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Abstract

This paper delineates a class of time-periodically perturved evolution equations in a Banach
space whose associated Poincaré map contains a Smale horseshoe. This implies that such systems
possess periodic orbits with arbitrarily high period. The method uses techniques originally
due to Melnikov and applies to systems of the form ẋ = f0(x) + εf1(x, t), where ẋ = f0(x)
is Hamiltonian and has a homoclinic orbit. We give an example from structural mechanics:
sinusoidally forced vibrations of a buckled beam.

1 Introduction: A Physical Model

In this paper we give sufficient conditions on T -periodically forced evolution equations in a Banach
space for the existence of a Smale horseshoe for the time-T map of the dynamics. This implies the
existence of infinitely many periodic orbits of arbitrarily high period and suggests the existence of
a strange attractor. The results here are an extension of infinite dimensions of some of those in
Holmes [1979a,b, 1980a] and Chow, Hale and Mallet-Paret [1980].

The techniques used are invariant methods, nonlinear semigroups and an extension to infinite
dimensions of Melnikov’s method [1963] for planar ordinary differential equations. The results are
applied to the equations of a nonlinear, periodically forced, buckled beam. As the external force is
increased, we show that a global bifurcation occurs, resulting in the transversal intersection of stable
and unstable manifolds. This leads to all the complex dynamics of a horseshoe (Smale [1963]).

The study of chaotic motion in dynamical systems is now a burgeoning industry. The mechanism
given here is just one of many that can lead to chaotic dynamics. For a different mechanism occuring
in reaction-diffusion equations, see Guckenheimer [1979].

A physical model will help motivate the analysis. Consider a beam that is buckled by an external
load Γ, so there are two stable and one unstable equilibrium state (see Figure 1). The whole structure
is then shaken with a transverse periodic displacement, f cosωt. The beam moves due to its inertia.
In a related experiment (see Tseng and Dugundji [1971] and Moon and Holmes [1979], and remarks
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Figure 1:

below), one observes periodic motion about either of the two stable equilibria for small f , but as
f is increased, the motion becomes aperiodic or chaotic. The mathematical problem is to provide
theorems that help to explain this behavior.

There are a number of specific models that can be used to describe the beam in Figure 1. One of
these is the following partial differential equation for the transverse deflection w(z, t) of the centerline
of the beam:

ẅ + w′′′′ + Γw′′ −X

(∫ 1

0

[w′]
2
dξ

)

= ε(f cosωt− δẇ). (1)

where ˙ = ∂/∂t, ′ = ∂/∂z, Γ = external load, X = stiffness due to “membrane” effects, δ =
damping, and ε is a parameter used to measure the relative size of f and δ. Amongst many possible
boundary conditions we shall choose w = w′′ = 0 at z = 0, 1; i.e., simply supported, or hinged ends.
With these boundary conditions, the eivenvalues of the linearized, unforced equations, i.e., complex
numbers λ such that

λ2w + w′′′′ + Γw′′ = 0

for some non-zero w satisfying w = w′′ = 0 at z = 0, 1, form a countable set

λj = ±πj
√

Γ − π2j2, j = 1, 2, . . . .

Thus, if Γ < π2, all eigenvalues are imaginary and the trivial solution w = 0 is formally stable; for
positive damping it is Liapunov stable. We shall henceforth assume that

π2 < Γ < 4π2,

in which case the solution w = 0 is unstable with one positive and one negative eigenvalue and the
nonlinear equation (1) with ε = 0,X > 0 has two nontrivial stable buckled equilibrium states.

A simplified model for the dynamics of (1) is obtained by seeking lowest mode solutions of the
form

w(z, t) = x(t) sin(πz).

Substitution into (1) and taking the inner product with the basis function sin(πz), gives a Duffing
type equation for the modal displacement x(t):

ẍ− βx+ αx3 = ε(γ cosωt− δẋ), (2)

where β = π2(Γ− π2) > 0, α = Xπ4/2 and γ = 4f/π. Equation (2) was studied at length in earlier
papers (see Holmes [1979a, 1979b] and Holmes and Marsden [1979]). This work uses Melnikov’s
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method; see Melnikov [1963], Arnold [1964], and Holmes [1980a]. Closely related results are obtained
by Chow, Hale, and Mallet-Paret [1980]. This method allows one to estimate the separation between
stable and unstable manifolds and to determine where they intersect transversally. The method given
in the above references apply to periodically perturbed two-dimensional flows such as the dynamics
of equation (2). In this paper we extend these ideas to infinite dimensional evolution equations on
Banach spaces and apply the method to the evolution equation (1).

Tseng and Dugundji [1971] studied the one and two mode Galerkin approximation of (1) and
found “chaotic snap-through” motions in numerical integrations. Such motions were found ex-
perimentally but were not studied in detail. Subsequently, Moon and Holmes [1979] found similar
motions in experiments with an elastic, ferromagnetic beam and showed that a single-mode Galerkin
approximation could indeed admit infinite sets of periodic motions of arbitrarily high period (Holmes
[1979b]).

It is known that the time t-maps of the Euler and Navier-Stokes equations written in Lagrangian
coordinates are smooth. Thus the methods of this paper apply to these equations, in principle. On
regions with no boundary, one can regard the Navier-Stokes equations with forcing as a perturbation
of a Hamiltonian system (the Euler equations); see Ebin and Marsden [1970]. Thus, if one knew that
a homoclinic orbit existed for the Euler equations, then the methods of this paper would produce
infinitely many periodic orbits with arbitrarily high period, indicative of terbulence. No specific
examples of this are known to us. One possibility, however, is periodically forced surface waves. See
Gollub [1980].

An unforced sine-Gordon equation possesses heteroclinic orbits, as was shown by Levi, Hoppen-
stead, and Miranker [1978]. Methods of this paper were used by Holmes [1980b] to show that this
system, with weak periodic forcing and damping and defined on a finite spatial domain, contain
horseshoes. The methods should also be useful for travelling wave problems on infinite domains,
such as the Korteweg-e Vries equation.

2 Abstract Hypothesis

We consider an evolution equation in a Banach space X of the form

ẋ = f0(x) = εf1(x, t) (3)

where f1 is periodic of period T in t. Our hypotheses on (3) are as follows:
Hypothesis 1

(a) Assume f0(x) = Ax + B(x) where A is an unbounded) linear operator which generates a C0

one parameter group of transformations on X and where B : X → X is C∞. Assume that
B(0) = 0 and DB(0) = 0.

(b) Assume f1 : X × S1 → X is C∞ where S1 = R/(T ), the circle of length T .

Assumption 1 implies that the associated suspended autonomous system on X × S1,

Ẋ = f0(x) + εf1(x, θ),

θ̇ = 1,
(4)

has a smooth local flow, F ε
t . This means that F ε

t : X × S1 → X × S1 is a smooth map defined for
small |t| which is jointly continuous in all variables ε, t, x ∈ X , θ ∈ S1 and for x0 in the domain of
A, t 7→ F ε

t (x0, θ0) is a unique solution of (4) with initial condition x0, θ0.
This implication results from a theorem of Segal [1962]. For a simplified proof, see Holmes and

Marsden [1987, Prop. 2.5] and for generalizations, see Marsden and McCracken [1976].
The final part of assumption 1 follows:
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(c) Assume that F ε
t is defined for all t ∈ R for ε > 0 sufficiently small.

To verify this in examples, one must obtain an a priori bound on the X-norm of solutions of (4) to
ensure they do not escape to infinity in a finite time. This is sufficient by the local existence theory
alluded to above. In examples of concern to us, (c) will be verified using straightforward energy
estimates. See Holmes and Marsden [1978] for related examples.

Our second assumption is that the unperturbed system is Hamiltonian. This means that X
carries a skew symmetric continuous bilinear map Ω : X × XriR which is weakly non-degenerate
(i.e., Ω(u, v) = 0 for all v implies u = 0) called the symplectic form and there is a smooth function
H0 : X → R such that

Ω(f0(x), u) = dH0(x) · u

for all x in DA, the domain of A. Consult Abraham and Marsden [1978] and Chernoff and Mars-
den [1974] for details about Hamiltonian systems. For example, these assumptions imply that the
unperturbed system conserves energy:

H0(F
0
t (x)) = H0(x).

(For ε = 0 we drop the dependence on θ.) We summarize this condition and further restriction as
follows:
(H2)

(a) Assume that the unperturbed system ẋ = f0(x) is Hamiltonian with energy H0 : X → R.

(b) Assume there is a symplectic 2-manifold Σ ⊂ X invariant under the flow F 0
t and that on Σ

the fixed point p0 = 0 has a homoclinic orbit x0(t), i.e.,

ẋ0(t) = f0(x0(t))

and
lim

t=+∞
x0(t) = limt→−∞x0(t) = 0.

Remarks on Assumption 2.

(a) For a non-Hamiltonian two-dimensional version, see Holmes [1980a] and Chow, Hale, and
Mallet-Paret [1980]. Non-Hamiltonian infinite dimensional analogues could probably be devel-
oped by using the methods of this paper.

(b) The condition that Σ be symplectic means that Ω restricted to vectors tangent to Σ defines a
non-degenerate bilinear form. We also note that by a general theorem of Chernoff and Marsden
[1974], the restriction of F 0

t to Σ is generated by a smooth vector field on Σ; i.e., the dynamics
within Σ is governed by ordinary differential eqiations. The situation described in assumption
2 is illustrated in Figure 2(a).

(c) Assumption 2 can be replaced by a similar assumption on the existence of heteroclinic orbits
connecting two saddle poitns and the existence of transverse heteroclinic orbits can then be
proven using the methods below. For details in the two-dimensional case, see Holmes [1980a].
Theorems guaranteeing the existence of saddle connections may be found in Conley and Smoller
[1974] and Koppel and Howard [1979].

(d) To apply the techniques that follow, one must be able to calculate x0(t) either explicitly or
numerically. In our examples, we find it analytically; for numerical methods, see Hassard
[1980].
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Figure 2:

Next we introduce a non-resonance hypothesis.

(H3)

(a) Assume that the forcing term f1(x, t) in (3) has the form

f1(x, t) = A1x+ f(t) + g(x, t) (5)

where A1 : X → X is a bounded linear operator, f is periodic with period T, g(x, t) is t-periodic
with period T and satisfies g(0, t) = 0, Dxg(0, t) = 0, so g admits the estimate

‖g(x, t)‖ ≤ (Const)‖x‖2 (6)

for x in a neighborhood of 0.

(b) Suppose that the “linearized” system

ẋL = AxL + εA1xL + εf(t) (7)

has a T -periodic solution xλ(t, ε) such that xL(t, ε) = O(ε).

Remarks on (H3)

1. For finite dimensional systems, (H3) can be replaced by the assumption that 1 does not lie in
the spectrum of eTA; i.e. none of the eigenvalues of A resonate with the forcing frequency.

2. For the beam problem, with f(t) = f(z) cosωt, (b) means that ω 6= ±λn, n = 1, 2, . . . , where
iλn are the purely imaginary eigenvalues of A. This is seen by solving the component forced
linear oscillator equations. As we shall see, more delicate non-resonance requirements would
be necessary for general (smooth) T -periodic perturbations, not of the form (5).

3. For the beam problem we can take g = 0. We have included it in the abstract theory for use
in other examples such as the sine-Gordon equation.

Next, we need an assumption that A1 contributes positive damping and that p0 = 0 is a saddle.

(H4)
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(a) For ε = 0, eTA has a spectrum consisting in two simple real eigenvalues e±λT , λ 6= 0, with the
rest of the spectrum on the unit circle.

(b) For ε > 0, eT (A+εA1) has a spectrum consisting in two simple real eigenvalues eTλ±
ε varying

continuously in ε from perturbation theory; cf. Kato [1977]) with the rest of the spectrum, σε
R,

inside the unit circle |z| = 1 and obeying the estimates

C2ε ≤ distance(σε
R, |z| = 1) ≤ C1ε (8)

for C1, C2 positive constants.

Remarks on (H4).

1. In general it can be awkward to estimate the spectrum of eTA in terms of the spectrum of
A. Some information is contained in Hille and Phillips [1957] and Carr [1980]. See also Carr
and Malhardeen [1980], Vidav [1970], Shizuta [1979] and Rauch [1979]. For the beam problem
with ε = 0 it is sufficient to use these two facts or a direct calculation:

(a) If A is skew adjoint, then σ(etA) = closureofetσ(a) ;

(b) if X = X1 ⊕ X2, where X2 is finite dimensional (the eigenspace of the real eigenvalues
in the beam problem) and B1 is skew adjoint on X1 and B2 : X2 → X2 is a (bounded)
linear operator, then

σ(et(B1⊕B2)) = closure(eσtB1 ∪ etσ(B2).

For ε < 0 the abstract theorems are not very helpful. In the beam example the eigen-
functions of A+ εA1 can be computed explicitly and form a basis for X , so the estimates
(8) can be done directly; in fact σε

R consists of a circle a distance O(ε) inside the unit
circle; see Appendix A.

2. The estimate dist(σε
R, |z| = 1) ≥ C2ε guarantees that

Lε = Id− eT (A+εA1)

is invertible and
‖L−1

ε ‖ ≤ const/ε. (9)

3. The estimate dist(σε
R, |z| = 1) ≤ C1ε guarantees that the eigenvalue exp(Tλ−ε ) will be the

closest to the origin for ε small. This is needed below for the existence of an invariant manifold
corresponding to λ−ε .

Finally, we need an extra hypothesis on the nonlinear term. We have already assumed B vanishes
at least quadratically, as does g. Now we assume B vanishes cubically.

(H5) B(0) = 0, DB(0) = 0 and D2B(0) = 0.
This means that in a neighborhood of 0,

‖B(x)‖ ≤ Const‖x‖3.

(Actually B(x) = o(‖x‖2) would do).
Remarks on (H5).
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1. The necessity of having B vanish cubically is due to the possibility of the spectrum of A
accumulating at zero. If this can be excluded for other easons, (H5) can be dropped and (H4)
simplified. There is a similar phenomenon for ordinary differential equations noted by Jack
Hale. Namely, if the linear system

d

dt





x
ẋ
y



 =





ẋ
x

−εy





is perturbed by nonlinear terms plus forcing, to guarantee that the trivial solution (0, 0, 0)
perturbs to a periodic solution as in lemma 1 below, one needs the nonlinear terms to be
o(|x| + |ẋ| + |y|)3.

2. For nonlinear wave equations, positivity of energy may force D2B(0) = 0.

Consider the suspended system (4) with its flow F ε
t : X × S1 → X × S1. Let P ε : X → X be

defined by
P ε(x) = π1 · (F

ε
T (x, 0))

where π1 : X×S1 → X is the projection onto the first factor. The map P ε is just the Poincaré
map for the flow F ε

t . Note that P 0(p0) = p0, and that fixed points of P ε correspond to periodic
orbits of F ε

t .

Lemma 2.1 For ε < 0 small, there is a unique fixed point pε of P ε near p0 = 0; moreover pε−p0 =
O(ε), i.e. there is a constant K such that ‖pε‖ ≤ Kε for all (small) ε.

For ordinary differential equations, lemma 1 is a standard fact about persistence of fixed points,
assuming 1 does not line in the spectrum of eTA (i.e. p0 is hyperbolic). For general partial differential
equations, the validity of lemma 1 can be a delicate matter. In our context of smoth perturbations
of linear systems with assumptions (H1)–(H5), the result is proved in Appendic A, along with the
following.

Lemma 2.2 For ε > 0 sufficiently small, the spectrum of DP ε(pε) lies strictly inside the unit circle

with the exception of the single real eigenvalue eTλ+
ε > 1.

In lemma 1 we saw the fixed point p0 perturbs to another fixed point pε for the perturbed system.
The same is true for the invariant manifolds; see Figure 2(b):

Lemma 2.3 Correspoinding to the eigenvalues eTλ±
ε there are unique invariant manifolds W ss(pε)

(the strong stale manifold) and Wu(pε) (the unstable nmanifold) of pε for the map P ε such that

i. W ss(pε) and Wu(pε) are tangent to the eigenspace of eTλ±
ε respectively at pε;

ii. they are invariant under P ε;

iii. if x ∈W ss(pε), then
lim

n→∞
(P ε)n(x) = pε,

and if x ∈Wu(pε) then
lim

n→−∞
(P ε)n(n) = pε.

iv. For any finite t∗,W ss(pε) is Cr close as ε → 0 to the homoclinic orbit x0(t), t
∗ ≤ t <∞ and

for any finite t∗,W
u(pε) is Cr close to x0(t),−∞ < t ≤ t∗ as ε → 0. Here, r is any fixed

integer, 0 ≤ r <∞.
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This lemma follows from the invariant manifold theorems (Hirsh, Pugh, and Shug [1977] and the
smoothness of the flow of equations (4), discussed in Appendix A.

The Poincaré map P ε was associated with the section X × {0} in X × S1. Equally well, we can
take the section X × {t0} to get Poincaré maps P ε

t0
. By definition,

3 Hamiltonian normal forms: the case m = 2 (elliptical in-

stability)

3.1 Basic amplitude equations

We next consider the case in which the azimuthal wavenumbers differ by 2. This is the case of the
so-called elliptic instability studied by Pierrehumbert [1986] and Bayly [1986]. It arises when the
rotation symmetry SO(2) is broken to Z2, for example, by distorting the circular streamlines of the
flow into elliptical shape. This distortion couples modes propagating in the positive and negative
directions along the axis. In systems with axial reflection symmetry both waves are simultaneously
present. For the eigenfunction

ψ(r, φ, z) = Re(A1e
ikz+iφ +A2e

−ikz+iφ), (10)

the rotations φ → φ + θ act by (A1, A2) → eiθ(A1, A2), while the translations z → z + d act by
(A1, A2) → (eikdA1, e

−ikdA2) and reflection z → −z acts by (A1, A2) → (A2, A1). As a consequence
of the reflection symmetry the dispersion curves cross on the real axis, i.e., at ω = 0. The elliptical
distortion breaks the rotation invariance and couples the two counter-propagating modes. The
amplitude equations, truncated at third order, take the form

dA1

dt
= iλA1 + εĀ2 + iA1(s1|A1|

2 + s2|A2|
2)

(11)

dA2

dt
= iλA2 + εĀ1 + iA2(s2|A1|

2 + s1|A2|
2),

where, as before, λ is the detuning and ε measures the size of the elliptical distortion. The coefficient
describing the coupling to the distortion can be made purely real as in (11), or purely imaginary. In
either case the origin is unstable in the wedge |λ| < ε, i.e.,, the reflection symmetry z → −z forces
splitting to take place. This observation is independent of any detailed considerations of the system
of interest. In the dissipative case equations (11) were studied by Riecke et al. [1988] (see also
Walgraef [1988]), in the context of parametric forcing of the Hopf bifurcation with O(2) symmetry.
Riecke et al. showed that the forcing stabilized standing waves over traveling waves, even in cases
where, in the absence of forcing, traveling waves would be stable. Equations (11) thus represent the
nondissipative limit of the analysis of Riecke et al.

With the change of variables A1(t) = B1(t) exp(iψ(t)), A2(t) = B2(t) exp(−iψ(t)), where ψ(t) =

−s2
∫ t

t0
(|B1|

2 − |B2|
2)ds, one obtains

dB1

dt
= iλB1 + εB̄2 + i(s1 + s2)B1|B1|

2

(12)

dB2

dt
= iλB2 + εB̄1 + i(s1 + s2)B2|B2|

2,
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or, rescaling B1 and B2:

dB1

dt
= iλB1 + εB̄2 + iB1|B1|

2

(13)

dB2

dt
= iλB2 + εB̄1 + iB2|B2|

2.

This is the required normal form for the elliptical instability, provided s1 + s2 6= 0. Here λ is
the detuning parameter and ε measures the size of the elliptical distortion (e.g. eccentricity). It
is remarkable that the normal form (13) does not contain any parameters depending on a specific
problem under consideration.

Equations (13) are Hamiltonian in the standard structure for the complex variables z1 = B1 and
z2 = B2 with the Hamiltonian

H(B1, B2) = −
λ

2

(

|B1|
2 + |B2|

2
)

+ εIm(B1B2) −
1

4

(

|B1|
4 + |B2|

4
)

. (14)

Moreover, the symmetry (B1, B2) 7→ (eiθB1, e
−iθB2) gives the conserved quantity (momentum map)

J(B1, B2) = |B1|
2 − |B2|

2. (15)

As in §2, we can express this Hamiltonian structure in either polar coordinates or in terms of invari-
ants. In terms of the variables B1 ≡ r1 exp(iφ1), B2 ≡ r2 exp(iφ2) and φ ≡ φ1 + φ2, equations (13)
become

dr1
dt

= εr2 cosφ

dr2
dt

= εr1 cosφ (16)

dφ

dt
= 2λ− ε

(

r2
r1

+
r1
r2

)

sinφ+ r21 + r22 .

Again, this system is completely integrable with the two integrals derived from the above Hamilto-
nian (or its negative) and momentum:

J = r21 − r22 , E =
λ

2
(r21 + r22) − εr1r2 sinφ+

1

4
(r41 + r42). (17)

Using the integrals J and E, the solution of (16) reduces to quadrature:

1

4

(

dρ

dt

)2

= P (ρ) ≡ ε2(ρ2 − J2) − 4

(

E −
λρ

2
−

1

8
(ρ2 + J2)

)2

. (18)

Here ρ ≡ r21 + r22 . Note that for fixed J the integral E varies between h1(J) and h2(J), where h1(J)
corresponds to a fixed point and h2(J) corresponds to a homoclinic (heteroclinic) orbit.

The system (13) has two invariant subspaces {B1 = B2} and {B1 = iB2}. In the dissipative case
mentioned above these correspond to the two types of oscillations phase locked to half the frequency
of the parametric forcing. Both are standing oscillations. These subspaces are characterized by
J = 0. In the first subspace (13) reduce to

dB

dt
= iλB + εB̄ + iB|B|2. (19)
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In the second subspace,

dB

dt
= iλB − iεB̄ + iB|B|2. (20)

The equations in each subspace are again Hamiltonian, which is consistent with the general fact that
fixed point spaces of discrete symplectic symmetries are symplectic spaces and induce Hamiltonian
subsystems on them (see Marsden [1992, Chapter 8] for the general theory). The corresponding
phase portraits of (19) are shown in Figure 4. The phase portraits of (20) are obtained by rotation
of the phase portraits in Figure 4 by π

2 .
More generally, the phase portraits depend on both E and J . These quantities specify invariant

surfaces in phase space. Dynamics on these surfaces can be understood by converting (18) to a
system of two equations in the variables ρ and dρ

dt
. For λ = 0 there are two possibilities, depending

on the sign of ε2 + E − J2

8 . The resulting phase portraits in (ρ, dρ
dt

) space resemble those shown in
Figure 4.

3.2 The effect of symmetry breaking

The discussion of the elliptical instability presented above relies on the presence of reflection symme-
try in the axial direction. This residual symmetry need not be exact, however, and may be broken
for example by means of an axial flow. A number of other system symmetry breaking perturbations
can also be envisaged. These include the following:

(a) SO(2) ×O(2) → Z2 ×O(2) → Z2 × SO(2)

(b) SO(2) ×O(2) → Z3 ×O(2)

(c) SO(2) ×O(2) → Z4 ×O(2).

In those cases where the axial reflection symmetry is preserved, the elliptical instability remains a
steady state one. In cases where it is broken (for example, by axial flow) the instability becomes
a Hopf bifurcation (cf. Armbruster and Mahalov [1992], Knobloch [1992b]). In the following we
suppose that ε1 measures the strength of the system symmetry breaking from SO(2) to Zn, and ε2
measures the strength of the system symmetry breaking from O(2) to SO(2), and retain as before
only the dominant symmetry breaking terms.

When an axial flow reduces the symmetry from SO(2)×O(2) to SO(2)×SO(2) by breaking the
reflection symmetry z → −z the symmetry (B1, B2) → (B2, B1) of the normal form (13) is broken.
Consequently we can describe the effect of weak axial flow by breaking the latter symmetry. We
obtain

dB1

dt
= iλ1B1 + ε1p1B̄2 + i(1 + γ1)B1|B1|

2

(21)

dB2

dt
= iλ2B2 + ε1p2B̄1 + i(1 + γ2)B2|B2|

2.

Here, λ2 − λ1 = O(ε2), p2 − p1 = O(ε2) and γ2 − γ1 = O(ε2), where ε2 denotes the strength of the
reflection symmetry breaking effect. Note that by rescaling the amplitudes the coefficients γ1 and
γ2 can be set equal to zero, though at the cost of redefining p1 and p2. It is now easy to check that
the trivial equilibrium is unstable whenever

(λ1 − λ2)
2 < 4(ε21p1p2 − λ1λ2). (22)
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Note that, in contrast to the symmetric case, the presence of the instability depends critically on
the splitting of the frequencies of the left–handed and right–handed modes. If this splitting is large
enough for a given value of ε the instability can be suppressed entirely.

Equations (21) are also integrable, and have the following two integrals:

J = p2r
2
1 − p1r

2
2 , E =

1

2

(

λ1 + λ2

p1 + p2

)

(r21 + r22) − ε1r1r2 sinφ+
1 + γ1

4p1
r41 +

1 + γ2

4p2
r42 . (23)

The use of the integrals reduces the system (21) to quadrature:

1

4p1p2

(

dρ

dt

)2

= P (ρ), (24)

where ρ ≡ p2r
2
1 + p1r

2
2 and

P (ρ) ≡ ε21(ρ
2 − J2) − 4p1p2

[

E −
λ1 + λ2

4p1p2

(

ρ+
p1 − p2

p1 + p2
J

)

−
1

16p2
1p

2
2

[((1 + γ1)p1 + (1 + γ2)p2)(ρ
2 + J2) + 2((1 + γ1)p1 (25)

− (1 + γ2)p2)ρJ ]

]2

.

Equations (13) and (21) can be put in rigid body form. We start with the equations

dA1

dt
= iλ1A1 + ε1p1Ā2 + iA1(s11|A1|

2 + s12|A2|
2)

(26)

dA2

dt
= iλ2A2 + ε1p2Ā1 + iA2(s21|A1|

2 + s22|A2|
2),

describing the effect of weak axial flow on the elliptic instability (case (a) above). Here the amplitudes
A1 and A2 are as in (10), and λ1 − λ2, p1 − p2, s11 − s22 and s12 − s21 are all O(ε2). There are two
cases: (i) p1p2 < 0 (pinched spheres, passing of the zero eigenvalues), and (ii) p1p2 > 0 (pinched
hyperboloids, splitting of the zero eigenvalues). In case (ii), a rescaling of the amplitudes yields

dA1

dt
= iλ1A1 + ε1pĀ2 + iA1(s11|A1|

2 + s12|A2|
2)

(27)

dA2

dt
= iλ2A2 + ε1pĀ1 + iA2(s21|A1|

2 + s22|A2|
2).

In terms of the Euler variables

N ≡ |A1|
2 + |A2|

2, w ≡ |A1|
2 − |A2|

2, u+ iv = 2A1A2, (28)

cf. equations (??), one obtains the equations

dw

dt
= 0

dN

dt
= 2ε1pu

11



(29)

du

dt
= −v(2λ+ aN + ε2bw) + 2ε1pN

dv

dt
= u(2λ+ aN + ε2bw),

where 2λ ≡ λ1 + λ2, 2a ≡ s11 + s21 + s12 + s22 and 2ε2b ≡ s11 + s21 − s12 − s22. Note that once
again N2 = u2 + v2 + w2. If we replace ε1p by ε1 and ε2b by ε2 the vector L ≡ (N, iu, iv) satisfies
the top equation

dL

dt
= L× Ω (30)

where Ω ≡ P +DL, and P and D are now given by

P =





−2λ− ε2w
0

−2iε1



 , D =





−a 0 0
0 0 0
0 0 0



 , (31)

cf. equation (??). As in the case of the m = 1 instability, the kinetic energy is given by T =
LTP + 1

2L
TDL and is an integral of the motion. It is now easy to understand how the Hamiltonian

structure (and phase portraits) change when the two system symmetry breaking parameters ε1 and
ε2 are varied.

To understand case (b) we note, following Nagata [1988], that the normal form for a vector field
that commutes with the symmetry Z3 ×O(2) is given by

dA1

dt
= ig1A1 + iε1g2Ā

2
1Ā

3
2

(32)

dA2

dt
= ig3A2 + iε1g4Ā

2
2Ā

3
1,

where the functions g1, ..., g4 are C∞ functions of the invariants |A1|
2 + |A2|

2, (A1A2)
3, (Ā1Ā2)

3

and (|A1|
2 − |A2|

2)2. These functions are not independent since the two equations for A1 and A2

are related by the reflection symmetry (A1, A2) → (A2, A1).
Similarly, in case (c), one finds that the normal form that commutes with the required action of

Z4 ×O(2) is

dA1

dt
= ig1A1 + iε1g2Ā1Ā

2
2

(33)

dA2

dt
= ig3A2 + iε1g4Ā2Ā

2
1,

where the functions g1, ..., g4 are now functions of the invariants |A1|
2 + |A2|

2, (A1A2)
2, (Ā1Ā2)

2

and (|A1|
2 − |A2|

2)2. As before these functions are related by the reflection symmetry (A1, A2) →
(A2, A1).

It is important to observe that the symmetry breaking terms that now enter are all nonlinear
and hence they do not affect the linear stability problem. Consequently in these cases instability
will not in general be present. This is because the wavenumbers of the eigenfunctions differ by 2.
However, when SO(2) is broken to Z2n (n ≥ 1) the same equations as (27) are obtained for the

12



interaction of modes of the form eikz+inφ and e−ikz+inφ. Similarly, when m1 −m2 = 2n − 1, say,
equations of the form (??) or (??) follow for modes of the form eikz and eikz+i(2n−1)φ whenever the
symmetry is broken to Z2n−1, depending on the symmetry in the axial direction. Here n is again a
positive integer.

Equations (11) discussed above also arise in the theory of edge waves excited by a normally
incident wave at a beach; equations (21) then describe the excitation of edge waves by slightly
oblique waves (cf. Miles [1991]). This problem is closely related to that discussed in §4.

4 The general case

In this section we consider the interaction of two modes with azimuthal wavenumbers m and n, and
the same axial wavenumber. We must now distinguish between two types of parametric interaction,
through coupling to a deformation mode of the form e±i(m−n)φ or of the form e±i(m+n)φ, where
0 < n < m. We write the linear eigenfunction in the form

ψ(r, φ, z) = Re(Ame
ikz+imφ +Ane

ikz+inφ +A−me
ikz−imφ +A−ne

ikz−inφ). (34)

The translations z → z + d now act by

(Am, An, A−m, A−n) → eikd(Am, An, A−m, A−n),

while the reflection z → −z acts by

(Am, An, A−m, A−n) → (Ā−m, Ā−n, Ām, Ān).

Finally, the rotations φ→ φ+ θ act by

(Am, An, A−m, A−n) → (eimθAm, e
inθAn, e

−imθA−m, e
−inθA−n).

In addition, in normal form, the vector field will commute with the normal form symmetry

(Am, An, A−m, A−n) → (eiωτAm, e
iωτAn, e

−iωτA−m, e
−iωτA−n)

generated by phase shifts t → t + τ . The most general Hamiltonian vector field commuting with
these operations, truncated at third order, is

dAm

dt
= iωAm + iAm(s11|Am|2 + s12|An|

2 + s13|A−m|2 + s14|A−n|
2) + ir1AnA−nĀ−m

dAn

dt
= iωAn + iAn(s21|Am|2 + s22|An|

2 + s23|A−m|2 + s24|A−n|
2) + ir2AmA−mĀ−n

(35)

dA−m

dt
= −iωA−m − iA−m(s13|Am|2 + s14|An|

2 + s11|A−m|2 + s12|A−n|
2) − ir1AnA−nĀm

dA−n

dt
= −iωA−n − iA−n(s23|Am|2 + s24|An|

2 + s21|A−m|2 + s22|A−n|
2) − ir2AmA−mĀn.

With detuning and the symmetry breaking terms of the form ei(m−n)φ we now obtain

dAm

dt
= iω1Am + iεpAn + iAm(s11|Am|2 + s12|An|

2 + s13|A−m|2 + s14|A−n|
2) + ir1AnA−nĀ−m
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dAn

dt
= iω2An + iεqAm + iAn(s21|Am|2 + s22|An|

2 + s23|A−m|2 + s24|A−n|
2) + ir2AmA−mĀ−n

(36)

dA−m

dt
= −iω1A−m − iεpA−n − iA−m(s13|Am|2 + s14|An|

2 + s11|A−m|2 + s12|A−n|
2) − ir1AnA−nĀm

dA−n

dt
= −iω2A−n − iεqA−m − iA−n(s23|Am|2 + s24|An|

2 + s21|A−m|2 + s22|A−n|
2) − ir2AmA−mĀn.

The equations corresponding to the perturbation ei(m+n)φ can be obtained from those above by
replacing n with −n. Note that the two sets of equations differ in the nonlinear terms, since the
change of sign of n is not in general a symmetry of the SO(2) × O(2) equivariant problem. The
Hamiltonian structure of these equations is the same as that described in §2.8.

The corresponding equations for the SO(2)×SO(2) interaction can be obtained from those above
by setting A−m and A−n equal to zero (cf. equations (??)). Moreover setting An and A−n equal to
zero results in equations of the form (11). Note that the structure of these generalizations does not
differ from the special cases already considered. Consequently no further analysis is necessary. This
is because of the translation invariance in the axial direction which prevents terms that are resonant
in the azimuthal coordinate from appearing in the normal form equations. Note also that we have
restricted attention in the above discussion to the interaction between modes with the same axial
wavenumbers only. It is not hard to generalize the discussion to cases where the competing modes
have different axial wavenumbers as well.

5 Amplitude equations for parametrically driven capillary

waves and Benjamin-Feir instability

5.1 Parametrically driven capillary waves

As already mentioned the equations derived above for the elliptical instability are the same as those
arising in parametrically forced systems. In this section we discuss in more detail one such example:
Milner’s [1991] model for secondary instabilities in driven capillary waves. Milner is interested in
understanding the relative stability between surface waves with roll and square planforms in a shallow
layer of water contained in a large aspect ratio container oscillated vertically. In this configuration
the dominant restoring force is due to surface tension, and the resulting surface ripples are called
capillary waves. In the following we assume translation symmetry in two orthogonal directions, as
well as reflection symmetry with respect to both directions. We write the eigenfunction describing
the elevation of the surface relative to the oscillating undeformed surface in the form

ζ(x, y, t) = Re{eiωt(v1e
ikx + v2e

iky + w1e
−ikx + w2e

−iky)}. (37)

The translation symmetry (x, y) → (x+ d1, y + d2) acts by

(v1, v2, w1, w2) → (eikd1v1, e
ikd2v2, e

−ikd1w1, e
−ikd2w2);

reflection (x, y) → (x,−y) acts by

(v1, v2, w1, w2) → (v1, w2, w1, v2),

while rotation through π/2 acts by

(v1, v2, w1, w2) → (w2, v1, v2, w1).
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Finally, the normal form symmetry acts by (v1, v2, w1, w2) → eiφ(v1, v2, w1, w2). The resulting
normal form equations, truncated at third order, take the Hamiltonian form (Milner [1991], Silber
and Knobloch [1991])

dv1
dt

= iλv1 + iεw̄1 + iv1(a|w1|
2 + b(|v1|

2 + |w1|
2) + c(|v2|

2 + |w2|
2)) + idv2w2w̄1

dv2
dt

= iλv2 + iεw̄2 + iv2(a|w2|
2 + b(|v2|

2 + |w2|
2) + c(|v1|

2 + |w1|
2)) + idv1w1w̄2

(38)

dw1

dt
= iλw1 + iεv̄1 + iw1(a|v1|

2 + b(|v1|
2 + |w1|

2) + c(|v2|
2 + |w2|

2)) + idv2w2v̄1

dw2

dt
= iλw2 + iεv̄2 + iw2(a|v2|

2 + b(|v2|
2 + |w2|

2) + c(|v1|
2 + |w1|

2)) + idv1w1v̄2

cf. equation (??). Here ε measures the amplitude of the parametric forcing and is responsible for the
breaking of the normal form symmetry (v1, v2, w1, w2) → eiφ(v1, v2, w1, w2). The parametric forcing
respects the spatial symmetries. The quantity λ is the frequency mismatch, λ ≡ ω− 1

2ωd, where ωd

is the forcing frequency. Here ω is the natural oscillation frequency of the capillary waves.
The equations in the invariant subspace v2 = w2 = 0 take the form

dv1
dt

= iλv1 + iεw̄1 + iv1(a|w1|
2 + b(|v1|

2 + |w1|
2))

(39)

dw1

dt
= iλw1 + iεv̄1 + iw1(a|v1|

2 + b(|v1|
2 + |w1|

2)).

In the dissipative case these are the equations studied by Riecke et al. [1988] and Walgraef [1988];
they describe the effect of parametric forcing on the competition between standing and traveling
waves. There is another important invariant subspace of equations (38), given by v1 = w1, v2 =
w2. This subspace corresponds to standing waves in the two orthogonal directions. Consequently
traveling wave perturbations are suppressed. In this subspace the equations take the form

dv1
dt

= iλv1 + iεv̄1 + iv1(a|v1|
2 + b|v2|

2) + idv2
2 v̄1,

(40)

dv2
dt

= iλv2 + iεv̄2 + iv2(b|v1|
2 + a|v2|

2) + idv2
1 v̄2.

These equations describe the parametric resonance in small aspect ratio square containers and have
been studied by a number of authors (e.g., Nagata [1989]). Nearly square containers may be studied
by breaking weakly the symmetry (v1, v2) → (v2, v1) in equations (40) (cf. Feng and Sethna [1989,
1990]; Feng and Wiggins [1993]). In a rectangular container the required mode interaction problem
is of codimension two since the frequencies of the two competing modes must be tuned in order to
resonate with half the frequency of the parametric forcing. Such an interaction is described by the
equations

dv1
dt

= iλ1v1 + iεp1v̄1 + iv1(s11|v1|
2 + s12|v2|

2) + id1v
2
2 v̄1

(41)

dv2
dt

= iλ2v2 + iεp2v̄2 + iv2(s21|v1|
2 + s22|v2|

2) + id2v
2
1 v̄2
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with λ1 − λ2 = O(1) and similarly for the remaining coefficients. Note that no transformation of
the type used to simplify equations (11) is available in this case. As in our earlier discussions, the
above Hamiltonian equations have two sets of integrals corresponding to the energy and, when there
is an S1 symmetry present, a conserved momentum. In particular, the system (39) is completely
integrable while (40) and (41) are completely integrable if ε = 0. For example, equations (41) with
ε = 0, has the integrals

J = d2r
2
1 + d1r

2
2 , E =

λ1

d1
r21 +

λ2

d2
r22 + r21r

2
2 cosφ+

s11 − s21
2d1

r41 +
s22 − s12

2d2
r42 , (42)

where we have used the polar coordinate notation v1 = r1e
iφ1 , v2 = r2e

iφ2 and defined φ ≡ 2φ1−2φ2.
(As before, one adjusts the coefficients in (41) without changing the reduced system to get a standard
Hamiltonian system). A special case of these integrals was found already by Feng and Sethna
[1990]. The existence of these integrals should prove helpful in analyzing the parametrically forced
problem (41) for 0 < ε� 1, as in the work of Feng and Sethna [1990] and Feng and Wiggins [1993],
as should those obtaining in the case ε 6= 0, d1 = d2 = 0, discussed in §3. We also remark that there
are hidden symmetries in the above problems, particularly in the square case (Crawford [1992]).
These are relevant in the Hamiltonian case since Neumann boundary conditions have to be imposed
at the boundaries of the container.

5.2 Benjamin–Feir instability

In the example discussed above, the parametric instability arose in the standard way, i.e., by tem-
poral modulation of a parameter of the system, in this case the gravitational acceleration. There is,
however, another example of parametric instability in the theory of water waves that also fits into
our picture. This is the so–called Benjamin–Feir instability of wavetrains. This is a modulational
instability of the wavetrain and arises through the coupling of two sidebands, k±l, via the wavenum-
ber k of the wavetrain. Two cases are of interest, that in which the original wavetrain is a progressive
wavetrain, and that in which the original wavetrain is a standing wave. These two cases differ by
the presence of a reflection symmetry in vertical planes in the latter case. This instability may be
viewed as follows: the undisturbed water surface plays the role of the basic state corresponding to
the flow with circular streamlines. The wavetrain then provides the distortion that can couple two
natural modes of oscillation of the system leading to the possibility of subharmonic instabilities of
Benjamin–Feir type.

We illustrate the above discussion with the nonlinear Schrödinger equation

∂A

∂t
= iγ

∂2A

∂x2
+ i|A|2A, (43)

subject to periodic boundary conditions in the spatial variable x. Equation (43) has a solution in the
form of a wave A = ReiΩt+ikx, where Ω = R2 − γk2. We wish to study the stability of this solution
with respect to side band perturbations, i.e., with respect to perturbations with wavenumbers k± l.
Thus we set

A = eiΩt

(

Reikx + a

)

. (44)

Linearizing in a, we find that a satisfies the equation

∂a

∂t
= iγ

∂2a

∂x2
+ i(2R2 − Ω)a+ iR2e2ikxā. (45)
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This equation has a solution of the form

a = b1e
i(k+l)x + b2e

i(k−l)x, (46)

where

db1
dt

= i[2R2 − Ω − γ(k + l)2]b1 + iR2b̄2

(47)

db2
dt

= i[2R2 − Ω − γ(k − l)2]b2 + iR2b̄1.

These equations are of the form (21), with λ1 − λ2 = O(l), p1 = p2 = −1, and R2 playing the role
of ε. Condition (22) implies that an instability is present whenever

0 < γ(2R2 − γl2). (48)

Consequently the wavetrain is unstable with respect to sideband instability (0 < l � 1) whenever
γ > 0. This is the Benjamin–Feir instability (cf. Benjamin [1967]).

In this discussion we have focused on the linear stability properties of a propagating wavetrain.
To determine the nonlinear terms responsible for the saturation of the instability one would have to
go through a center manifold type of reduction based on the two unstable modes. The structure of
these terms is not as simple as in (21); this is because in the above derivation we are considering
an instability of a wave, and this wave has already broken the O(2) symmetry of the system. On
the other hand if we consider the two sidebands, k ± l, as two modes that are (weakly) coupled by
a small amplitude wave, then to leading order (in R) the equations for b1 and b2 will be of the form

db1
dt

= iR2b̄2 + ig11b1 + ig12b̄
k−l−1
1 bk+l

2

(49)

db2
dt

= iR2b̄1 + ig21b2 + ig22b̄
k+l−1
2 bk−l

1 ,

where the functions gij , i = 1, 2, j = 1, 2, are functions of

|b1|
2, |b2|

2, bk−l
1 b̄k+l

2 + b̄k−l
1 bk+l

2 and (bk−l
1 b̄k+l

2 − b̄k−l
1 bk+l

2 )2,

as well as of R. For k > 2, l ≥ 1, k > l, the resulting equations truncated at third order are precisely
of the form (11), though with broken reflection symmetry (b1 ↔ b2), and so can be transformed
into equations (21). The Benjamin–Feir instability is thus of the same kind as the instabilities
discussed here. We remark, finally, that the instability of standing wavetrains in dispersive systems
is complicated by the finite group velocity of the waves, and so is described by equations that are
more complicated than (43) (see Knobloch [1992a]).

6 Precessional instability of columnar flows: an explicit ex-
ample

In this section we discuss an explicit application of the above ideas. We focus on the precessional
instability of columnar flows of the form (0, V (r),W (r)), where (r, φ, z) are right–handed cylindrical
coordinates. Szeri and Holmes [1988] have established sufficient conditions for the nonlinear stability
of such flows to finite amplitude axisymmetric disturbances using the energy–Casimir method. The
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method depends upon finding a constant of motion that has a local maximum or minimum at the
corresponding equilibrium. In general such a constant of motion is a functional of the kinetic energy
and the conserved quantities that correspond to symmetries of the system via Noether’s theorem.
The nonlinear stability to axisymmetric perturbations is proved by showing that the second variation
of this functional is positive (negative) definite. We show that the energy–Casimir functional becomes
indefinite if three–dimensional variations are allowed. The idea of the proof is as follows. We assume
that an infinitesimal external Coriolis force is applied to the system. As a result the system loses
some of its conserved quantities (e.g. angular momentum about the z axis). In addition the Coriolis
force alters the base flow. We show that the resulting steady state flow has an unstable manifold
for an arbitrarily small strength of the external Coriolis force, and conclude that columnar flows are
structurally unstable in the sense that they are infinitesimally close to flows (steady state solutions of
Euler equations) having an unstable manifold. We formalize this discussion by making the following
definition: A steady-state solution V0 of a Hamiltonian system with a Hamiltonian H0 is called
structurally unstable if for any ε0 > 0 there exists an ε, 0 < ε < ε0, such that the steady state V0 is
deformed into a steady state solution Vε = V0 + εV1 of a Hamiltonian system with a Hamiltonian
Hε = H0 + εH1 having an unstable manifold.

We remark that any velocity field of the form (0, V (r),W (r)) satisfies the Euler equations for the
fluid regardless of the functions V (r) and W (r). The linear stability of these flows to axisymmetric
perturbations was first considered by Rayleigh, who found that the flow (0, V (r), 0) is stable only if

Φ = r−3 d

dr
(r2V 2(r)) > 0 (50)

for all r in the domain of interest. Synge [1933] showed that Φ > 0 is necessary and sufficient for
stability. Howard and Gupta [1962] derived a sufficient condition for linear stability of the flow with
velocity (0, V (r),W (r)), including an axial velocity component W . The condition is

J = Φ/(dW/dr)2 > 1/4. (51)

Thus if the Richardson number J exceeds 1/4 everywhere in the domain of interest, then the flow
is linearly stable.

As already noted the two cases W = 0 and W 6= 0 possess different symmetry properties with
respect to reflections z → −z. The former has the symmetry O(2) × SO(2), while the latter has
the symmetry SO(2) × SO(2). This distinction is important for the structure of the full problem
(compare §2.1 and §2.9), but does not affect the linear stability calculation, i.e.,, the calculation
of the quantity pq that distinguishes splitting from passing. In the following we restrict ourselves
to the reflection symmetric flows (0, V (r), 0) satisfying the inviscid Rayleigh criterion for stability.
The results of our analysis are presented for flows selected from the two–parameter family of Burger
vortices given by

V (r) =
Γ

2πr
(1 − e−βr2

). (52)

These profiles are of interest in the vortex breakdown problem. The results discussed below focus
on the presence of splitting and hence of instability; no nonlinear computations have been carried
out.

The flow configuration is shown in Figure 5. The E axis is the axis of rotation for the system. The
unperturbed flow velocity field is given by (52). In a coordinate system rotating with a constant
angular velocity about E, the inviscid Euler equations require the instantaneous velocity field to
satisfy

∂v

∂t
+ v · ∇v + 2εE× v = −∇π, (53)

18



where E = (cosφ,− sinφ, 0). Here ε is the strength of the external Coriolis force. For ε = 0 we find
that any flow (0, V (r), 0) satisfies (53). In the presence of the external Coriolis force the following
is an exact solution of the inviscid Euler equations (53):

u0 = (0, V (r),−2εr sinφ), π0 =

∫

V 2/rdr − 2ε2r2 sin2 φ. (54)

We now consider the linear stability analysis of this flow. The linearized equations for the
disturbance field (u, v, w, p) are

∂u

∂t
+
V

r

∂u

∂φ
− 2

V

r
v − 2εr sinφ

∂u

∂z
− 2εw sinφ = −

∂p

∂r

∂v

∂t
+
V

r

∂v

∂φ
+

(

V

r
+ V

′

(r)

)

u− 2εr sinφ
∂v

∂z
− 2εw cosφ = −

1

r

∂p

∂φ

(55)

∂w

∂t
+
V

r

∂w

∂φ
− 2εr sinφ

∂w

∂z
= −

∂p

∂z

1

r

∂

∂r
(ru) +

1

r

∂v

∂φ
+
∂w

∂z
= 0.

Dispersion curves for the Burger’s vortex (52) with Γ
2π

= 1 and β = 1 are shown in Figure 6. The
solid and dashed curves correspond to axisymmetric (m = 0) and helical (m = 1) modes. For
ε = 0 the system (55) has invariant subspaces characterized by different azimuthal wavenumbers.
Perturbations with ε 6= 0 couple these subspaces. As a result the movement of the eigenvalues
changes from passing to splitting provided the azimuthal wavenumbers differ by 1 (Figure 7). We
can associate vortex instabilities with the degeneracies (crossing points in Figure 6) caused by two
physically distinguishable eigenmodes of the unperturbed vortex having the same eigenfrequency.

7 Discussion

In many problems stability results can be obtained from variational principles using the available
conserved quantities (momentum maps or Casimir functions). As in the example of columnar flows
above such a variational formulation exists for many exact solutions in two–dimensional hydrody-
namics and plasma physics, as well as for more general Hamiltonian systems, and allows one to
use the conserved quantities to establish the nonlinear stability of such equilibria. The situation
is less clear in three–dimensional hydrodynamics. In some cases, however, it is possible to use the
conserved quantities obtained via Noether’s theorem to prove that an equilibrium must be linearly
unstable. If the system is distorted (perturbed) in such a way that at least one conserved quantity
is lost, its evolution satisfies equations of the form

d

dt
F (u) = εG(u), (56)

where F (u) is a conserved quantity (quantities) for the undistorted system (obtained via Noether’s
theorem) and G(u) is a functional describing the rate of loss of the conserved quantity (quantities)
F (u). Here ε is the strength of the system symmetry breaking perturbation. Although equations
(56) are fully nonlinear, their linearization about u = 0 is given by

〈

LF ,
du

dt

〉

= ε〈LG, u〉, (57)
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where LF = DF (0) and LG = DG(0) are two linear operators. Equation (57) is valid under the
assumption that ||u|| is small. In the case in which the distortion leads to a parametric instability
involving two critical modes u1 and u2,

dA1

dt
= εpA2,

dA2

dt
= εqA1, (58)

where A1 and A2 are the corresponding amplitudes. It follows that instability is present if pq > 0,
with a growth rate given by

σ2 = ε2pq. (59)

An expression for σ2 can be found in terms of the critical modes and LF , LG only. Since

u = A1(t)u1 +A2(t)u2, (60)

it follows that

p〈LF , u1〉A2 + q〈LF , u2〉A1 = 〈LG, u1〉A1 + 〈LG, u2〉A2, (61)

and hence that

p〈LF , u1〉 = 〈LG, u2〉, q〈LF , u2〉 = 〈LG, u1〉. (62)

Finally, therefore,

σ2 = ε2
〈LG, u1〉〈LG, u2〉

〈LF , u1〉〈LF , u2〉
. (63)

If the quantity (63) is positive the equilibrium is linearly unstable. The formula (63) may be viewed
as an analogue of the formula for the movement of eigenvalues in the context of dissipation induced
instabilities (see Bloch et al. [1993]).

The above discussion illustrates well the basic point of this paper: that system symmetry breaking
perturbations of Hamiltonian systems with symmetry can, under the appropriate circumstances, lead
to the loss of stability. These instabilities take place whenever the loss of symmetry results in the
splitting of double eigenvalues and are important in applications since they occur on a dynamical
time scale. This is so, for example, for the elliptical instability of columnar flow (Pierrehumbert
[1986], Bayly [1986]). As discussed here (see also Guckenheimer and Mahalov [1992]) the origin of
this instability is universal. It requires only the presence of reflection symmetry in the axial direction.
If the two modes are interchanged by this symmetry, then the coefficients of the SO(2)-breaking
terms must be equal i.e., p = q in (11), and so pq > 0 implying splitting. This argument establishes
the existence of an instability without the necessity of having to carry out even the linear stability
calculation. In this paper we have extended this approach to other multiple eigenvalues, and in
particular considered the case of the Hamiltonian Hopf bifurcation, with or without an additional
(axial) reflection symmetry. In this case when the system symmetry is broken, the eigenvalues may
either split or bounce, indicating the need for a linear stability analysis. In addition we have shown
how the symmetries of the system can be used to write down the truncated normal forms describing
the growth and saturation of these instabilities. We have described the Hamiltonian structure of
the resulting normal forms, and showed that in the simplest cases of interest these normal forms are
completely integrable. As a result a complete description of the local dynamics becomes possible.

We focused on systems with the symmetries SO(2)×SO(2) or O(2)×SO(2), where the first group
refers to periodic boundary conditions in the axial direction and the second to rotational invariance.
For such systems instabilities of the type discussed here are expected to be always present since
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the translational invariance in the axial direction implies that the axial wavenumber of the modes
is available as a parameter that can be tuned to force the coalescence of dangerous eigenmodes on
the imaginary axis. The dangerous interactions are precisely those for which independent passing
does take place in the unperturbed problem (cf. Dellnitz et al. [1992]). As illustrated in Figure 8,
once the azimuthal SO(2) symmetry is reduced by the system symmetry breaking perturbation the
bifurcations that take place as a function of the detuning λ are now non-semisimple double Hopf
bifurcations with 1 : 1 resonance (cf. van Gils et al. [1990]).

Acknowledgements We thank Mary Silber and Vivien Kirk for helpful discussions on the Hamil-
tonian structure of normal forms.
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Figure Captions

Figure 1. Bifurcation diagram for m = 1 in the + case (splitting): (a) c > 1, (b) c < 1. The label S
denotes a stable equilibrium (center) while U denotes an unstable equilibrium (saddle).
Figure 2. Bifurcation diagram for m = 1 in the − case (passing). The label S denotes a stable
equilibrium (center) while U denotes an unstable equilibrium (saddle).
Figure 3. The transition between splitting and passing for m = 1, showing (a) N(λ) and (b) w(λ)
when q = 0. This case connects Figure 1b with Figure 2.
Figure 4. Elliptical instability (m = 2). Phase portrait for standing oscillations (a) λ > ε > 0, (b)
|λ| < ε, (c) λ < −ε.
Figure 5. Coordinate system for the columnar vortex subjected to an external Coriolis force.
Figure 6. Dispersion curves for the Burger’s vortex. The solid and dashed curves correspond to
axisymmetric (m = 0) and helical (m = 1) modes.
Figure 7. Movement of eigenvalues: (a) independent passing (ε = 0), (b) splitting (ε 6= 0).
Figure 8. Independent passing (ε = 0) and non-semisimple Hamiltonian Hopf (ε 6= 0).
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