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NONCANONICAL HAMILTONIAN FIELD THEORY AND REDUCED NHD

Jerrold E. Marsden1 and Philip J. Morrisonl’2

ABSTRACT., Aspects of noncanonical Hamiltonian field theory are reviewed.
Many systems are Hamiltonian in the sense of possessing Poisson bracket
structures, yet the equations are not in canonical form. A particular
system of this type is considered, namely reduced magnetohydrodynamics
(RMHD) which was derived for tokamak modelling. The notion of a Lie-
Poisson bracket is reviewed; these are special Poisson brackets asso-
ciated to Lie groups. The RMHD equations are shown to be Hamiltonian
for brackets closely related to the Poisson bracket of a semi-direct
product group. The process by which this bracket may be derived from

a canonical Lagrangian description by reduction is described.

.- 1. INTRODUCTION. The basic idea underlying noncanonical Hamiltonian field
theory is that systems which are not Hamiltonian in the traditional sense
can be made so by generalizing the Poisson bracket. In fact, Poisson brackets
for most of the major non-dissipative plasma systems have now been obtained.
Four of the most basic systems are as follows, in chronological order:
1. ldeal MHD - Morrison and Greene [1980].

2. ?axwe}]-Vlasov equations - Morrison [1980] and Marsden and keinstein
1982].

Multifluid Plasmas - Spencer and Kaufman [1982].

BBGKY hierarchy - Marsden, Morrison and Weinstein (in these proceed-

ings).

For additional historical information and other systems, see Sudarshan

and Mukunda [1983] and the reviews of Morrison [1982], Marsden et al., [1983]
and the lectures of Holm, Ratiu and Weinstein in these proceedings. The
purpose of this paper is to discuss some of the basic ideas and apply them
to reduced magnetohydrodynamics (RHMD).
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We now describe some of the uses for Poisson structures that are now

surfacing.

1.

Categorizing fields. To specify a Hamiltonian field theory, a
Hamiltonian and a Poisson bracket are chosen. The structure of the
bracket can shed 1ight on the theory, so a categorization by the
bracket form is natural.

Casimirs. To each bracket there are functions that Poisson commute
with every function; these are called Casimirs (see Sudarshan and
Mukunda [1983], Littlejohn [1982] and Weinstein's lecture). Casimirs
are invariants for any Hamiltonian system when a given bracket is
used.

Stability. Casimirs are useful in testing for linear and nonlinear
stability by a method going back to Arnold in the mid 1960's., See
the lectures of Holm and Weinstein, Holm et. al. [1983], [1984]
Abarbanel et. al [1984] and Hazeltine, Holm and Morrison [1984] for
further information.

Quantization. Dashen and Sharp [1968] use noncanonical brackets for
quantum observables in the context of current algektras. Goldin's
lecture in these proceedings indicate how Poisson structures may be
useful in quantization. The quantum approach also can be used to
derive classical brackets, as in Dzyaloshinskii and Volovick [1980].
Chaos. As in Holmes and Marsden [1983], noncanonical Poisson struc-
tures can be used to prove the existence of chaos in perturbations
of integrable systems.

Limits, Averaging and Perturbations. As in Littlejohn [1979] and

Kaufman's lecture in these proceedings, Poisson structures can play
a role in understanding the processes by which one passes to
averaged systems or limiting systems and to what degree these more
idealized models are good approximations to a more encompasing model.
A general framework in which these processes are hoped to be under-
stood is given in Montgomery, Marsden and Ratiu's paper in these
proceedings.

Numerical Schemes. It is hoped that a deeper understanding of

Hamiltonian structures will enable one to design algorithms with
superior accuracy. For example it is known that algorithms which
are energy preserving have better stability properties (see Lewis
{1970], Chorin et. al. [1978] and references therein). Alsoc, the
success ful vorticity algorithms of Chorin-Hald-Beale-Majda are known
to be Hamiltonian (see Marsden and Weinstein [1983]). See Holm,
Kuperschmidt and Levermore [1984] for some related results.
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A tokamak uses a toroidal magnetic field configuration to confine hot
plasma (see, for example, Chen [1974]). The physics of a tokamak is compli-
cated and encompasses a wide range of scales. Kinetic and fluid models are
typically used. In particular, RMHD is a simple fluid model that is obtained
by approximating three dimensional incomressible MHD with the goal of high-
lighting the dominant physics (Strauss [1976, 1977]). RMHD is a member of
a family of such fluid models that strive to explain major tokamak features
and yet remain tractable (see Rosenbluth et. al. [1976], Hasegqawa and Mima
[1977], Hazeltine et. al. [1983] and Hazeltine et. al. [1984]). RMHD has
achieved notable success (see Carreras et. al. [1979]). The reader will
notice that RMHD is a generalization of the two dimensional Euler equations;
perhaps the techniques discussed in the lectures of Zabusky and Beale can
be adapted to RMHD.

The paper is organized as follows. In §2 we review some features of
canonical and noncanonical Hamiltonian field theory. RMHD and its non-
canonical brackets are presented in §3. In §4 the theory of Lie-Poisson
brackets is reviewed and the brackets for RMHD are shown to consist of two
pieces, one of which is a Lie Poisson bracket for a semi-direct product group.
This group is related to the helical lagrangian paths followed by fluid

fﬂm‘partiCIes in an idealized limit. The methods by which these brackets are
obtained from the Lagrangian description by reduction and from ideal MHD
by a limiting procedure are outlined in §5.

2, HAMILTONIAN DESCRIPTION OF CLASSICAL FIELDS. As in classical texts such
as Wentzel [1949] and Goldstein [1980], a system of evolution equations
(partial differential or integral equations for example) is said to be in
canonical Hamiltonian form if they can be written in the form

an SH k _-8H
—_— T, — = s k=12, ..., N (2.1)
ot Gnk ot 5UE

where nk(x,t) are the basic field variables and nk(x,t) are their conju-
gate momenta, x belonging to a region V of three space. Here H is a
functional of the fields n and w, the dependence being denoted H[n,7].
We recall that the functional derivatives are defined by

limit 7 ¢3 (2.2)
e~0 € X

dn, k
v k

H(n,m + en) - Hin,m) _ f _SH -

(sum on k), with a similar definition for 6H/6nk- The reader should
o~ consult one of the aforementioned texts for basic exampies of this formalism
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such as the Klein-Gordon field. This theory from the point of view of
symplectic geometry, along with additional examples, is found in Chernoff and
Marsden [1974] and Abraham and Marsden [1978, Section 5.5].

Poisson brackets are defined for functionmals F and G of the fields
n,m by

5F 86 86 6F\ .3 {2.4)
th,6) = [ (S 2 - S8 Y oy
V(;y'&% Gnkdnk)

(sum on k); note that {F,G} is a real valued function of (n,m). It is
readily verified that the evolution equations (2.1) are equivalent to

F = {F,H) (2.5)

The bracket (2.4) assigns the new functional {F,G} to two given ones
F and G, and has the following basic properties:

(i) {F,G6} is linear in F and G {bilinearity)

(ii) {F,G} = -{G,F} (antisymmetry)
(iii) (€, {F,6}} + {F, (G,E}} + {G, {E,F}} = 0 (Jacobi's identity)
(iv) {EF,6} = E{F,6} + {E,G}F (derivation).

(i), (ii) and (iii) define a Lie algebra. A bracket on functionals
defined on a phase space P (the space of (n,m) above being an example)
satisfying (i)-(iv) is called a Poisson structure. {See Weinstein's lecture
in these proceedings).

The four basic plasma physics examples listed in the introduction have
equations that can be written in Hamiltonian form (2.5) for a suitable Poisson
structure {F,G}; however, this Poisson structure does not have the canonical
form (2.4} and correspondingly, the evolution equations do not have the
canonical form (2.1). These examples clearly demonstrate the need for taking
the wider view of non-canonical Hamiltonian field theory -- one demands only

a Poisson structure and a Hamiltonian functional such that the equations of
motion have the form (2.5). If the basic fields of the theory are denoted
wl(x,t), i-1, ..., n, then the Poisson structure is often of the form

{F,G} = J SF o1 S8 43, (2.6)
v &y 8y

where 0'J is @ matrix operator of ¢ = (wi). Properties (i) and (iv)

are automatic from the form (2.6), and {ii) holds if OiJ = -OJi. On the

other hand, Jacobi's identity is a relatively complicated condition on Ojj

that requires ingenuity or a deeper insight into how bracket structures arise.

Of course (2.6) includes {2.4) as a special case. A common class of Poisson
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structures have the form (2.8) where

09 < e
where c;j are structure operators for a Lie g!gebra. For these, Jacobi's
identity follows from Jacobi's identity for c;J. These Lie-Poisson structures
are examples of Poisson structures and will be considered in §4.

There are three ways to obtain Poisson structures for a given system.
First of all, one can proceed by inspection and analogy with known brackets.
The verification of Jacobi's identity can be done directly or with the assis-
tance of Lie-Poisson structures. Second, one can introduce potentials (i.e.
Clebsch variables) and induce a bracket on functionals of the physical fields
by means of canonical brackets on functionals of the potentials and their
conjugate momenta. See, for example, Morrison [1982], Holm and Kupershmidt
[1983] and Marsden and Weinstein [1983] for accounts of this method. Thirdly,
and perhaps most fundamentally, one can first write the theory in terms of a
Lagrangian (or material) representation for the matter fields with the basic
fields being the particle displacement field nk and its conjugate momentum
M . The canonical bracket (2.4) then induces a non-canonical bracket on the
Eulerian (or spatial) fields by means of the map taking the Lagrangian to

/™ the Eulerian description. This procedure is a special case of reduction and

‘ was the method Marsden and Weinstein [1982] used to obtain the Maxwell-Viasov
bracket and which Spencer [1982] used to obtain the multifluid plasma bracket.
Marsden, Ratiu and Weinstein [1983] used this method for several other basic
systems as well and its basic features are described in Ratiu's lecture in
this volume. See the article of Kaufman and Dewar in these proceedings for
a related approach.

3. REDUCED MHD AND ITS BRACKET. As noted in the introduction, the RMHD
equations are obtained by approximating the ideal incompressible MHD equations
with the goal of describing the dominant tokamak physics. The approximation
is tailored to the tokamak toroidal geometry and is discussed in the original
papers of Strauss [1976,7]; see also Morrison and Hazeltine [1983].

The tokamak geometry is sometimes described by toroidal coordinates;
(r,0) represent polar coordinates in a plane perpendicular to the major
toroidal axis; this plane is called the poloidal plane. The angular coordinate
along the major axis of the torus is denoted g and is called the toroidal
angle. Thus, ® and r are 2n-periodic while 0 <r<a, where r =a
represents the torus boundary.

The RMHD fields are obtained by considering the components of the three
™ dimensional velocity field v and magnetic field 8 in the poloidal plane.
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The divergence free assumption on v (to lowest order) and the equation
V.3 =0 for B leads one to consider corresponding potentials for their
poloidal projections, namely
(i) a scalar vorticity U(r,8,z,t) (so ¥ x (UZ) is the poloidal
velocity, where 2 is a unit vectur in the ¢ direction)
and (ii) a poloidal flux function (or magnetic potential) ¥(r,8,z,t) (so
v x wE is the poloidal magnetic field).

The toroidal components in the RMHD approximation to leading order are
regarded as constant.

The RMHD equations in what is called the low B8 1imit (i.e. neglecting
pressure effects) are

3= (U0l + (3] - 3 (3.1a)
3 9
= vel- 2 (3.1b)

1/3f 3 of : . . .
where [f,g] = ?(5§ 3% - 55-%%) is the canonical Poisson bracket in the
poloidal plane and where

Yf¢ =U, so ¢ is the velocity stream function M
and

Vfw = dJ, the toroidal current

‘Aa lA-_a' . . PN A
Here, V| = r 5 + r 0 39 1S the poloidal gradient operator and r and 8

are unit vectors along the r and 6 coordinate axes. We recall that the
MAD current is J = V¥ xB so for B in the poloidal plane, J points in
the toroidal direction.

The equations (3.1) are to be supplemented with appropriate boundary
conditions on ¢ and ¢ at the boundary r =a.

We now describe the sense in which equations (3.1) are Mamiltonian.
There is a conserved Hamiltonian, which is just the kinetic energy of the
fluid plus the magnetic field energy:

%J (19,617 + 17,9120 (3.2)
v

H =

where U is the torus, 0 <r <a,0<6 <2 0<¢g<2r. There are addi-

tional constants of the motion that are important (for the stability analysis

for example) which won't be discussed here; see Morrison and Hazeltine [1933].
Poisson brackets for the RMHD equations (3.1) are as follows; let F

and G be functionals of U and ¢ and set
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~ 5F &G §F $6], [GFGG] __eag_r 3

{F,6} = J{ [ : ]*“’([aw' cu] 30° w)( 50 3¢ 30 ) dx
v

The bracket is due to Morrison and Hazeltine [1983]. Using the fact that

g% = -¢ and g% = -J, it is easy to show that the equations (3.1) are

equivalent to the Hamiltonian form

F={F,H)} . (3.4)

The only property of the bracket (3.3) which is not obvious is Jacobi's
identity. It is verified directly in Morrison and Hazeltine [1983]. In the
next section we shall verify that the first two terms of (3.3) are a Lie-
Poisson bracket for a semi-direct product; this will give another proof of
the Jacobi identity. In the final section we shall discuss the derivation
of (3.3) by reduction and approximation (the method of Clebsch potentials
is discussed in Morrison and Hazeltine [1983]).

4. LIE-POISSON BRACKETS AND SEMI-DIRECT PRODUCTS. A key feature of the
first two terms of (3.3) is the linear dependence on U and . Brackets
of this type are called Lie-Poisson and the associated phase space is the
dual of a Lie algebra. We shall describe this construction in this section
and shall show that the first two terms of (3.3) are Lie-Poisson brackets on
the dual of a semi-direct product Lie algebra. The last term of (3.3) will
be discussed in the final subsection.

A. Lie Poisson Brackets. Let G be a Lie group and &) its Lie algebra.
We recall (see Abraham and Marsden [1978, Sect. 4.1] for background) that
0} is the tangent space to G at the identity and that for Esn € q}, the
Lie bracket of £ and n is given by the formula

-1
(e,n] =d—‘s'-3% g(s) h(r) g(s) (4.1)

r=s=0
where g(s) and h(r) are arbitrary smooth curves in G such that
g(0) =e, h(0)=e, g'(0)= and h'(0) =

Let q? be the dual space of 1inear functionals on 8, with the pairing
between elements y € q; and & € 04 being denoted (u,©. In the infinite
dimensional case we choose 6" together with a pairing satisfying:

7 (u,€) =0 for all u implies € =0 (a non-degeneracy condition) in a
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way appropriate for the problem at hand.
For F:%}* + IR, we define %% € ﬁ} by

eFu + &g = (W 35 (4.2)

which is consistent with (2.2) if ( ,) is taken to be the Lz-pairing. The
Lie-Poisson bracket is defined by

§F &G
(F,6}, = +(n, [gﬁ,-gﬁ] ) (4.3)
There are two choices, + or -. For this paper, we shall use the +
bracket, but the - bracket is also used. To understand the * distinction

we need to recall how (4.3) is derived.

If F and G are real valued functions on 47?, we can extend them by
left translation to functions FL and GL on' T*G, so FL restricted to
T:G s Q}f is F. But T*G carries canonical Poisson brackets { "'}T*G
and we have

r%tﬁcmdto'gG is {F,G}

{F ’G}
L*L T*6

Similarly, extending by right invariance,

(FpsGp}

restricted to T.6 is {F,6},
T*G ¢

(see Marsden, Weinstein et. al. [1983) for details of the proof). Thus, the

+ Lie-Poisson brackets are naturally obtained from canonical brackets on T*G.
The process just described of getting brackets on e}* from those on T*G

is a special case of a more general procedure called reduction (Marsden and
Weinstein [1974]). Thus, whether one uses the : bracket depends on whether
the system under investigation corresponds to a left (-) or right (+) invariant
system on T*G. In fact the space T*G often corresponds to material, or
Lagrangian coordinates. The above picture relating T*G and 4}* has its
origins in the fundamental work of Arnold [1966]; see Ratiu's lecture in

these proceedings for further information.

The Lie-Poisson brackets (4.3) make q}* into a Poisson manifold. The
properties (i)-{iv) of 52 can all be verified directly. For example,
Jacobi's identity follows from symmetry of the second variations and from
Jacobi's identity for the Lie bracket [ , ] on ﬁ;. Alternatively one
can simply observe that T*G, being a canonical manifold (cotangent space),
is a Poisson manifold and that the Poisson bracket properties are inherited
on q}* from T*G by the reduction procedure described above.
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B. The Lie-Poisson bracket for the group of canonical transformations. The
first term of (3.3) conforms to the Lie-Poisson format (4.3). A bracket of
this type occurs for the Vlasov Poisson equation (see Morrison [1980] and
Marsden and Weinstein [1982]) and for the two dimensional incompressible

Euler equations (see Morrison [1982] and Marsden and Weinstein [1983]. We note
that Arnold [1966] discussed the Hamiltonian formuation of Euler's equations,
but did not explicitly give this bracket.)

If 6 1is the group of canonical transformations of Dlz then the Lie
algebra 84 of G consists of the Hamiltonian vector fields. (See Ebin and
Harsden [1970] for the function space topologies used to make these asser-
tions precise). If we identify Hamiltonian vector fields with their gener-
ating functions (a constant is dropped in making this identification) then
the Lie algebra 0p is identified with functions and the Lie bracket is the
Poisson bracket (see Marsden and Weinstein [1982]; here we use the standard
left Lie bracket, while they used the right Lie bracket). The dual of
gf is identified with functions on IR2 (or more properly densities on
IRZ) and the pairing of q;* with o is the usual L2 pairing. Thus, we
conclude that the first term of (3.3) is the (+) Lie-Poisson bracket for the
group of canonical transforamtions on IRZ. How this term arises from a
Lagrangian description is discussed in §5,

C. Semi-direct products. We now want to show that the first two terms of
(3.3) taken together still define a Lie-Poisson bracket. This involves the
notion of a semi-direct product, so we review the abstract construction first.
Let G be a group and V a vector space. Let p be a representation
of G on V, so p is a homomorphism from G to the group of invertible
linear transformations of V. We write p (v) for p(g){v) for notational
convenience. The semi-direct product G = V is, as a set, G xV, and
has group multiplication given by

(g,u])'(gz.uz) = (9,9, uy + "g](“z)) . (4.8)

One easily checks that G w V is a group. Using formula (4.1) and (g.u)'] =

(g",-p -1)' one can readily prove that the Lie bracket for G x ¥ 1is given
g
by

[(E] ’V-I)) (EZ’VZ)] = ([E]:gzlt Dé](Vz) - P'gz(v])) (4.5)

where pé:V +V is defined by

, _d
Dg(v) = de Dg(e)(‘/”s:o
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where g(€) is any curve in G satisfying g{(0) = e and g'(0) = £ This
Lie algebra is denoted & & V.

For example, the Euclidean group E(3) of rigid motions of IR3 is
the semi-direct product of the rotation group 0(3) and the translation group
IR3; E{3) = 0(3) & IR3 where 0(3) acts on IR3 by matrix multiplication.
This of course is well-known (see, for example, Taiman [1968] or Sudarshan
and Mukunda [1983, p. 251ff]).

If we identify (of x V)* with q;* x y*, combining (4.3) and (4.5),
we see that the Lie Poisson brackets on (0} « V)* are given by

01, = (o (35 58]y + (o o (85) - ogelEE)) (4.)
Su Su

where (p,a) GOJ_* xy* and ¢ ,) denotes the pairing on the appropriate
space,
Now let G = Sym(IRz) be the group of canonical transformation n of
IR® or of a region in IR2 and let V = F(IRZ) be the space of functions
k on IR% and let G acton V by Lie transport: pn(k) = kon'].
{The inverse is to make it a (left) representation). The induced action of ‘
o on V is by Lie differentiation of vector fields or in terms of ’*%\
functions, by Poisson brackets:

2

of'(k) = {f,k} (4.7)

where { , } is the standard Poisson bracket in IR2 (the same as [ , ]
used in 3.1). Substituting (4.7) in (4.6) with a = ¢, pu=1U and using
the + Lie-Poisson structure, (4.6) reduces to the first two terms in (3.3).
In summary, we have proved that the first two terms of (3.3) are the Lie-
Poisson bracket associated with the semi-direct product of canonical trans-
formations and functions, Sym(IRZ) [ F(IRZ).

D. Helical Symmetry. Finally, we consider the last term of (3.3). First
of all, this term is in almost canonical form and Jacobi's identity for it is
readily checked. Combined with the result of part C, this verifies that
indeed (3.3) defines a Poisson structure,

If we confine ourselves to solutions with helical symmetry, then the
last term of (3.3) can be transformed away and the entire bracket then becomes
Lie-Poisson. This proceeds as follows: fix a number q and consider the
additive group IR acting on (r,0,z) space by

% _ -1
Ho (r,8,2) =(r,6 + $qg » G *+ ), (4.8) -~
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This is the group of helical transformations with pitch Q. If W, is
invariant under Hs' it has the form

Wr,8,c,t) = §(r,0 - q{,]c,t) (4.9)

as is easily checked, and similarly for U. One can check that for helically
symmetric functions, the transformation o -+ wh, U~ Uh given by

2
‘th("segt) = ’T’(.rseat) +'§T

0 (4.10)

U, (r.8,t) U(r,0,t)

transforms the bracket (3.3) to

SF 8G 6F &6 8G_ §F

{F,6) = Ju Uh[m' T"h] + "’h([TSTg S_Uh.] - [W 6,—Jh]) x  (4.01)

Thus, in the single helicity case, the bracket (3.3) transforms via (4.9) to
the Lie-Poisson bracket {4.11). (See Morrison and Hazeltine [1983]).

One can also transform away the third term in (3.3) by using Lie trans-
forms. One attemps to solve the equation

;gh + [¢h’ vl =0 (4.12)

for ¥, given . In general this is impossible because ¢ must be a
periodic variable. However, if it were possible, one sees that formally, this
transforms away the third term of (3.3) (see the Appendix for this calculation).
Following the dictates of Lie transform theory, we get a good approximation
to (4.12) by averaging (see Guckenheimer and Holmes [1983, Chapter 4]). Since
the helicity condition (4.9) gives the solution (4.19) to (4.12), it is natural
to average y first with respect to Hg:

27 q0 .
b,(r6,2) = jo ¥ O(r, 6, 0)ds (4.13)

where t 1is suppressed. Then wav is helically invariant. Now let wh =

wav + r2/2q0, Uh = Uav' The map

(W, 1) > (y.0,) (4.14)

transforms the bracket (3.3) into (4.11), which is shown just as in the
appendix.
In fact, one can verify that (4.14) is a momentum map for the action of
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the semi-direct product Sym(IRz) x F(IRZ) on the space of U(r,8,z) and
¢(r,6,z) with the bracket (3.3) given as follows. (See Ratiu's lecture,
Abraham and Marsden [1978] and Marsden, Weinstein, et. al. [1983] for the
basic definitions and properties of momentum maps). If n EESym(IRz) and
f e F(IRZ), let them act on (v, U) by

(W0} = (g, U,))
where

wav(r,B,C) = y(n(r,0 + f(r,e)qal),c + f(r,0))
and

Uy (7:8:2) = Uln(r,0),2)

This remark is consistent with the fact that momentum maps are always Poisson
maps and the fact that Lie transforms, averaging and reduction are closely
related.

5. REMARKS AND CONJECTURES ON LAGRANGIAN COORDINATES, REDUCTIONS AND
APPROXIMATIONS. The preceeding discussions still leave open the question of
how to derive brackets like (3.3) or (4.11). For the single helicity case,
the derivation of (4.11) from canonical Lagrangian coordinates proceeds as
follows. We assume that individual fluid particles follow trajectories that
commute with the helical group and that the magnetic field is Lie transported.
Thus, the particles move by means of volume preserving diffeomorphisms
¢>:IR3 > IR3 such that H:0°¢ = ¢°H:0 for each s. Call the group of such
¢'s, ¥ MNow we add a constraint that is consistent with the RMHD approxi-
mation namely that the toroidal speed of the particles is fixed; thus the
configuration space for the fluid is HVS] where S] is the group of H:o.
But JWS] is the group of transformations of the helices (orbits of the
action (4.8)), which is isomorphic to Sym(IRz). mVS] then is the basic
configuration space for a single helicity fluid.

Thus, the phase space is T*Sym(IRZ). Now the magnetic potential is
Lie transported by the helical action of Sym(IRz) as in §40. Thus, one can
reduce T*Sym(IRz) as described in Ratiu's lecture to obtain a Lie-Poisson
structure for the semi-direct product of sym(IRz) and the space on which
the magnetic potential lives. This produces exactly the structure (4.11),

To obtain the bracket (3.3) from a canonical Lagrangian picture we
proceed as follows. As above, we build the RMHD approximation we have in
mind into the Lagrangian configuration space. Choose 9y =« SO H: = HS
is just translation in the z-direction; these H, form an s! group. How
to allow ¢ dependence we choose the basic configuration space to be the
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group C of volume preserving transformations that map 5! orbits to S]
orbits. Again the magnetic potential is Lie transported. However, our
magnetic field will be assumed to have a dynamic component unly in the poloidal
plane so it is consistent to choose the subgroup S of C consisting of
diffeomorphisms that are the identity in the r,® variables ("streaming"
diffeomorphisms: (r,8,g) » (r,8,z + g(r,8))). Our basic configuration
space is then (/S, which is roughly, speaking, the z-dependent diffeomor-
phisms of the (r,0) plane, and so the phase space is T*((/S). However, the
magnetic potential is Lie transported, so we need to reduce T*((/S) by the
further symmetry group corresponding to the magnetic potential and the S]
invariance. We note that C/S is a bundle over the ¢ axis with fiber
Sym(IRz), the diffeomorphism group of the T =constant poloidal planes. We
now perform the reduction procedure described in Ratiu's lecture fiberwise.
By the formulas in the paper of Montgomery, Marsden and Ratiu in these pro-
ceedings, the bracket on the quotient space is the semi-direct Lie-Poisson
bracket plus a canonical bracket for the ¢ dependence. Finally, the S]
symmetry quotient inserts a 9/3¢ in this canonical bracket, to produce
the bracket (3.3).

The last step in this construction can be illustrated by the wave equa-
tion on the £ axis. The canonical bracket on the phase space F(S])x F(Sl)
is

*

[ (F 88 _ SF &6
{F,6} = I (6¢ sm " on 6¢)d‘;
sl
However the bracket on the reduced space with zZ-translations divided out is

J(E 2% & sy
{F,6} ’I 8¢ 3¢ on - 8¢ 3¢ on) 9%

sl
i.e. we change the cosymplectic operator as follows:

)

(0 I) 0 -a—c
e U
-1 0 - = 0 .

IR

This is proved the same way as the corresponding assertion for Maxwell's
equation (see Marsden and Weinstein [1982]).

We just mention that there is another way of getting (3.3) directly from
the (incompressible homogeneous version of) the Morrison-Greene bracket for
MHD. Namely, one inserts the decomposition v = vyl + Z x v,¢ and
B =B+ xVy intothat bracket. With divB =0, By =1 and vy =1,
the expression (3.3) results. One can also use this procedure to derive
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more complex brackets with a vy dependence. (These are related to the
hamiltonian structure of the Hazeltine equations [1983] which will be the
subject of another publication (Hazeltine, Holm and Morrison [1984]).) The
rough idea is that if a factor B" is inserted in the last term of (3.3),
linearity of the brackets in the field variables is restored. This is con-
sistent with the fact that the Morrison-Greene bracket is Lie-Poisson for a
semi-direct product (Holm and Kupershmidt [1983]) and can be derived from
canonical brackets in a Lagrangian representation (Marsden, Ratiu and Wein-
stein [1983]). The procedure of neglecting 8/8v and &/88; terms in this
bracket can be viewed as an approximation procedure analogous to the limit
¢ + o« which converts the Maxwell-Vlasov to the Poisson-Vlasov bracket.

We hope that the bundie point of view sketched in the paper of Montgomery,
Marsden and Ratiu in these proceedings will shed 1ight on how these processes
of averaging, reduction and 1imits all tie together into a coherent picture.

APPENDIX

If ¢ is a given function then the formal solution to (4.12) can be
obtained by integrating the characteristic equations where ¢ acts as a
Hamiltonian and ¢ plays the role of time. Cne obtains wh(ro(r,e.S). /mmﬁ
eo(r,e,;), 0), where we have suppressed the parametric time dependence.
Shortly we will implicitly differentiate (4.12) in order to formally transform
¢ variational derivatives into derivatives with respect to ¥,

Let us suppose that P is some functional of ¢ that has the first
variation

L[ gy
oplyd-an = [ 45 sua’s

(A.1)
_ &P 3
- J; EE; Sy, d7x

In the second equality we assume P is a functional of U through (4.12).
If we define the operator £ by, £f = of/az + [f,y], then linearization of
(4.12) yields

sy, = .c"[wh,swl (A.2)

where we have used £~ to mean the inverse of £. In practice cos
obtained by integrating over characteristics. For our purposes it will be
sufficient to pretend that the appropriate analysis has been done and that
we can freely invert L when needed. Inserting (A.2) into (A.1) yields
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DP -6y = J 55 o0 d’ = Idiw: £y 690 ¢ (A.3a)
= J Lons svd( £y 2 ¢x (A.3b)
v h

where (.t."])+ is the formal adjoint of £ ]. Equation (A.3b) can be further
trans fomred by using the identity J flg,h] = J glh,f] d3x; we obtain
v v

bP +5¢ =J [(1:")+ 3}", wh]éw 3. (A.4)
v
If Eq. (A.3b) is to hold for all variations &p then evidently

'2'% = [( -])+ Gfpps 'Ph] (A.5)

Operating on both sides of (A.5) with £ and using g[f,q] = [£f,q] + [f.Lg],
which is not difficult to establish, yields

L é_; - [.C(.E y* i", .ph] (A.6a)
[ (]

Equation (A.6b) follows from the fact that an anti-self-adjoint linear oper-
ator will have an anti-self-adjoint inverse. From Eq. (A.6b) it follows
immediately that the RMHD bracket becomes

oo {8 8]0l B0 [ Db - e

v
Hence we have transformed away the non Lie-Poisson term and the bracket
possesses the algebraic interpretation of Section 4C. Moreover, it appears

that we have replaced a three-dimensional problem with a two-dimensional
problem!

(2]

In spite of the rosey picture painted above, there is a catch, which is
associated with a periodicity constraint on (4.12). Recall P was required
to be periodic in & and ¢z; if ¥, is to be single-valued then it too
must be periodic. Flows with periodic Hamiltonian's typically are not
periodic -- indeed such would be an exception. So our problem lies in the
fact that appropriate Yh do not in general exist. There are, however, the
special single helicity solutions discussed in Section 4D.
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