki-Birula et al. 1982; Carter,
1973; Spencer, 1982; Tarn, 1966; Tarn and OΉanlon, 1969; Taub, 1970; Holm
and Kupershmidt, 1984).

This paper is organized into five sections. In Sect. 1 we review preliminaries
including some facts about equations of state for perfect fluids, the kinematics of
spacelike slicings of spacetimes containing perfect fluids, and some results about
Lie-Poisson brackets which are essential to this paper. Section 2 reviews the
Einstein-Euler equations and also gives a (3 + l)-decomposition of these equations
using the usual lapse function and shift vector field parametrization of the general
relativistic gauge algebra. In Sect. 3 we derive the main result of this paper, a
Hamiltonian structure for the (3 + l)-decomposed Einstein-Euler equations of
Sect. 2 in which the Hamiltonian function is parametrized by the lapse function
and the shift vector field in the usual Dirac (1964) form. Then, in Sect. 4, we
introduce another Hamiltonian function for the Einstein-Euler equations which
is parametrized by Walton's (1980) generalized lapse function and shift vector field
relating the spacetime coordinates to the streamlines of the fluid rather than to
the normal congruence of the spacelike slicing of spacetime. Finally, in Sect. 5, we
discuss the relationship between the Hamiltonian structure for general relativistic
perfect fluids presented in this paper and those of Schutz, Moncrief, and Walton.
We also elaborate on the Lagrangian to Eulerian transformations (including the
possibility of using fluid variables analogous to van Dantzig's (1939) thermasy
function—a variable "conjugate" to the entropy) based on Marsden et al. (1984b).

1. Preliminaries

A. The Equation of State and some Thermodynamίc Parameters. The equation of
state of a fluid is usually given by the energy (per unit rest space 3-volume)

e = e(n,s) (1A.1)

as a function of the baryon number (per unit rest space 3-volume) n and the
entropy (per baryon, in a rest frame) s, or given by the isotropic pressure (in a



322 D. Bao, J. Marsden and R. Walton

rest frame)

as a function of s and the enthalpy (per baryon, in a rest frame) h. The quantities
e, p, n, h are related by

In Misner et al. (1973), p. 564, one learns that e + p (equivalently nh) can be given
the interpretation of a relativistic inertial mass (per unit rest space 3-volume). We
will, on two occasions, need the physically reasonable assumption that

nhφΰ. (1A.4)

We shall assume that energy is conserved in the fluid's rest frame. This
assumption is formalized as the first law of thermodynamics, which takes on the
following equivalent forms

where

nTds,

= ndh-nTds,

is the temperature (in the rest frame), and ds denotes partial differentiation.
From the above we see that

h = dHe9 p = ndne-e,

and

n = dhp, e = hdhp-p. (1A.9)

Thus e and p are related by Legendre transformations, while n and h are
thermodynamically conjugate variables. This demonstrates the equivalence
between the equations of state (1 A.I) and (1 A.2). We shall use (1 A.2) as our equation
of state.

The quantity υ defined by

v-
2 = hn-1dhn (1A.10)

is the speed of sound in the fluid, as measured in the rest frame (see Taub, 1948;
Lichnerowicz, 1967). We will on two later occasions need the causality assumption

v^l, (1A.11)

where 1 is the speed of light in vacuum, given in geometrical units.

B. Slicings, the 4-Vector J, the Lapse and Shift. Our spacetime X is a 4-dimensional
Lorentzian manifold with signature ( — h + +). We assume that X is topologically
Σ x U, where Σ is a compact, oriented, boundaryless 3-dimensional manifold.
The compact-boundaryless assumption is made to facilitate integration by parts;
it may be replaced by asymptotic conditions on functions at spatial infinity.
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A slicing is a curve of embeddings it:Σ->X. The tangent to this curve is the
evolution vector field dt. The slicing, viewed as i :Ixffl->X, provides a local
coordinate system {xμ} on X (whenever i is a diffeomorphism onto its image).
A local coordinate basis is provided by {dt9it*dι}, where {δf} constitutes a
local coordinate basis on Σ.

Our index conventions are as follows: μ, v,... (lower case Greek) are spacetime
coordinate indices, they run from 0 to 3 and are raised and lowered with the
4-metric ( 4 )# = gμγdxμ(x)dxv;i,j,... (lower case Latin) are coordinate indices on the
hypersurface Σ, they run from 1 to 3 and are raised and lowered with the induced
time-dependent 3-metric g = if{*)g = gijdxi®dxi. Vector indices are up, co-vector
indices are down; repeated indices are automatically summed. The superscript #
on a tensor means that the later's indices are all raised; likewise, the superscript
b on a tensor means that its indices are all lowered. Covariant differentiation on
spacetime will be denoted by (4)V or " ", and that on Σ will be denoted by V or
"ι". Our definition of the 4-curvature is

D a _ a (a \ p) (a \ I (<x \(ξ \ (a \(ξ \
K βμv - Vμ{ βvi - ϋ Λ βμ) + \ ξμj X βvj ~ X ξv) X βμb

where { } are the Christoffel symbols of the torson-free connection (4)V. The
Ricci, scalar, and Einstein curvature tensors are, respectively,

Ricμv = Rtμξv( = Rμ*vξ), WR = Ric^, Einμv = RiC/xv - $g

The definition of 3-curvature tensors are analogous.
Our basic fields are as follows. The gravitational field is described by the

4-metric {A)g. Let u denote the unit 4-velocity of the fluid's flow lines; u is
future-pointing, timelike and satisfies

uvuv=-l. (lB.ί)

The fluid's motion is determined by the vector field

together with the entropy (per baryon in rest space) 5. In fact, if J were known,
then using (1B.1), so is h (and hence u); using h and s, one can then determine all
other thermodynamic quantities from the equation of state (1A.2).

We recall from Lichnerowicz (1967) that the stream lines of an isentropic perfect
fluid are geodesies of the conformal spacetime metric

so that

where S£3 denotes the Lie differentiation along J.
Let n denote the unit normal vector field on the embedded hypersurface ijΣ.

(There is no occasion in this paper where a notational confusion with the baryon
number arises.) For a vector field A on spacetime, we use the notation
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and

AL = -Aλ= -Avnv. (1B.6)

Using the decomposition

J = JLn + iAJ\dk) (1B.7)

and (1B.1, 1B.2), we get

-h-2=-(Jλ)2 + (J\)2

9 (1B.8)

with the abbreviation

As a result, we have h = h(JL,Jvg). Here, J1 and Jl{ are, respectively, a time-
dependent scalar field and a time-dependent vector field on Σ. Two trivial but
useful consequences of (1B.8) are

J-^O, (1B.10)

and

While we do not dispute the physical significance of (J 1, J^, we shall soon see
that the structure of the evolution equations of the Einstein-Euler system becomes
more transparent by the use of a different set of physically meaningful fluid variables.

The usual lapse function N and shift vector field M on Σ are defined by

It will also be useful to define the time-dependent scalar field N and the
time-dependent vector field M on Σ by the decomposition

NJ-it*M = dt. (1B.13)

One can verify that

N = N(J1)~\ N = NJ\ (1B.14)

and

M= -M + NJ^J1)-1, M= -M + NJr (1B.15)

If one interprets the slicing as reference frames used by a collection of observers,
then N fixes the clock rates of our observers relative to proper time along J
(measured with respect to the conformal space time metric (IB. 3)), and M represents
the velocity of the fluid relative to our observers. This interpretation of M is one
justification for the use of the minus sign in (1B.13). (The variables J and the fluid
based lapse and shift N and M were used in Walton, 1980).

C. Lίe-Poisson Structures. The material presented in this section is a condensed
and specialized version of that in Marsden et al. (1984a).

Let us first describe the semi-direct product group S = {3)@ ex ( ^ x J^*). Let ( 3 ) ^
be the diffeomorphism group on Σ, 3F the space of functions on Σ, and J^* the
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space of scalar densities on Σ (ξeέF* has the form ξ = f^/g, where / is a function

on Σ and y/g = (det gr£j )
1 / 2). We l e t ( 3 ) ^ act by the push-forward action p on both

#" and ^ * , namely

and

where Dσ is the Frechet derivative of the diffeomorphism σ:Σ^Σ. Group
multiplication on S is given by

The Lie algebra of S is 0 = ΘC ex (βF x #"*), where ^ is the space of vector fields
on Σ\ i.e. SC is the Lie algebra of ( 3 )^ with the left Lie bracket [X, 7 ] : = [X, 7 ] L =
J^yX (which is minus the standard Lie bracket of vector fields). The action p' of
f o n J ^ and #"* is the linearization of p and is given by

p\x) f=-sexf

(if φt is the flow of X, then p'(Xyf = d/dt\, = op(φ,yf = d/dt\ι=of°
- (df){X) = - if x / ) ; similarly

JJ ( 1 C 5 )
The Lie bracket on d is

We will show in Sects. 3 and 4 that an appropriate choice of phase space for
a perfect fluid is 4* = 9£* x ^ * x #". We hasten to point out that while this phase
space is the dual of the Lie algebra of the group ( 3 ) ^ c>< \JF x <F*\ the group
(3)^ ^ j r whose Lie algebra is parametrized by the lapse function and shift vector
field, plays an important role in terms of gauge symmetries.

The elements of d* will be denoted by (μ, η, s) where μ is a one-form density
(the "inertiaΓ 3-momentum one-form density), η is a scalar density (the baryon
number scalar density), and s is a scalar (the entropy scalar). A concrete discussion
of the physical meaning of μ and η will be given in Sect. 3. Both μ and η are
products of a tensor with the 3-volume J~g, and the natural pairing between d*
and ύ is

<(/M,s), (*,/,£)> = ί(μfX
1' + ηf + s<^ 3x. (1C.7)

Σ

We now digress a bit. Any Lie group G acts on its Lie algebra g by the adjoint
action X^ Aάg(X\ and acts on g* by the coadjoint action μι—>Ad*-i(μ). The
orbit through μeg* is called a coadjoint orbit, and is denoted Θ. The easily
verified statement d/dt\t = 0(Ad*xp{_tX)(μ\ Y) = < -(adX)*μ, Y) (where ad, the
linearization of Ad, is the bracketing action of 9 on 9, i.e. (ad X)Y = IX, 7]) shows
that the infinitesimal generator of the action of G on 9* is the vector field
Xg*, where XQ*(μ)= — (ad AΓ)*μe7μ9* « g*. By its definition, JΓ * is a vector
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field on g*, which is tangent to each coadjoint orbit. Furthermore, it is clear that
the tangent space TμΘ is spanned by elements of the form XQ*(μ), where Xeq.

For the semi-direct product we are considering, the infinitesimal generator (of
the coadjoint action of S on <$*) is

(X, f, ξ)Aμ, η,s)=- [ad (X, f, ξ)T(μ, η, s), (1C.8)

where

[ad (X, f, ξ)Y(μ, η, s) = ([ad XYμ -p'f*η- p?s, p'(X)*η, p'(X)*s). (1C.9)

Here p'f(Y) = p'(Y) f, p'ξ{Y) = p'(Y) ξ and p'f, p'ξ* are their adjoints.
Integration by parts shows that

[ad (X, f, ξ)T(μ, η, s) = (£?xμ + ηdf-ξds, J?xη, J?xs). (1C.10)

We remind the reader that if T is a tensor, Lie differentiation of the tensor density

Tyjg is defined as

^x(T^/g) = {SexT)J~Q + TX\^ (1C.11)

where Xk

[k = Xk

k + {k

jk}Xj is the covariant divergence of X on Σ. From (1C.8)
and (1C.10), we get

(X, / , £)/(μ, η9s) = (- ^xμ -ηdf + ξds,- &xη, - £>xs). (1C.12)

For functions F,/f:d*->R, we can define two ( + ) Lie-Poisson brackets

δF\ δH JδH\ δF

The functional derivatives of, say, F are defined as follows: for (δμ,δη,δs)e
τ{μ,η,s)<>* ~ <Λ (δF/δμ, δF/δη, δF/δs) is the element of 0 such that

<* , r,,δF δF δF
(δμ, δη9 δs)9

We shall find that with the push-forward action of ( 3 ) ^ on 3F and J^*, the left
Lie bracket on 3C, and the specific evolution equations at hand (see Sect. 3), {} +

is the Lie-Poisson structure we want. This is consistent with the conclusions for
a non-relativistic perfect fluid, as discussed in Marsden et al. (1984a). Integration
by parts shows that

{F, H} + (μ, η,s)=/l & d

δF δF δF\\
w* (1C15)
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Note that since (δH/δs)e^* is a density,

δF\δH\ I Cί? δH\ I δH\ /ίδF\δH

δH δF'

δs 'δμ I

On the other hand, since (δH/δη)e^ is a scalar, (η,p'(δF/δμ) δH/δη} =
(η, ( - &δF/δμ)(δH/δη)> = <//, - d(δH/δη)(δF/δμ)> = < - ηd(δH/δη), δF/δμ>.
This explains the difference in signs in front of the ηd(δH/δη) and (δH/δs)ds terms.

We remark that if the pull-back action of ( 3 )^ on !F and #"* (i.e. p(σ) f = /°σ,
p{σ)'{fy/θ) = (f°σ)(detDσ)^/g) had been chosen, if the Lie bracket on 3£ were the
"ordinary one" (i.e. [X, YlιR = S£ XΎ\ then given the same fluid evolution equations,
{ }_ would have been the correct Lie-Poisson structure. Integration by parts
shows that in such a case, {F,H}_ is indeed equal to the right-hand-side
of(lC15).

Let H be a function on (d*, { }+). The Hamiltonian vector field XH is a vector
field on d* such that for all functions F on d*,

(DF)UtJXH) = {F, H} + (μ, η, s). (1C.16)

Comparing (1C.16) with (1C.15), we see that

Y (,, v) Λ — \ CO n v*Λ I /7e Q? ΛΛ Cp _ |
Λ HVM? '/J Λ ; ~ \ ^(δH/δμ)^ ΊΊa c « c α λ 5 — ^ (δHlδμ)ΊΊ > ~~ ^ (δH/δμ)s I

Y on os j

(1C.17)

Note also that, by virtue of (1 CIO, 1C.12), we have

Γ (δH δH δH\Ί* (δH δH δH\

|_ \δμ δη δs J J \ δμ ^ δs J *

(1C.18)

So Jί H is tangent to coadjoint orbits.
On any manifold P with a Poisson structure {,} (a derivation on the function

in each slot, real bilinear, antisymmetric and obeying the Jacobi identity), it is a
direct consequence of the chain rule and the definition of Hamiltonian vector fields
that if c: U^>P is a curve, then

jF(c{t)) = {F, H}(c{ή) for all functions F iff jc(t) = XH(c(ή).

In the case of (d*, { }+), the above observation, together with (1C17), gives

Proposition 1. Let H be a Hamiltonian on (a*,{ }+), and let (μ,η,s)(t) be a curve
in d*. The following statements are equivalent:

(i) dt(μ, η,s) = l - <£mίδμ)μ - ηd — + — ds, -
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(ii) dtF((μ9η,s)(t)) = {F,H}+((μ,η,s)(t)) for all functions F on 0* (these are
known as the Lie-Poisson equations on (<?*,{ }+)).

(iii) (μ,η,s)(t) is an integral curve of XH.

2. The Field Equations of the Einstein-Euler System and Their
(3 + 1) Decomposition

Assuming that there is no heat exchange between adjacent fluid elements, the stress-
energy tensor for our relativistic fluid is

T = eu ® u + ((4)# + u <g) u)p, (2.1)

(Misner et al, 1972; Ex. 22.7). Equivalently, by (1A.3) and (1B.2),

T«β = nh3J"Jβ + pgaβ. (2.2)

In geometrical units with 8πG = c — 1, the field equations are

Έmaβ = Taβ, (2.3)

T«β

;β = 0 (i.e. (4)V T = 0), (2.4)
and

s X = 0 (i.e. (4)Vws = 0). (2.5)

Equation (2.5) is the statement that entropy is conserved along flow lines. This is
equivalent to rest space energy conservation (the first law of thermodynamics) and
the assumption of no heat exchange. We are therefore dealing with an adiabatic
flow with no shock waves. (How the present formulation should deal with shocks
is not yet clear.)

If the basic variables were taken to be the metric ( 4 ) #, the fluid's world lines,
and 5, and if an equation of state of the form e = e((4)# + u ® w, s) were chosen,
then as in Carter (1973), the field Eqs. (2.3, 2.4) would result from the variation
of the action \dAx^J — g&4)R — e). This action is formally the same as one used
by Taub (1954), in which case the equation of state was e = e(n,s).

In our case, the field Eq. (2.3) is derivable from the following variational
principle. If we vary the action $d4x^^g(j(4')R +p(h,s)) with respect to (4r)gaβ

and set the coefficient of δgaβ equal to zero, we get

(2.6)

Using n = dhp and —h~2 = JaJβgaβ, the right-hand-side of (2.6) is readily computed
to be Taβ as given in (2.2).

We now (3 + 1) decompose the Einstein field equation. Taking the "| |, | |"

projection of <J — gEinα/? = -J —gTaβ, we get the evolution equations

dtgtj = INjg-1^ - \Qii tr π) + &Mgij9 (2.7)

and

dtπ
ij = JV[S,(π, π)-y/ϊj Ein ((3)^)]^' + ^ ( H e s s ^ + gijΔ)-N + &Mπij

3 { gij). (2.8)



Hamiltonian Structure of General Relativistic Perfect Fluids 329

Here, Hess17 AT = Nlι{i, ΔN = - N\, and

is the spray of the DeWitt metric (Fischer and Marsden, 1979). Equation (2.7) may

be viewed as the defining relation for the conjugate momenta πιj. We also remind

the reader that we write yjg = (det^ri7)
1/2 and yj—g = (— det gap)1/2 = N^Jg.

To simplify later discussions, we introduce the vacuum superhamiltonian

^ (2.9)

and vacuum supermomentum

/ ϋ β c = - 2 V π, (2.10)

as well as the following adjoint notation, following Fischer and Marsden (1979).
If Jf = jf(gf, π) is a scalar density, we define the ίΛadjoints (DgJf)* and (D π Jθ* v i a

integration by parts:

J <(D,Jf)* 1,^> + <(Dπjf)* 1,5π> = j (D,Jf)δ^ + (DπJθSπ. (2.

The evolution Eqs. (2.7,2.8) can be compactly rewritten in the following adjoint
form:

δtg = (DKtfvJ*'N + (Z)π/v a c)* M, (2.12)

dtπ = - (DgJfvJ* N - (DgfvJ* M + N(nh3 J,, ® J,, + p / ) ^ . (2.13)

As usual, the "J_, 1 " and " 1 , ||" projections of (2.3) yield the constraints. More
precisely, one obtaines

where

Jt — — Z{ _L,

and

1 " projection

M

J

of

%g,π,J\J,
'(g^J\J,

Ein α / ? - Γα ;

, 5) = 0,

,s) = 0,

Q)\J g — ^ r v a c + Δΐin fg-

(2.14)

(2.15)

2pVθ,
(2.16)

/ = - 2 ( " ± , ||" projection of Einα/? - 7 . ^ = / v a c - 2n/23J1Jjv/^ (2.17)

Next, we (3 + 1) decompose the conservation law (4)V T = 0. The projection of

= Q a l o n g Mj t h a t i s Ua(τβ«).β = 0, and use of the entropy Eq. (2.5), gives the
continuity equation

(nhJ% = 0 (2.18)

(equivalently, (nuβ).β = 0) or, using the torsion-freeness of our connection,

(nhJP^j\β = 0. (2.19)

A routine computation reexpresses (2.19) as

lV (2-20)
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The projection of (4)V T = 0 orthogonal to u is

% + p «) = 0. (2.21)

Let us digress a little; (2.21) can be rewritten as

(p + e) ( 4 ) V M ι*=-P ((4)Vp), (2.22)

where

P = wg + u®u (2.23)

is. the projection tensor onto the 3-dimensional subspace orthogonal to u. Equation
(2.22) is the relativistic analogue of the non-relativistic Euler equation—see Misner
et al. (1973), pp. 159 and 565. We also see that the quantity p + e (hence nh) plays
the role of a mass—the "inertial mass" (per unit rest space 3-volume). Let us return
to (2.21). Using the continuity Eq. (2.18), the entropy Eq. (2.5), and the relation
J = uh'1, (2.21) can be rewritten as

(nh3JβJa).β = - nhta + nTs^ (2.24)

or equivalently,

{y/^gnh3J'JJ.β = - J^gnha + ^gnTs^. (2.25)

Note that if A is a tensor, the covariant derivative of the tensor density Ay/ — g is
defined as

(Ay/- g\β = {Ay/- g\β + corrections as if (Ay/- g) were a tensor - (Ay/- g){\β}.

Now write out the covariant derivative in (2.25), set α = i, and after a lengthy
computation, one gets

^rι) + (nNTy/g)ds. (2.26)

Here, d denotes the exterior derivative on Σ. (For example, ds = sΛdx\ rather
than s^dx").

Finally, the (3 + 1) decomposition of the entropy Eq. (2.5) gives

dts = — Sf

{_M+Nj^jL)^l)s. (2.27)

The physical meaning of the quantities nhJ1 ^fg andnh3 J\Jλ y/g is given in Sect. 3.

Let us examine the evolution Eqs. (2.12, 2.13,2.20, 2.26, 2.27) and the constraint

Eqs. (2.14, 2.15). The constraints are statements about (g,π,J±,Jll9s: = s\Σ), which

are fields on Σ obtained by the usual (3 + 1) decomposition of the spacetime fields

((4)0,(4)J,s). However, the evolution Eqs. (2.20, 2.26) are for the quantities nhJ1 J~g

and nh3J*Jλy/g rather than for J1 and J}] directly. Nevertheless, the

evolution equations for J 1 and J,, can be written down, in principle. The reason

is that the map (J1

iJιι)\-*(nhJ1y/g,nh3J\J±y/g) is invertible for fixed s and g

(see Sect. 3), so in principle, J 1 and J,, are (s, ^-dependent functionals of
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(nhJ1

y/g,nh3J\J1

y/g), that is,

(J1, J.,) = (J\ JMnhJ^Jg, nh3J\JλJg, s, g). (2.28)

Using the chain rule and the evolution Eqs. (2.20, 2.26, 2.12, 2.27), we can obtain

evolution equations for (J 1, J |(). Unfortunately, for a general equation of state, an

explicit formula for the functional dependence in (2.28) is at best difficult to write

down. Also, there is no good reason for us to expect that the resulting evolution

equations for (J 1, J^ are any simpler than those for (nhJ^^fg, nh?J\JLyfg). Due to

these aforementioned considerations, we shall not regard (J 1, J,,) as the basic fluid

variables on Σ. It will be shown in Sect. 3 that a constant multiple of the set

(nhJ1^/g,nh3J\J1^/g) is a useful choice of basic fluid variables on Σ.

3. A Hamiltonian Description of the Dynamical Einstein-Euler System

Define the fluid variables

μ: = 2nh3J\JL^/g, (3.1)

π:=2nhJLJg. (3.2)

We have (μ, η)e%* x #"*. The factor of 2 present in these definitions is essential
for our purposes. We will pinpoint its origin later in this section.

Let us first give the physical interpretation of nhJL-sJg and nh3J\JL^fg or,
equivalently, nuL^Jg and nhu\uLyJg. As described before, n and nh are,
respectively, the fluid's particle number and inertial mass (per unit 3-volume in
the fluid's rest space). The subspace orthogonal to u is the fluid's rest space, whereas
that orthogonal to the unit normal n is the tangent space on a hypersurface;
u1 = uL = — {4)g(u, n) is the conversion factor between 3-volume measurements
in the fluid's rest space and those done on the hypersurface; as a consistency check,
note that if the fluid is at rest in the hypersurface (i.e. u = N~1dt% we have u1 = 1.
yfg is, of course, the 3-volume of a coordinate cube on the hypersurface. Thus,
nu±\/y a n d nhu\uλ\fg are, respectively, the number of baryons and the amount
of inertial momentum contained in each coordinate cube. We remark that in the
gauge δt = J, η reduces to Taub's conserved scalar density while μ corresponds
to his conserved spatial one-form (in the case of isentropic flows). See Taub (1969).

Next, let us show that (J 1, Jy) are (5,^-dependent functional of {μ,η\ that is,

(J 1, J,|) = (J 1, Jj|)(μ, 77,5, g\ (3.3)

provided that assumptions (1A.4) (non-zero intertial mass) and (1A.11) (speed of
sound in fluid not exceeding the speed of light in vacuum) are valid. The functional
dependence (3.3) is obtainable through an application of the inverse function
theorem, as follows. For each choice of fixed 5 and g, one can check that the
Jacobian matrix of the map

( J 1 , J 1 1 ) ^ ( 2 n h J 1
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is the 4-by-4 matrix

where

Jh)[l -(hJ1)2^ +v-2)-2(hJ1)2l

hJλ)lgij + (hJh)(hJh)(l +v~2) + 2(hJh)(hJh)l

Recall that v is the speed of sound in the fluid, as defined in (1A.10). We perform
the following three elementary row/column operations on DΩ which leave det (DΩ)
unchanged: Subtract h2J^ times row zero from row i, then add (hJλ)~*(hJ^
times column zero to column), then subtract {(hJL)2h)~1(hJ1^) times row i (summed
on ί) from row zero and use the identity (1B.8) in the form h2(J{l)

2 = (hJ1)2 — 1. These
elementary operations reduce the matrix DΩ to

ί2Jgnh[h2(J^2 -(/zJ 1 ) 2 ! ;" 2 ] 0

V ^ j
hence,

det(DΛ) =

which is non-zero since nhφ 0(1 AΛ), J1 =£0(1 B.I0), (J , , ) 2 ^ 1 ) " 2 < 1 (IB. 11) and
v~2^ 1 (1 A.I 1). The functional dependence in (3.3) then follows by the inverse
function theorem.

For the rest of this section, unless otherwise stated, all dependences on
(J1,./,!), whether explicit or implicit, are to be understood as dependences on
(μ, η, s,g) through Eq. (3.3).

We take the phase space of the (3 + 1) decomposed Einstein-Euler system to
be T*Jί x d*9 where Jί is the manifold of all Riemannian metrics on Σ and d*
is the semi-direct product ^ * ex (#"* x <F) (see Sect. 1C). The basic fields on Σ are
(g,π,μ,η,s)9 the atlas fields (Isenberg, 1980) are N and M, and the evolution
equations are

dtg - (DπJ?vac)* N + (DπfyJ* - M, (3.4)

dtπ= -(DgJfvac)*-N-(DgfvJ* M + N(nh3J,®Jt + pg*)^, (3.5)

dtμ = - ^ { . M + N ψ ± r l ) μ - ηd(N(JLγι) + (2nNT^)ds9 (3.6)

dtη = - ^-M + N ψ i r ^ ( 3 7 )
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with the following constraints on the initial data

Jf{g9 π, μ, η, s) = jfvac + (J\ μt + ι/)(JT * - Ipjg = 0, (3.9)

/(#,π,μ) = / v a c - μ = 0. (3.10)

Equations (3.4)^(3.10) are merely rewrites of (2.12, 2.13, 2.26, 2.20, 2.27) and (2.14,

2.15), with the use of the identity 2nh\J1)2^fg = {J\μi + fX J 1 )" 1 - τ h e moti-

vation for using such an identity to rewrite J-f will become clear. Note also that

(3.6, 3.7) are obtained by multiplying (2.26, 2.20) by a factor of 2.

Define the Hamiltonian H = H(g, π, μ, η, s, N, M) by

H=^(NJίr + Mi/iy (3.11)
Σ

This is the usual Dirac/canonical Hamiltonian (Dirac, 1964; Hansen et al., 1976).

Note that the fluid part of j f is 2nh3(J1)2

Λ/g-2p^Jg = 2nh(l+(uι)
2)Λ/g-

Ip-^yg = 2(u1)~1(eu1

v/
ίg-\-nh(ul])

2u1

ΛJg). The term euLJ~g is the rest energy in

each coordinate cube on Σ, while nh(u^2uL^fg is essentially the amount of inertial

kinetic energy in each such coordinate cube.

The aforementioned fluid part of Jf may also be rewritten as Jη2h2 + giJμϊμj ~
2/\/#, through the use of the identity inh^J1)2^ = {J\μi + η)(J1)~\ as well
as Eqs. (3.1), (3.2), and (1B.8). Such is essentially the Hamiltonian density derived
by Holm and Kupershmidt (1984) for special-relativistic (that is, relativistic but
nongravitating) perfect fluids. It is our impression that less algebra is involved in
the derivations of this paper using our form of the fluid Hamiltonian rather than
the numerically identical Holm-Kupershmidt form.

We are now ready to show that H generates the evolution of (g, π, μ, η, s) in
T*Ji x ό*. First let us consider H as a function on <**. By Proposition 1 (Sect. 1C),
one sees that the evolution Eqs. (3.6), (3.7) and (3.8) define integral curves of H
(and hence are equivalent to the Lie-Poisson equation of H on a*) provided that
H satisfies

ψ-^-M + NJ^J1)-1, (3.12)

and

δ-^-^2nNTjg (3.14)
δs

To facilitate the verification (3.12), (3.13) and (3.14), we shall use implicit
differentiation. The expression for jf, namely Jf v a c + (J\ μt + η){JL)~1 -

2p(h(J1

9Jpg)9s)y/g9 can be regarded as a functional 3ff"(g,π,μ9η,s,Jλ,J^
which is numerically equal to Jί?(g,π,μ,η,s) through the use of the implicit



334 D. Bao, J. Marsden and R. Walton

dependence (3.3) of (J 1, Jy) on (μ,η,s,g). The statements

L = 0, (3.15)

J ^ h 3 J h = 0, (3.16)

are easily verified using dp = nd/ι — nTds and

dJλ.h=-JLh* (3.17)

d^h = Jhh
3, (3.18)

as well as the defining relations (3.1, 3.2), which have become identities in
view of (3.3).

Using (3.15, 3.16), we have, for any ωef*,

= I ΛΓ(J1)-J Jjω,. + NUdj^yD^J1 + (fyjr) D, J ί t o - M'ω,

This verifies (3.12), and (3.13, 3.14) are similar. Hence our Hamiltonian H does
generate the evolution of (μ, η, s).

We next turn to the evolution equations for (g, π). Let us regard the Hamiltonian
H as a function on T*J(. Being a cotangent bundle, T*Jl has a canonical
symplectic structure, with associated Poisson bracket

For Ft(g, π) = J #Ί(g, π), the bracket becomes
2:

Σ (3.19')

(as in Fischer and Marsden 1979), where the adjoints are defined as in (2.11). For
our Hamiltonian H = J (NJίf -f M / ) , the Hamiltonian vector field XH (defined

Σ

by (DF)XH = {F,H}) is, for the (g, π) variables (holding μ,^ and s constant):

II I. \J.zλJ)

As usual, the symplectic matrix (°_ι I) converts elements of T ( * π ) ( Γ * ^ ) into
those of T{gπ)(T*Jί). (The form (3.20) is equivalent to the adjoint form of Fischer and
Marsden, 1979.)

Using dp = ndh — nTds, as well as

r) U — l / ,3 ji jj Π 2 1 )
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and

we have

which, by (3.15), (3.16), becomes Dgjfvac - y/g(pg*+ nΛ3J,, ® J |(). Hence (Dg3>?)*N

= (Dg34?VΆC)* N - N^/g(pg#+ nΛ3J,,(g) J,,). Computing in this fashion we find that

(3.20) gives

) (3.23)
g (Dβ/yJ*'M Nj{H Λ3J,, ® J , , ) /

Therefore the evolution of (g, π) is along the integral curves of XH. Put another way, the
evolution eqs. (3.4), (3.5) for (g, π) are equivalent to the Poisson evolution equations
F={F,H} on T*Jί.

Our efforts are summarized in

Theorem 1. Let H be the Hamiltonian given by (3.11). The following three conditions
on a curve (g,π, μ, η, s) (t) are equivalent:

(i) It satisfies the evolution Eqs. (3.4) ->(3.8).
(ii) It is an integral curve of the Hamiltonian vector field XH on T*Jί x d* given

by (1 C.I7) and (3.20).
(iii) It satisfies F = {F, H} where the Poisson bracket on T*J( x d* is the

sum of the canonical bracket on T*Jί (see (3.19)) and the + Lie-Poisson
bracket on o* {see (1C.15)).

The equations F = {F, H} may be regarded as the adjoint equations in the
spirit of Fischer and Marsden (1979).

We now digress and explain why the seemingly artificial factor of 2 is necessary
in the defining relations (3.1), (3.2) of μ and η. If this 2 were absent, then the key

changes are: (μ,ή) = (nhJ±

y/g, nh*J\JL

y/g\ tf = Jfyac + 2(JJA

2py/g, / = / v a c - 2μ,

dtμ = -

dtή = -

as well as

Thus H = j(NJt + M/) no longer generates the evolution equations for (μ,ή,s),
Σ

though it still works for those oϊ(g, π). One could remedy the situation by replacing
Tαp by \ Tαβ in the Einstein field equation, for then

I ^ ) " 1 - P v / ^ ' / = /vac-A and hence

δμ δη δs
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on the other hand, the dt(μ, ή) equations remain the same as (*) because they are
obtained by a (3 + 1) decomposition of (4)V T = 0, which is equivalent to
(4)V (^T) = 0. Thus H = \{N2tf + Mf) will again generate the evolution equations

Σ

for (μ,ή,s); it will also generate those for (#,π), since the source term in the dtπ
equation would have been halved by the Taβ^jTaβ process as well. This shows
that, given our possibly prejudicial insistence that the Hamiltonian is always defined
as \(N2tf + Mf) with jf, / given canonically by the prescription in (2.16), (2.17)

(i.e. — 2^/g times the 1 1 and 11| projection of Ein-T, respectively), the origin of the
factor 2 is in the coupling between the fluid and the gravitational field.

Let us now turn to the issue of constraints and their preservation. If one specifies
initial data on Σ9 prescribes (JV, M) for all time, and then uses (3.4) -• (3.8) to evolve
the initial data into a curve (g9 π, μ, η, s) (ί), one obtains a fluid filled spacetime whose
(3 + 1) description is (#, π, μ, η, s, N, M) (t). However, in order that the fluid and the
spacetime obtained satisfy all components of the Einstein field equation, the initial
data must be constrained by (3.9) and (3.10). As a matter of consistency, we need to
check that the constraints are preserved by the evolution Eqs. (3.4)-• (3.8). A (long)
calculation shows that such is indeed the case, for

(3.24)

{N2/\ (3.25)

Some key ingredients that help establish (3.24), (3.25), are

{Dg^^iDπ^^ N-{Dπ^yJiDg^y^ N = N-'ViN2/^c\ (3.26)

(Dβ/yJ (DπjeyJ*'N - (Dκ/yJ (DgjryΛG)* N = ^yacdN, (3.27)

(Dfyac)*'X = (-J?xπ^xg\ (3.28)

(Z)π/ v a c) ω = - 2 V ω. (3.29)

Their verification can be found in Fischer and Marsden (1979) (caution: our fyac =
— their fyac, and our M = — their M).

We close this section with a geometrical description of the formalism we have
used. This will be useful in Sect. 4.

Denote (g9π, J1, J| |?s)-space by T*J( x V and, as above, (g,π,μ,η,s)-space by
T*Jl x 4*. Define the map

Ω:T*Jί x V^T*M xo*

Ω(g, π, J\ Jp s) = (g, π, 2nh3J\jyg, 2nhJLJg, s).

Let D be the submanifold in T*Jt x V on which the non-zero inertial mass
condition (1 A.4) and the causality condition (1 A.I 1) are valid. The reasoning leading
to (3.3) shows that ΩlD:D-+Ω(D) is a local diffeomorphism. Let C be the
submanifold in T*Ji x V defined by the constraints (2.14), (2.15). The system of
evolution Eqs. (2.12), (2.13), (2.26), (2.20), and (2.27) maps C into C for all times.
On the other hand, the constraints (3.9), (3.10) describe the submanifold Ω(Cc\D).
Thus, we can phrase things as: the system of evolution Eqs. (3.4)-• (3.8) is defined
on Ω(D) and the evolution operator maps Ω(Cr\D) into Ω(CnD).
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4. Another Viewpoint

In this section we describe, following Walton (1980), an approach in which the gauge
Lie algebra 3C x 3F is parametrized by M and N (see Sect. IB) rather than the usual
shift vector field and the lapse function.

Define μ and η as before:

J (4.1)
η = inhJ^y/g. (4.2)

Our basic variables are (g9 π, μ, η, s); therefore the phase space is again (Ί*Jί x d*, {}
+ {}+). The evolution equations are

dtg = (D^^ΠNJ1) + [DπfVΆC)*{NJ^ - M), (4.3)

dtπ = - (Dβ3Vm)*(NJL) - {DJVΆCY{NJ, - M)

inh3 J,, <g> J,, + pg*)9 (4.4)

- ηdN + (2nNJ1 T^g)ds, (4.5)

(4.6)

(4.7)

where, in contradistinction to Sect. 3, (J 1, Jy) are regarded here as functional of
(g, π, 5) obtained by solving, for each fixed s, certain projections of the Einstein field
equation, namely

', π, J\ J,,, 5) = ̂ fvac + 2nh3(J±)2^/g - 2p^g = 0, (4.8)

, π, J \ J,,, s) = / v a c - 2nh3J^J"Jg = 0. (4.9)

Equations (4.8) and (4.9) were previously known as the constraints, but here they are
to be used as identities (since they are solved) and the name constraint could be
misleading. Following Moncrief (1977), we see that (4.8) and (4.9) can indeed be
solved for

(J\J^ = {J\J^){g9πs)9 (4.10)

provided that the non-zero inertial mass assumption and a causality condition
(respectively (1A.4) and (1A.11)) are both satisfied.

Let us explain geometrically what has been done so far, using the language
introduced at the end of the last section.

Using (4.8) and (4.9) as identities is the statement that in T*Jί x V, we have
restricted the system of evolution Eqs. (2.12), (2.13), (2.26), (2.20) and (2.27) to the
constraint submanifold C. Having (4.10) means that such a system is further
restricted to CnD, and local coordinates (g,π,s) are being used, consequently
reducing the system to an explicitly unconstrained one. Transplanting this
unconstrained system from C n D to Ω(CnD), we obtain some system of evolution
equations, say "*". The collection of evolution Eqs. (4.3)-> (4.7) represents one of
possibly many systems on T*Jί x d* which, when consistently restricted onto
Ω(C n D), agrees with the system "*". Now, since points (g, π, μ, η, s) in Ω(C n D) are
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characterized by the conditions

oc: = μ- {2nh\l\J^g)(g, π, 5) = 0, (4.11)

and

β:=η-(2nhJ^){g9π,s) = 0, (4.12)

and since (4.3) -> (4.7) is supposed to restrict consistently to Ω(C n D\ we must check
that the quantities α and β are preserved by the evolution Eqs. (4.3) -> (4.7). A (long)
calculation shows that

dμ=-^Ma-βdN, (4.13)

dtβ=-^Mβ. (4.14)

So, if the conditions (4.11) and (4.12) are satisfied initially, they are satisfied for all
time.

We next study the Hamiltonian structure of the system (4.3) -• (4.7). We shall
show that it is generated by the Hamiltonian

H = H{g9 π, μ, η, s9 N9 M) = J (NH + M / ) , (4.15)

where

JT(g9 π, η, s) = J ^ v a c + J j ί Λ J , - UL

Py/g + η, (4.16)

/{g,π,μ)=-/yΛG + μ. (4.17)

The use of (4.10) is understood.

Let us indicate how the expression for H is obtained. Note first that even though

the quantities 3P(g9 π, J\ J][9s) = Jf,ac + 2nΛ 3 (J 1 ) 2 y/g - 2pJ~g and f(g9 π, J\ Jps)

— ./vac — 2nh3J1J\^/g are now identically zero by virtue of (4.10), their rewrites

using the defining relations (4.1), (4.2) at "appropriate" places, namely

,μ, η, s) = 2tfvac + (Jjμf + η)(Jλ)~1 - 2p(h(Jλ, Jp g\ s)y/g9 (4.18)

/(flf,π,μ) = / v a c - μ , (4.19)

are generally non-vanishing functionals defined on the phase space T*Jί x o*. In
(4.18) and (4.19), the (J\J{) are functionals of (g9n9s) by (4.10). Now, using (1B.14)
(1B.15),

M/) - J (NJλ)J? + (ΛΓJ,, - M)/ = J
Σ Σ Σ

It is obvious that Jλ3f + JJJ{/ and — β are simply the jit and / defined in (4.16) and
(4.17)

Let us make one more observation which will be needed. Note that the
functional

&'{g9 π, η9 5, J\ J,,) = J^ Jfvac + J,, / v a c - 2J±p(h(J\ J,,, flf), s)jg + q (4.20)

is, upon the use of (4.10), numerically equal to the <#(#, π, η, s) defined in (4.16). Using
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(4.8) and (4.9) (equivalently (4.10)), is it easy to verify that

d i $" = fflia % J 1 J s) = 0 (4 21)

d Jβ" = J>(q 7i J 1 J s) = 0. (4.22)

We are now ready to show that /7, regarded as a function on (T*^#, {}),
generates the evolution equations of (g9 π). As before, the Hamiltonian vector field
XE of H is

0 16

l 6 χ 6 C

By (4.21) and (4.22), we have

fig ^ 3 ^ ® J,,
Hence

Computing this way, one can check that (4.23) is explicitly

r λ /right-hand-side of (4.3) \
^ ( ^ π ) = ° . (4.24)

\ πght-hand-side of (4.4) /
Therefore the evolution of (g9π) is along the integral curves of XΠ.

Next we regard H as a function on (<**,{}+). The use of (4.21) and (4.22) as
above will also tell us that

so by Proposition 1 (Sect. 1C), we see that the evolution of (μ, η9 s) is along the integral
curves of XE.

Theorem 2. Let H be the Hamiltonian given in (4.15). The following conditions on
a curve (g, π, μ, η, s) (t) are equivalent

(i) it satisfies the evolution Eqs. (4.3)-• (4.7);
(ii) it is an integral curve of the Hamiltonian vector field XH on (T*Jί x o*9

(} + {} + );
(iii) it satisfies F = {F, H} where the Poisson bracket is the sum of the

canonical bracket and the + Lie-Poisson bracket.

Finally, we turn to the issue of constraints. Since our Hamiltonian is H —
\(N^ + Mf) and N9 M are atlas fields, we expect the following constraints
Σ

on the initial data (g, π, μ, η, s):

9 πη,s) = JL^yΆC + J,,/ v a c - 2JλpJg + η = 0, (4.26)
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/(<?, π9μ)=- / v a c + μ = 0. (4.27)

Using (4.8) and (4.9), one can show that (4.26) and (4.27) can be re-expressed,
respectively, as none other than the conditions (4.11) and (4.12) which characterize
the submanifold Ω(CnD). As was shown in (4.13) and (4.14), such conditions are
preserved by the evolution Eqs. (4.3)-• (4.7).

5. Comments

In this paper we have shown that the Einstein-Euler equations for a perfect fluid
coupled to gravity are Hamiltonian. The key features of our Hamiltonian structure
are: (a) it is valid for any lapse and shift, i.e. for any gauge condition; (b) it utilizes Lie-
Poisson brackets for the fluid variables, which automatically encode the Lin
constraints; (c) the Hamiltonian is explicitly linear in the lapse and shift, while the
Poisson brackets are independent of them; and (d) the constraints are not solved,
and the system is explicit. An important step that allows this to succeed is the correct
choice (μ, ή) of momentum and density variables for the fluid.

In what follows, we elaborate on a few points to make further contact with the
literature and to point out a few directions for future research. In doing so, the
exposition will draw heavily on the existing literature and, unlike the main text,
makes no attempt to be self-contained. For expositional simplicity we shall drop the
dependence on the entropy s, since it is just advected and plays no role in the points
we wish to raise.

A. Lagrangian (Material) Descriptions. The original variational principle of Taub
(1948) in which world lines are varied is in the spirit of a Lagrangian description. In
our approach, the dynamic phase space (dropping the entropy) is

where Jt is the space of Riemannian metrics on a model 3-hypersurface Σ, 9£ is the
space of vector fields on Σ and $F is the space of functions. The Poisson bracket is the
Lie-Poisson bracket on the dual of the semidirect product 3C ex $F. As explained in
Marsden et al. (1984a, b), there are a number of ways of obtaining (βC x #")* from a
Lagrangian description by a Lagrangian to Eulerian map (i.e. by reduction).

One can start with

T*M x Γ*(Diff x &) (5A.2)

as a Lagrangian phase space and pass to (5A.1) by passing from the group Diff x $F
to its Lie algebra ΘC x 3F. (This does not presuppose any semidirect structure; as it is
shown, this follows.) The canonical bracket on (5A.2) has a Lagrangian description:
φe Diff represents a spatial fluid configuration (ultimately placed in space time by
means of the slicing) and ^ R e f £ ^ * represents a reference density—transformed to η
when we pass to (5A.1). This Lagrangian approach appears to be similar to Kunzle
and Nester (1984).

Notice that (5A.2) contains $F x J*7*, so a (cyclic) variable conjugate to the
density is present. This variable is related to time translation along fluid trajectories.
This is analogous to the thermasy function of van Dantzig (1939), a variable
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conjugate to entropy. Similarly, in MHD, the variable conjugate to the magnetic
field is the polarization; cf. Calkin (1963). However, the extra factor is a cyclic
variable so one directly passes from (5A.2) to

T*Jl x (T*Diff x &*) (5A.3)

by reduction by ^ (see Marsden et al., (1984b) for the general theory for this). This is
related to the (optional) use of cyclic variables by, for example, Schutz (1970) and
Walton (1979, 1980)

One can also start with a Lagrangian phase space

T*[(Metrics x Functions)over Diίfeomorphisms], (5A.4)

where one thinks of the metrics as being dragged by the fluid diffeomorphisms. This
possibility was foreshadowed by Fischer and Marsden (1972) but with a different
point of view. The approach (5A.4) more closely resembles the lapse and shift N, M
tied to particle paths that were used in Sect. 4 and in Walton (1980).

The approach of Moncrief (1977) and Demaret and Moncrief (1980) is a further
reduction of (5A.I). The constraints J-f = 0, / = 0 can be viewed as the zero level set
of the momentum map for the action of (4)Diff, the four dimensional diffeomorphism
group, thought of as a gauge group. Then by general reduction theory (Marsden and
Weinstein, (1974)) the set (jf = 0, / = 0)/(4)Diff carries the dynamics; one more
reduction by Diff <x 3F (the particle relabling group) gives black T*Jί as the
reduced space. This approach has the disadvantage of having implicit dependence
(the fluid variables are eliminated) but the advantage of fewer degrees of freedom.

It would be quite interesting to develop a covariant multisymplectic (or Poisson)
formalism that leads in a natural way from the covariant formalism to the 3 + 1
formalism (Lagrangian, Eulerian or mixed).

B. Clebsch Potentials. The approach of Schutz (1970, 1971) is to develop the
Hamiltonian formalism using the classical Clebsch potentials in the spirit of Seliger
and Whitham (1968). This formalism is consistent with and in fact follows from what
we have developed. (The formula (33) of Schutz (1971) was a crucial tip for our
approach.) Indeed, the brackets for (5A.1) are independent of lapse and shift and are,
in the fluid variables, identical to the brackets for the non-relativistic case. Since
Clebsch variables are known to apply no matter what the physical interpretation is
(see Marsden and Weinstein, (1983); Marsden et al., (1984a) for the general theory of
Clebsch potentials), they can be applied to the brackets for (5A.1). The Schutz
formalism results.

C. Lin Constraints. Any solution of Lie-Poisson equations leaves the coadjoint
orbits invariant. These orbits represent sets of momentum and density configur-
ations that are kinematically reachable one from the other. They are symplectic
manifolds, so standard variational principles are valid when varied paths are
constrained to lie in them. Thus, from Seliger and Whitham (1968), Bretherton
(1970), Marsden and Weinstein (1983), or Marsden et al. (1984a, b), we see that the
Lin constraint sets are identical to the coadjoint orbits. In the Lie-Poisson
formalism these constraints need not be imposed; the brackets automatically ensure
their preservation by the equations. Of course the use of Clebsch potentials is
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another mechanism for building in the constraints; it has the obvious disadvantage
that it deals with non-physical fields and some fields (having knotted vortex lines for
example) cannot be written in terms of Clebsch potentials.

D. Electromagnetic Fields. Given the non-relativistic results (especially Morrison
and Greene, (1980); Marsden and Weinstein, (1982); Spencer, (1982); Marsden and
Weinstein, (1983); Holm and Kupershmidt, (1983), Marsden et al., (1984a)), and the
results of this paper, it now seems that one can readily proceed to obtain brackets
and Hamitonian formalisms for a wide variety of field theories coupled to gravity,
such as charged relativistic fluids, relativistic MHD, and relativistic plasmas. For
relativistic plasmas, we recall from Marsden and Weinstein (1982) that if the
electromagnetic variables (£, A) are used, the bracket should be just that of

Ί*Jl x T*a x d*,

where α is the space of A9s and d* is the space of (plasma) densities on the mass shell
of T*(Spacetime). When the system is reduced to the fields (£, B) by the
electromagnetic gauge group, there is an important but complicated coupling in the
bracket between the electromagnetic fields and the plasma field (see Spencer, (1982),
Marsden et al. (1983)). It would be of interest to see how the gravitational field
complicates this story.

E. Linearization Stability. The basic results on linearization stability link solutions
with symmetry to singularities in the space of solutions (Fischer et al., (1980); Arms et
al., 1981, 1982). The methods depend crucially on the dynamic Hamiltonian
formalism. Once the constraints are identified and the evolution equations are
written in the adjoint form of Fischer and Marsden (1979), the linearization stability
program can be carried out (see, for example, Arms, 1977, 79, 81; Bao, 1983, 1984;
Bao et al., 1984; Joshi and Saraykar, 1981).

Fluids, however, have a complication. Namely, the brackets are degenerate.
However, if we restrict our allowed fields to the coadjoint orbits (see C. above) the
bracket becomes nondegenerate, so the connection between symmetries and
linearization instabilities should be reinstated. Such is indeed found to be the case
and will be reported in a future publication.

This does not contradict the remarks of DΈath (1974) or of Arms (1979*). For
example, DΈath argues that since the constraints can be eliminated, there can never
be any linearization instabilities. However, to do so requires variations of the fields
that violate the Lin constraints.

We expect that our approach will be of use in the perturbation theory of matter
filled spacetimes by dividing the perturbations into two pieces: the ones consistent
with the Lin constraints (where there will be linearization instabilities) and the ones
orthogonal to them (that change the total baryon number, for example).

F. Dynamic Stability. The Lie-Poisson formalism has been remarkably successful in
the nonrelativistic case in establishing nonlinear dynamic stability results for fluid
systems. See, for example, Arnold (1966b); Holm et al. (1983, 84); Abarbanel et al.
(1984); Hazeltine et al. (1984). These results depend primarily on special conserved
quantities for the fluid variables that are associated to the coadjoint orbits. Since the
relativistic brackets are the same, these Casimirs are also conserved for general
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relativistic fluids—even for a general lapse and shift. It is therefore reasonable to
apply these methods to the general relativistic case. A good example to begin with
might be spherically symmetric neutron star cores (see Moncrief, (1974)). Of course
the dynamic stability of the gravitational fields will probably be more difficult to deal
with.
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