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vector of weight 4+ « + f and hence orthogonal to v unless « = —f3. It

follows from (1) that the spaces of tangent vectors
(E: - E-.:t)[v]! f(E: T E—J)|l>]

are mutually orthogonal with respect to w, as a ranges over the set of
positive roots. Some of these tangent vectors might be zero. To check
whether the orbit is symplectic we need to know that if w, vanishes on this
subspace then the tangent vectors are zero. Now [E,, E_,]=r,et and
r,v = (4 - «)v where 1 - « denotes the value of 4 on r,. We have thus proved

Theorem. An orbit G - [v] in P(H) is symplectic if and only if v is a weight
vector satisfying the following condition: If A is the weight corresponding to v
then A - o = 0 implies that E,v =0 for every root .

(In particular, regular weights, i.e., those A for which 4 - « # 0 for any «, give
rise to symplectic orbits while the zero weight never gives rise to a symplec-
tic orbit (unless the orbit is a point).)

The description of the Kaehler orbits is essentially a consequence of the
Borel-Weil theorem. If the orbit were a complex submanifold of P(H), its
tangent space would be stable under multiplication by i and so we would get
an action of g© and hence of the complex group G on the orbit. The only
compact Kachler homogeneous spaces for g© are of the form G¢/P where P
contains a Borel subgroup. Thus [v] is stabilized by a Borel subgroup and so
v is a maximal weight vector. Thus

Proposition 2. There is only one Kaehler orbit and it is the orbit of a projec-
tivized maximal weight vector.
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Four Applications of Nonlinear Analysis to
Physics and Engineering

Jerrold E. Marsden*+

Introduction

My goal is to describe, in as accessible terms as Pgssib]c, l‘o‘ur scparz_ate
applications of nonlinear analysis to relativity, elasticity, chaotic dyl.lar?mcs
and control theory that I have recently been involved with. The dcscrlpuons
are in some sense superficial since many interesting technical points are
glossed over. However, this is necessary to efficiently convey the flavor of the
methods. . .

Most applications of mathematics to “real-life™ problems of immediate
need do not involve deep methods and ideas. For example, the force exerted
on an aircraft frame by the landing gear when the vehicle lands‘ is b'esl
computed, at least at first, by using undergraduate mathematics, engineering
and experience. However applied mathematics in the brgad sense ranges
from such problems of urgency to “practical” problems involving dccPer
mathematics (compute the lift and flutter characteristics for a 'de51gn
modification of the 747) through to fundamental physical problems involv-
ing interactions with the frontier of mathematics that need not be of any
immediate “need” (is turbulence predictable from the Navier Stokes equa-
tions alone?). o

The applications I shall speak about are of the fundu.mcnl.al kind _mvolv-
ing current rescarch in mathematics and basic qu:csluins in plhy-.ncs and
engineering that are normally not considered * pracu_cal. Most, il not all, of
the other lectures I have heard at this conference fall into the same category.

* Department of Mathematics, University of California, Berkeley, CA 94720,
t Research partially supported by NSF grant MCS 78-06718 and ARO grant DAAG
29-79C-0086.
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I have heard many arguments about what is and what is not ** applied ”
mathematics, and have seen rifts between individuals and whole depart-
ments over this issue. For example, to some, general relativity is not applied
mathematics, but quantum mechanics is. To others, even the most abstract
cpntinuum mechanics or control theory is applied mathematics while func-
tional analysis or differential geometry used in any subject disqualifies that
endeavor from being applied. This would all be very humerous if individuals
did not take it so seriously. The results described below are * applied ” if the
term is used in its broad sense.

Space does not allow for the presentation of an accurate historical picture
of each problem, nor for a thorough citation of other approaches. Most of
this can, however, be tracked down by consultation of the literature which is
cited at the end of the paper.

1. Spaces of Solutions in Relativistic Field Theories*
1.1 Vacuum Gravity

A. spacetime is a four dimensional manifold V together with a pseudo-
Riemannian tensor field g of signature (+, +, +, —). Let Riem(g) denote
the Riemannian-Christoffel curvature tensor computed from g. Relative toa
chosen basis in the tangent space to V at a point x € V, Riem(g) is given in
terms of a four-index object denoted R%,;. By contracting two indices, we
construct the Ricci curvature Ric(g) (in coordinates R,;) and the scalar
curvature R(g) (in coordinates R = R*,. The Einstein tensor is defined by
Ein(g) = Ric(g) — $R(g)g (in coordinates, G,; = R,; — $Rg,;). The Einstein
equations for vacuum gravity are simply that Ein(g) = 0 (which is equivalent
to Ric(g) = 0).

Let V be fixed and let & be the set of all g’s that satisfy the Einstein
equations (plus some additional technical smoothness conditions). Let
go € & be a given solution. We ask: what is the structure of & in the neigh-
borhood of g,?

There are two basic reasons why this question is asked. First of all, it is
relevant to the problem of finding solutions to the Einstein equations in the
form of a perturbation series:

AZ

o) = go + h, + >

where A is a small parameter. If g(4) is to solve Ein(g(4)) = 0 identically in A
then clearly h; must satisfy the linearized Einstein equations:

D Ein(g)- h; =0

h2+...

* This section is based on joint work with J. Arms, A. Fischer and V. Moncrief.
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where D Ein(g) is the derivative of the mapping g— Ein(g). For such a
perturbation series to be possible, is it sufficient that h, satisfy the lincarized
Einstein equations? i.., is h, necessarily a direction of linearized stability?
We shall see that in general the answer is no, unless drastic additional
conditions hold. The second reason why the structure of & is of interest is in
the problem of quantization of the Einstein equations. Whether one quan-
tizes by means of direct phase space techniques (due to Dirac, Segal, Sour-
iau, and Kostant in various forms) or by Feynman path integrals, there will
be difficulties near places where the space of classical solutions is such that
the linearized theory is not a good approximation to the nonlinear theory.
For vacuum gravity, let us state the answer in a special case: suppose go
has a compact spacelike hypersurface M < V. (Technically, M should be a
Cauchy surface and be deformable to a surface of constant mean curvature.)
Let &, be the Lie group of isometries of go and let k be its dimension.

Theorem ;

(1) If k = 0, then & is a smooth manifold in a neighborhood of g, with tangent
space at g, given by the solutions of the linearized Einstein equations.

(2) If k>0 then & is not a smooth manifold at go. A solution h, of the
linearized equations is tangent to a curve in & if and only if h, is such that
the Taub conserved quantities vanish; i.e., for every Killing field X Jor go,

IM X - [D? Ein(go) " (hy, 1))- Z dppy =0

where Z is the unit normal to the hypersurface M, “” denotes contraction
with respect to the metric go and py is the volume element on M.

All explicitly known solutions possess symmetries, SO while (1) is
“generic,” (2) is what occurs in examples. This theorem gives a complete
answer to the perturbation question: such a perturbation series is possible if
and only if all the Taub quantities vanish.

Let us give a brief abstract indication of why such second order condi-
tions should come in. Suppose X and Y are Banach spaces and F: X — Yis
a smooth map. Suppose F(X,) =0 and x(4) is a curve with x(0) = xo and
F(x(2)) = 0. Let h, = x'(0) so by the chain rule DF (xo)*hy = 0. Now sup-
pose DF(x,) is not surjective and in fact suppose there is a lincar functional
I € Y* orthogonal to its range: (I, DF(x,) - u) =0forallu e X . By differen-
tiating F(x(4)) = 0 twice at 1 =0, we get

D?F(xo) * (hy, hy) + DF(xo) - x"(0) = 0.
Applying ! gives
{1, D*F(xo) - (hy, b)) =0

which are necessary second order conditions that must be satisfied by h,.
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It is by this general method that one arrives at the Taub conditions. The
issue of whether or not these conditions are sufficient is much deeper, requir-
ing extensive analysis and bifurcation theory (for k = 1, the Morse lemma is
used, while for k > 1 the Kuranishi deformation theory is needed).

1.2 General Field Theories

Is the above phenomenon a peculiarity about vacuum gravity or is it part of
a more general fact about relativistic field theories? The examples which
have been and are being worked out suggest that the latter is the case. Good
examples are the Yang-Mills equations for gauge theory, the Einstein-Dirac
equations, the Einstein-Euler equations and super-gravity. In such examples
there is a gauge group playing the role of the diffeomorphism group of
spacetime for vacuum gravity. This gauge group acts on the fields; when it
fixes a field, it is a symmetry for that field. The relationship between symme-
tries of a field and singularities in the space of solutions of the classical
equations is then as it is for vacuum gravity.

For this program to carry through, one first writes the four dimensional
equations as Hamiltonian evolution equations plus constraint equations by
means of the 3 + 1 procedures of Dirac. The constraint equations then must
(1) be the Noether conserved quantities for the gauge group and (2) satisfy
some technical ellipticity conditions. For (1) it may be necessary to shrink
the gauge group somewhat, especially for spacetimes that are not spatially
compact. (For example, the isometries of Monkowski space do not belong to
the gauge group generating the constraints but rather they generate the total
energy-momentum vector of the spacetime.)

1.3 Momentum Maps

The role of the constraint equations as the zero set of the Noether conserved
quantity of the gauge group leads one to investigate zero sets of the con-
served quantities associated with symmetry groups rather generally. This
topic is of interest not only in relativistic field theories, but in classical
mechanics t0o. For example the set of points in the phase space for n
particles in ®R* corresponding to zero total angular momentum in an inter-
esting and complicated set, even for n = 2!

We shall present just a hint of the relationship between singularities and
symmetrics. The full story is a long one; one finally ends up with an answer
similar to that in relativity.

First we need a bit of notation. Let M be a manifold and let a Lie group G
act on M. Associated to each element ¢ in the Lie algebra g of G, we have a
vector field &y naturally induced on M. We shall denote the action by
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®:G x M — M and we shall write ®,: M — M for the transformation of M
associated with the group element g € G. Thus

d
Eulx) = dt (pexp(lé)(x) ‘ 1=0"

i i is a closed nondegenerate
Now let (P, w) be a symplectic manifold, sowisac
two-form on P and let ® be an action of a Lie group G on P. Assu.me 'thc
action is sympleclic, i.e., ®w = w for all g € G. A momentum mapping is a
smooth mapping J: P — g* such that

dJ(x) - vy, &> = yfp(x), 1)

for all £ € g, v, € T, P where dJ(x) is the derivative 'o_f J at x, regarded as 3
linear map of TP to g* and {, ) is the natural pairing b_elwe;n g and g*.
A momentum map is Ad*-equivariant when the following diagram com-

mutes for each g € G: o
(J

p—— P

*_____, a*
8 Ad-1 9

where Ad¥., denotes the co-adjoint action of G on g*. If J is Ad* equivariant,
we call (P, w, G, J) a Hamiltonian G-space. N
Mom(entum maps represent the (Noether) oonsen're(! quantities asso-
ciated with symmetry groups on phase space. This topic is of course a very
old one, but it is only with more recent work of Souriau and Kostant that a

decper understanding has been achicved.‘
Eet ¥, = (the component of the identity of) {g € G|gxo = xo), called the

symmetry group of x,. Its Lie algebra is denoted s, so
sxo = {£ € a|€p(x0) = 0}.
Let (P, w, G, J) be a Hamiltonian G-space. If xo € P, to = J(x,) and if
dJ(xo): T,P—g*

i i -1 is a manifold and
is surjective (with split kernel), then locally J~"(uo) is a m
;?If"‘(r;j:):lp € q("‘} forms a regular local foliation of a.nenghborhood of xq.
Thus, when dJ (xo) fails to be surjective, the set of solutions of J(x) = 0 could

fail to be a manifold.
Theorem. dJ(x,) is surjective if and only if dim ¥ =0; ie., oy, = {0}.

i jective i i 0 such that {dJ(xq) * vy,
PROOF. dJ(x,) fails to be surjective ifl there is a E# Vg,
&H=0 fonS :I)I vy, € Ty, P. From the definition of momeptum map, this is
equivalent t0 w (€ Jxo). v,,) =0 for all v,,. Since w,, is non-degenerate,
this is, in turn, equivalent to £p(x,) = 0; i.e., a5, ¥ {O}. O
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_ One t!aen goes on to study the structure of J~*(u,) when x, has symme-
tries, by investigating second order conditions and using methods of bifurca-
tion theprx. It turns out that, as in relativistic field theories, J ~ (o) has
c!uadrauc singularities characterized by the vanishing of second order condi-
tions. The connection is not an accident since the structure of the space of
solutions of a relativistic field theory is determined by the vanishing of the
momentum map associated with the gauge group of that theory.

2. The Traction Problem in Nonlinear Elasticity*

2.1 Terminology from Elasticity

Let # < R® be an open set with smooth boundary. We regard 4 as a
reference state for an elastic body. A configuration or deformation of % is a
(sn}ooth) embedding ¢: 4 — R*. Let € denote all such ¢'s. The derivative of
¢ 1s.denoted ‘F = D¢ and is called the deformation gradient. The body’s
elastic properties are characterized by a stored energy Jfunction, a function W
of Xea# aqq 3 x 3 matrices. Thus, given ¢ € ¢, we get a function of X by
the composition W(X, F(X)). The (first) Piola-Kirchhoff stress tensor is
defined by T = 8W/dF, the derivative with respect to the second argument
of W. We shall assume that the undeformed state is stress-free: i.e T=0
when ¢ = identity. T

Let B: #—R* denote a given body force (per unit volume) and

1: 08 — R® a given surface traction (per unit area). The equilibri
tions for ¢ we shall study are ) quilibrium equa-

DIVT+B=0 in#

T-N=1t ond%. (E)

These equations are equivalent to finding the critical points in ¢ of the
energy:

V)= wav+ [ ¢- :
) L L¢ de+jm¢ T dA.
Let 2 be the space of pairs | = (B, t) of loads such that
[ Bx)av(x) + [ *x)daqx)=o,
E oD

i.e.,' thc.: total fOI'Ct? is zero. By the divergence theorem, if / is a set of loads
satisfying the equilibrium equations for some ¢, then l ¢ 2.

* Based on joint work with D. R. J. Chillingworth and Y. H. Wan.
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2.2 Discussion of the Traction Problem

If we were studying the displacement problem i.e., the boundary condition
was ¢ prescribed on 84, it would follow directly from the implicit function
theorem that for any B near zero, there would be a unique ¢ near the
identity satisfying the equilibrium equations. For the traction problem the
kernel of the linearized equations consists of infinitesimal rigid body mot-
ions and the implicit function theorem fails. In fact, the solution set bifur-
cates near the identity and the geometry of the rotation group SO(3) plays a
crucial role. We can trivially remove the translations by specifying the image
of a given point in #, say ¢(0) = 0.

Our problem is to study the solutions of the equations (E) for various /.
The methods by which we do this are those of bifurcation theory and singu-
larity theory. Interestingly, the solutions, even for small /, can be as complex
as those for the buckling of a plate with 9 or more nearby solutions.

That there are such difficulties with the traction problem was noticed in
the 1930's by Signorini. The problem has been extensively studied by the
Italian school, especially by Stoppelli. However, their analysis missed solu-
tions because the methods used are not “ robust;” i.e., they did not allow the
loads to move in full neighborhoods (they did not include enough par-
ameters). Moreover, others were missed because the global geometry of
SO(3) was not exploited. Finally, the stability of the various solutions was
not obtained.

We shall give just a hint of our methods by sketching a new and much
simplified proof of a theorem of Stoppelli in case there is no bifurcation.

Let @: € —» & be defined by

®(¢)=(-DIVT,T-N)
so the equilibrium equations are ®(¢) = I.
Let
¢, ={ueT,€|u0)=0 and Du(0)is symmetric}
and let the equilibrated loads be those whose torque in the reference
configuration is zero, i.c.,

.‘t’,———{!efj. X x BX)dV(X)+ [ X x 1(X) dA(X) =0}

Assuming the appropriate ellipticity conditions from linear elasticity, we
know that
DO(id)|y,: €1~ £,

is an isomorphism. )
Let SO(3) act on % and & in the obvious way: For Q € SO(3), ¢ € ¢ and
le &, let

@ ¢)—Q-¢ and (QN—(Q-5Q-1)
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For I € &, let O, denote the SO(3) orbit of I:

0,=(Q1|Q & SOQ3)}

Letl e &, . Thenlis said to have no axis of equilibrium if, for all £ e SO(3),
& # 0 we have

élé ge'

i.e:, any rotation of [ destroys the equilibration. If I has an axis of equili-
brium, then there is a vector e € R® such that rotations of ! about e map ! into
£,, as is readily checked.

Lemma (Da Silva’s Theorem). Let l€ . Then O, ¥. # O.

Proor. Define the astatic load map k: & — M,(3 x 3 matrices) by
k(l) = K(B, 1) = LX ® B(X) dV(X) + jmx ® 1(X) dA(X)

so that l e 2, iff k(1) is symmetric. Now k is SO(3) equivariant:

k
'?_’Mj

SO0(3) ] ISO(S)
k
Y — M3
where the action on M; is (Q, A)— AQ7 1, i.e,
k@l = k(™"

The result is now obvious from the polar decomposition. a

We also assume that ® is equivariant (called material frame indifference):

°
€C — 7
S03) J' lsom
' <
®

'lI'hus, to study the solutions of ®(¢) =/ for a given I, we can assume that
€?,.

2.3 A Proof of Existence and Uniqueness in the Simplest Case

Suppose now that | € .Z, is given and has no axis of equilibrium. The main
theorem in this case is due to Stoppelli which we now prove.

Lemma (a) dim ¢, =3 and (b) 10,® L, = &.
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PRrooF. If dim O, < 3, there would be a £ # 0, £ € SO(3) such that I =0,
which contradicts &I ¢ #.. Thus (a) holds. Also, by the no axis of equili-
brium assumption, T,0; n £, = {0}. Since &, has codimension 3 in ¥ and
(a) holds, we get (b). (W}

Let & be the restriction of ® to 4,, regarded as an affine subspace of €
centered at the identity. As remarked before,
D@(id): %‘ - o?g
is an isomorphism. In particular, it is one to one and so for ¢ ina neighbor-
hood of the identity
Range ® =N

is a submanifold of . tangent to &, at the origin (see Figure 1). By the
above lemma,

{0!|Q € a neighborhood U of Id € SO(3)}
is a neighborhood of I in the normal direction to %, . Thus
(201|Q € U, A€ (-5 )
is the cone in the normal bundle to Z,.

Figure 1 The Geometry of Stoppelli’s Theorem

Since N is tangent to %, at 0, for 4 sufficiently small @,, will intersect N.
Thus, for A sufficiently small, there is a unique Q in a neighborhood of the
Identity such that

() = 20!

has a unique solution @ € €,. Thus ¢ = Q™' solves ®(¢) = Al Thus we l
have proved:

Theorem (Stoppelli). Suppose | € &, has no axis of equilibrium. Then for i
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sufficiently small, there is a unique ¢ € €, and Q in a neighborhood of the
identity such that ¢ = Q™' solves the traction problem:

®(¢) = Al.

2.4 Discussion of the General Case

The main problem is to study the situation when [ is near a load /, with an
axis of equilibrium. To do so one must first classify how degenerate the axis
of equilibrium is. This is done by classifying how the orbits of the action of
SO(3) on M, meet Sym, the symmetric matrices. There are five such types.
For example, if 4 e M; has no axis of equilibrium and has distinct
eigenvalues, then @, meets Sym transversally in four points (Type 0). If 4,
however, has no axis of equilibrium and two equal non-zero eigenvalues, @ ,
meets Sym transversally in two points (with no axis of equilibrium) and a
circle each point of which has an axis of equilibrium (Type 1). If A has a
triple non-zero eigenvalue, ¢, meets Sym transversally in one point (4 itself)
and in an RP?, each point of which has a circle of axes of equilibrium (Type
2). There are also the more degenerate types 3 and 4.

When the Liapunov-Schmidt procedure from bifurcation theory is
applied to this situation, one ends up with a bifurcation problem of vector
fields on S* for type 1 and of vector fields on RP? for type 2. These can then
be analyzed by singularity theory and one finds cusps and double cusps
respectively. Previously, the best that was known was due to Stoppelli: he
saw only particular sections of the cusps in type 1 and did not analyze type 2.

3. Chaotic Oscillations of a Forced Beam*

The study of chaotic motion in dynamical systems is now a burgeoning
industry. The literature is currently in a state of explosion. We shall sketch
an example from structural mechanics for which one can prove that the
associated dynamical system has complex dynamics. Part of the interest is
that methods of ordinary differential equations can be made to work for a
certain class of partial differential equations.

We shall state the result for the main example first and then sketch the
abstract theory which is used for the proof.

3.1 The Main Example

Consider a beam that is buckled by an external load I, so that there are two
stable and one unstable equilibrium states (see Figure 2). The whole struc-
ture is shaken with a transverse periodic displacement, f cos wt, and the

* Based on joint work with P. Holmes

)
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w(z, 1)

“
1
<

Figure 2 The forced, buckled beam

beam moves due to its inertia. One observes periodic motion about either of
the two stable equilibria for small , but as fis increased, the motion becomes
aperiodic or chaotic.

A specific model for the transverse deflection w(z, ) of the centerline of
the beam is the following partial differential equation:

ii'-!-w""+l'w”—x(!ol[w']2 d()w"=c(fcos wt — W) (1)

where - = 9/0t,’ = 8/dz, T = external load, x = stiffness due to * membrane”
effects, 8 = damping, and ¢ is a parameter used to measure the size of fand d.
Amongst many possible boundary conditions we shall choose w = w” = O at
z=0, 1, i, simply supported, or hinged ends. With these boundary condi-
tions, the eigenvalues of the linearized, unforced equations, i.c., complex
numbers A such that

Pw+w”+Tw =0
for some non-zero w satisfying w = w” = 0 at z =0, 1, form a countable set
A=+n/T—a%2, j=12....
Assume that
n? < T <4n?,

in which case the solution w =0 is unstable with one positive and one
negative eigenvalue and the nonlinear equation (1) with ¢ = 0, x > 0 has two
nontrivial stable buckled equilibrium states.
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A simplified model for the dynamics of (1) is obtained by seeking lowest
mode solutions of the form

w(z, t) = x(t)sin(nz).

Substitution into (1) and taking the inner product with the basis function
sin(nz) gives a Dulffing type equation for the modal displacement x(t):

X = fx + ax® = g(y cos wt — k), (2)

where g = n*(I" — #%) > 0, « = x7*/2 and y = 4f/n.
Further assumptions we make on (1) are as follows:

Jerrold E. Marsden

(1) (No resonance): j*n*(j*a? - N # 0% j=23,4,....
(2) (Large forcing to damping ratio):

§> (g%’:) cosh (ﬁ%)

(3) (Small forcing and damping): ¢ is sufficiently small.

On an appropriate function space X, one shows that (1) has well-defined
dynamics; elements of X are certain pairs (w, w). In particular, there is a
time 2r/w map P: X — X that takes initial data and advances it in time by
one period of the forcing function.

Theorem. Under the above hypotheses, there is some power P® of P that has an
invariant set A = X on which P¥ is conjugate to a shift on two symbols. In
particular, (1) has infinitely many periodic orbits with arbitrarily high period.

This set A arises in a way similar to Smale’s famous “ horseshoe.”

3.2 Abstract Hypotheses

We consider an evolution equation in a Banach space X of the form

X = fo(x) + ¢fi(x, ¢) ()
where f, is periodic of period T in 1. Our hypotheses on (3) are as follows.

(H1) (a) Assume fo(x) = Ax + B(x) where A is an (unbounded) linear opera-
tor which generates a C° one parameter group of transformations on X and
where B: X — X is C®. Assume that B(0) = 0 and DB(0) = 0.
(b) Assume f,: X x §' - X is C® where S* = R/(T), the circle of length T.
z}ssun;;:tion 1 implies that the associated suspended autonomous system
on X x S!,

x =f0(x) + Qfl(x’ 0)
0 = 1’ (4)
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has a smooth local flow, F:. This means that F:: X x $' - X x S' is a
smooth map defined for small |¢| which is jointly continuous in all variables
&t x € X,0 e S and for x, in the domain of 4, t— Fi(x,, 8,) is the unique
solution of (4) with initial condition xo, 0.

The final part of assumption 1 follows:

(c) Assume that F¢ is defined for all t € R for ¢ > O sufficiently small.

Our second assumption is that the unperturbed system is Hamiltonian.
This means that X carries a skew symmetric continuous bilinear map €Q:
X x X — R which is weakly non-degenerate (i.c., Q(u, v) = O for all v implies
u = 0) called the symplectic form and there is a smooth function Hy: X = R
such that

Q(fo(x), u) = dHo(x) - u
for all x in D, the domain of A4.
(H2) (a) Assume that the unperturbed system X = fy(x) is Hamiltonian with
energy Hy: X - R,

(b) Assume there is a symplectic 2-manifold T < X invariant under the flow
F° and that on T the fixed point po = 0 has a homoclinic orbit xo(t), i.e.,

Xo(t) = fo(xo(t))
and

limitxo(t) = limitxy(t) = 0.

t~+® t=~ o

Next we introduce a non-resonance hypothesis.

(H3) (a) Assume that the forcing term f(x, t) in (3) has the form
Nilx 1) = Ayx + i) + glx, 1) (5)

where A,: X — X is a bounded linear operator, { is periodic with period T,
g(x, 1) is t-periodic with period T and satisfies g(0, t) = 0, D, g(0, 1) =0, s0 g
admits the estimate

llgtx, Ol < (Const)|x|? (6)

Jor x in a neighborhood of 0.
(b) Suppose that the “ linearized™ system

X, = Ax, + eA,x, + eflt) ™M
has a T-periodic solution x,(t, £) such that x,(t, £) = O(e)-
For finite dimensional systems, (H3) can be replaced by the assumption

that 1 does not lie in the spectrum of e™*; i.e., none of the eigenvalues of 4

resonate with the forcing frequency. ) .
Next, we need an assumption that 4, contributes positive damping and

that py = 0 is a saddle.
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(H4) (a) For ¢=0, e™ has a spectrum consisting of two simple real
eigenvalues e**7, A # 0, with the rest of the spectrum on the unit circle.

(b) For ¢ >0, eT4*4v has a spectrum consisting of two simple real
eigenvalues e™* (varying continuously in ¢ from perturbation theory of spec-
tra) with the rest of the spectrum, o% , inside the unit circle |z| = 1 and obeying
the estimates

C,¢ < distance (0%, |z] =1)< C,¢ 8)
Jor C,, C, positive constants.

Finally, we need an extra hypothesis on the nonlinear term. We have
already assumed B vanishes at least quadratically as does g. Now we assume
B vanishes cubically.

(HS) B(0) =0, DB(0) = 0, and D*B(0) = 0.
This means that in a neighborhood of 0,
IB(x)| < Const |Ix{*
(actually, B(x) = o([|x]|?) would do).

3.3 Some Technical Lemmas

Consider the suspended system (4) with its flow Fi: X x S - X x S'. Let
P¢: X = X be defined by

Pi(x) = =, - (F1{x, 0))

where n,: X x §' - X is the projection onto the first factor. The map P* is
just the Poincaré map for the flow F&. Note that P°(p,) = po, and that fixed
points of P* correspond to periodic orbits of Fi.

Lemma 1. For ¢ > 0 small, there is a unique fixed point p, of P* near p, = 0;

moreover p, — po = O(), i.e., there is a constant K such that ||p,|| < Ke (for all
(small) ).

For ordinary differential equations, Lemma 1 is a standard fact about
persistence of fixed points, assuming 1 does not lie in the spectrum of e74
(i.e., po is hyperbolic). For general partial differential equations, the proof is
similar in spirit but is more delicate, requiring our assumptions. An analysis
of the spectrum yields the following.

Lemma 2. For ¢ > 0 sufficiently small, the spectrum of DP*(p,) lies strictly
inside the unit circle with the exception of the single real eigenvalue e™* > 1.

The next letnma deals with invariant manifolds.
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Lemma 3. Corresponding to the eigenvalues e™* there are unique invariant
manifolds W*(p,) (the strong stable manifold) and W¥(p.) (the unstable mani-
Jfold) of p, for the map p, such that

(i) w*(p.)and W*(p,) are tangent to the eigenspaces of e™**, respectively, at
Pes
(i) they are invariant under P*;
(iii) if x € W*(p.) then

limit(P*)'(x) = p,

L ind" ]

and if x € W*(p,) then
limit (P)'(n) = p.»

n=*-w
(iv) for any finite t*, W*(p,) is C" close as & — 0 to the homoclinic orbit xo(t),
1* < t < oo and for any finite t,, W*(p,) is C close to xot) —0o<t <,
as ¢ — 0 (here, r is any fixed integer,0 < r < ).

The Poincaré map P* was associated to the section X x {0}in X x S
Equally well, we can take the section X x {to} to get Poincaré maps P;,. By
definition,

Piy(x) = m(Filx, o))

There is an analogue of Lemmas 1, 2, and 3 for P;,. Let p,(fo) denote its
unique fixed point and W;(p,(to)) and W¥(p.(to)) be its strong stable and
unstable manifolds. Lemma 2 implies that the stable manifold #*(p,) of p,
has codimension 1 in X. The same is then true of W*(p/(o)) as well.

Let y,(t) denote the periodic orbit of the (suspended) system (4) with
7.(0) = (p., 0). We have

)’z(t) = (pt(t)’ ‘)'
The invariant manifolds for the periodic orbit y, are denoted W7(y,), Wi(r.)
and W¥(y,). We have

Wipto)) = Wilr.) N (X x {to})
W3(p.(to)) = Wi(y.) 0 (X x {to})
and

Wilp(to)) = Wilr) 0 (X % {to}).

We wish to study the structure of Wi(p,(to)) and W:(p,(tq)) and thejr
intersections. To do this, we first study the perturbation of solution curves in
W2(y.), Wily.) and Wi(r,).

Chtoose ta point, sa;r xto(O). on the homoclinic orbit for the unperturpgd
system. Choose a codimension 1 hyperplane H transverse to the !\omoc!nnlc
orbit at xo(0). Since W3(p,(t,)) is C close to xo(0), it intersects H in a unique
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point, say xi(to, to). Define (x}(z, t,), t) to be the unique integral curve of the
suspended system (4) with initial condition x(t,, to). Define x¥(t, t,) in a
similar way. We have

x{(to, to) = x0(0) + ev* + O(e?)
and
x{(to, to) = xo(0) + &v* + O(¢?)

by construction, where [|0(c?)|| < Constant - ¢2 and v* and v* are fixed vec-
tors. Notice that

(P:o)”x:(IO! tO) = x:(‘o + ”Tv r0) - Pt(tO) as n-— oo,
Since xi(t, t,) is an integral curve of a perturbation, we can write
xi{t, to) = xot — o) + exi(t, to) + O(?),

where x(t, t,) is the solution of the first variation equation

S50 t0) = Dlalrolt = to)) Xi(6 o) +filbralt — t0h 1) )

With x‘l(to N to) =

3.4 The Melnikov Function

Define the Melnikov function by
A1, to) = Q fo(xo(t — o)), xi(t, to) — (1, 1,))

and set
Ac(tO) = Az(‘()t tO)'

Lemma 4. If ¢ is sufficiently small and A (t,) has a simple zero at some t, and
maxima and minima that are at least O(c), then W(p.(t,)) and W3(p,(t,))
intersect transversally near x,(0).

The idea is that if A,(to) changes sign, then xi(to, to) — xX(to, 1) changes
orientation relative to fo(x4(0)). Indeed, this is what symplectic forms meas-
ure. If this is the case, then as t, increases, xi(t, to) and x¥(t,, t,) * cross,”
producing the transversal intersection.

The next lemma gives a remarkable formula that enables one to explicitly
compute the leading order terms in A,(t,) in examples.

Lemma 5. The following formula holds:

Adto) = =& | OUfolxalt = tolfi(xolt = fol 1) dt + Ofc?),
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PrOOE. Write A(t, to) = Al (1, to) = A; (1, to) + Ofe?), where
870 10) = QUalxolt — tall e o)
and
A7 (1, to) = QSolxolt — to)), exi(t, to))-
Using (9), we get

‘%A: (8 to) = UDSo(xolts to)) * Solxolt = o)} exi(t to))

+ + Q(folxolt — to)), e{Dfo(xolt — to)) - X3(, to) +/i(xolt — fo) })-

Since f, is Hamiltonian, Dfy is Q-skew. Therefore the terms involving xj
drop out, leaving

4 52 (¢ t0) = A falxolt = o)l eilole = toh )
Integrating, we have

—Al(to, o) =¢ ng(fo(xo(‘ — to)) Si(xolt — to), 1)) dt,

since
A} (o, tg) = QfolPo), &1(Po. ©))=0, because Jolpo) =0.
Similarly, we obtain
A (o to) =2 [ Qalxolt = tolh Sixalt = tob 1)

and adding gives the stated formula. O
We summarize the situation as follows.

Theorem. Let hypotheses (H1)-(HS5) hold. Let
M) = [ Qflwolt = tol fulwolt = to) ) dt.

Suppose that M(ty) has a simple zero as a function of 1o. Then for ¢ >0
sufficiently small, the stable manifold Wi (p(to)) of p. for P}, and the unstable
manifold W(p,(to)) intersect transversally.

Having established the transversal intersection of the s.lable and unsta!)le
manifolds, one can now plug into known results in dynamical systems (going
back to Poincaré) to deduce that the dynamics must indeed be complex. In
particular, the previous theorem concerning equation (1) may be deduced.
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4. A Control Problem for a Beam*

We wish to point out some unexpected peculiarities in a seemingly straight
forward control problem. In particular, the naive methods used for ordinary
differential equations do not work for the partial differential equation we
discuss. The difficulty has to do with controlling all the modes at once. If the
energy norm is used, controllability is impossible. However, if a different
asymptotic condition on the modes is used, control is possible.

4.1 The General Scheme for Controllability

Things will run smoothest if we treat the abstract situation first. We consider
an evolution equation of the form

i(t) = ofu(t) + p(e)B(u(2)) (m

where o/ generates a C° semigroup on a Banach space X, p(t) is a real value
function of ¢ that is locally L', and #: X » X is C* k> 1. The control
question we ask is: let u, be given initial data for u and let T > 0 be given;
does there exist a neighborhood U of e*7u, in X such that for anyveV
there exists a p such that the solution of (1) with initial data u, reaches v after
time T? If the answer is yes, we say (1) is locally controllable around the free
solution e'u,.

The obvious way to tackle this problem is to use the implicit function
theorem. Write (1) in integrated form:

ult) = e¥ug + J:e““""p(x)a’f(u(s)) ds. )

Let p belong to a specified Banach space Z < L!([0, T), P). Standard
techniques using the contraction mapping theorem show that for short time,
(2) has a unique solution u(t, p, u,) that is C* in p and u,. If we assume
I%#(x)|| < C + K||x| (for example, # linear will be of interest to us), then
solutions are globally defined, so we do not need to worry about taking
short time intervals. The choice p = 0 corresponds to the free solution e“u,.
The derivative L: Z — X of u(T, p, uy) with respect to p at p = 0 is found by
implicitly differentiating (2). One gets

T
Lp= j €'~ 94 p( ) (e*uo) d. 03)
0
The implicit function theorem then gives:

Theorem. If L: Z — X is a surjective linear map, then (1) is locally controliable
around the free solution.

* Based on joint work with J. Ball and M. Slemrod.
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For example, if X = R” and # is linear, we can expand
2
s
e e = B + s[of, B) + -2-[,;1, [, B+

to recover the standard controllability criterion:
dim span{#u,, [/, o, [, [, #]Juo, RE

If one wishes to only observe a finite dimensional piece of u, the al;‘ove
method is effective in examples. (By this. we mean to oomrol“Gu,dw ’?n}
G: X — R" is a surjective linear map ... this means we control n mobei ngt
u.) However, even in the simplest examples, L may have dense range bu

be onto. We give such an example below.

4.2 Hyperbolic Systems

Let A be a positive self-adjoint operator on a real !-li!bert space H with mr;c;r
product ¢, >y. Let A have a spectrum consisting (_)f elg_envalues. o
0 < A, < A; <2, < with corresponding ortponormallzed ‘elgenfuncuons
¢.. Let B: D(A"/2)~ H be bounded. We consider the equation

W+ Aw + pBw = 0.

()

oy (00
‘“’=(A o)' d"(—B o)'
Here X = D(A'?) x H and .o/ generatesa C® group of isometries on X. The

inner product on X is given by the “energy inner product:”
(s 23) (20 Z)x = (A%, A2y >y + {24, 2200

This is in the form (1) with

and

Write
Y butm
Ro = m:l €X
Z "lmcmd,m
m=1
where
§ 4263+ c2) < .
m=1
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If we set a,, = 3(b,, + ic,,) we have

i [2m €XP(idys) + @y, €XP(— idyS)] P
e,dxu = m=1

O

Y it [a, explid,s) — d, exp(—id,s)]¢n

and
0

RIS, -_
BeTug={

Z: [a, €xp(idys) + @,y eXP(—iA,S)]Bam]

To simplify matters, let us assume that {B¢,,, §,>;; = dpdpmm. Then
Z ;;d" {an exp(zi)'ns) = Qy exP(-ZMns) - (an - dn)}¢n
T L

5 _% {8, exp(2iA,5) + @, exp(—2i4,5) + (a, + 2.},
“)

This formula can now be inserted into (3) to give Lp in terms of the basis ¢, .
Since it generates a group, surjectivity of L comes down to the solvability of

Lp= J’Tp(s)e‘ I @e*Tug)ds=h (5)
for p(s) given he X.

4.3 An Example

We consider a vibrating beam with hinged ends and an axial load p(t) as a
control:

Wy + Wi + p(‘)wxx =0, 0<xx1 (6)
w=w,=0 at x=0,]1.

Here 4, = n*n?, ¢, = (1/\/2)sin(nnx)and d, = —n?n%. We can seek to solve
(5) for p by expanding p in a Fourier series. For example, take T > 1/x and
attempt to find p’s on [0, 1/] by writing

p(s) = po + Z{p.: exp(2in*ns) + p,: exp(— 2in’n?s) (7)

and suppressing the remaining coefficients. To do this it is natural to try
choosing p’s in L2 Inserting (4) and (7) into (5), we can determine h. Note
that d,/4, = —1 and {a,4,} € [;. If we write

"= (Z—E:;"g:%)’
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the condition for h to be in X is 42 (a2 + f2) < co. But the condition for h
to be in the range of L with an 2 p is that {a,d, p,.} € I,. This is, however, a
stronger condition than h € X. Thus, we conclude that L and hence L has
range that is dense in but not equal to X.

In fact, one can show that not only is L not surjective, but that (6) is not
locally controllable in the energy norm.

To overcome this difficulty one can contemplate more sophisticated in-
verse function theorems, and indeed these may be necessary in general.
However, for a class of equaltions that includes this example, a more naive
trick works. Namely, instead of the X norm, make up a new space namely
the range of £ and use the graph norm. Miraculously, the solution u(¢, p, u,)
stays in this space and is still smooth in the new topology. In this stronger
norm then, the implicit function theorem can still be used. The verification of
these statements is somewhat lengthy, but in principle the method is
straightforward.
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