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INTRODUCTION 

In this paper we consider systems whose dynamical behavior may be repre- 
sented by an autonomous ordinary differential equation (ODE) with parameters, 

- =  dx A , x  + B ( x )  = G,(x); x(0)  = xo 
dt 

Here x is an element of a finite-dimensional vector space (say R") or of a suitable 
Banach space of functions. In the latter case, (1) represents a partial differential 
equation (PDE). The control parameter p E R" is supposed to vary slowly in com- 
parison with the evolution rate of a typical solution x ( t )  of (1). Thus we treat (1) 
as an m-parameter family of ODE'S. We are primarily interested in studying the 
qualitative changes that occur in the vector field or (semi) flow defined by (1) as 
p varies. 

The techniques used in the study of (1) draw on several fields, notably those of 
functional analysis and differentiable topology. In this brief paper we are only 
able to sketch general ideas and must therefore refer the reader to texts such as 
Chillingworth,' and Marsden and McCracken" for background information and 
further details. Both texts contain a wealth of additional references. 

The general problem of bifurcation of vector fields-the qualitative study of 
equations, such as (1)-contains as an important subproblem, the study of bifur- 
cations of equilibria, or stationary solutions. Much of the work done so far in bifur- 
cation theory has been addressed specifically to the latter problem. The usual 
definitions of a bifurcation point are couched with this in mind. Since we wish to 
study a more general class of problems, and, in particular, to consider the case of 
global bifurcations, we propose an alternative definition, which is a slight modifi- 
cation of the definitions due to Smale and Thorn. First we review the usual 
definition. 

Consider a map F:X x A - Y, where X , A  and Y are Banach spaces, and 
A is the parameter space. Set F(x ,X)  = 0 and seek the solutions. Let x(X)  be 
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a curve of known solutions; then we say that (xo, A,) is a bifurcation point if, in 
any neighborhood of (xo. Ao), there is another solution xl(A) z x(X). However, 
consider FIGURE 1, where we have a 2-dimensional sheet Z of solutions. According 
to the above definition, every point of Z is bifurcation point, whereas we would 
like to distinguish the true bifurcation point (ao, Ao), where a distinct curve of 
new solutions appears. 

DEFINITION 1 (local bifurcation). Let h : M  - N be a continuous map be- 
tween topological spaces. A point xo € M is a bifurcation point for h if for every 
neighborhood U of h(xo)  and V of xo, the sets h-’ (  y )  n V for y f) U are not all 
homeomorphic; i.e., h-’( y )  changes topological type at xo . 

There is a corresponding global version, where the “whole space” nh-’( y) 
repIacesh-’(y) n V. 

This can be related to the definition for an equation of the form F(x. A) = 0, 
x E A’, A E A, by letting Z C X x A be the set of solutions and h: Z - A the 

I 

FIGURE 1. Bifurcation at a point on a sheet of solutions. 

projection map onto the parameter space. “Parameter-free” DEFINITION 1 has 
advantages in certain situations, such as in the work of Buchner, Schecter, and 
Marsden3 on scalar-curvature equations. 

The condition, “same topological type,” can be replaced by other relations 
according to the situation. For instance, if we have a set of vector fields and let 
the relation be, “have conjugate phase portraits,” we recover Thom’s definition of 
a bifurcation point of a family of vector fields as-a member of the family which is 
not strucfurully stable, relative to the family cf. Ref. 5 ,  pp. 228-9). It is noteworthy 
that Andronov and Pontryagin defined and discussed structural stability as early 
as 1937.’ 

The next two sections contain a general approach to systems represented by 
Equation 1. The fourth and fifth sections consider specific examples arising in engi- 
neering, which enable us to illustrate some of the relevant concepts. 
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EXISTENCE AND UNIQUENESS OF SOLUTIONS 
AND BIFURCATIONS OF FIXED POINTS 

In case Equation 1 is an ODE on R“, the establishment of local existence and 
uniqueness theorems is frequently a trivial matter, provided the nonlinear function 
B ( x )  has reasonable properties. The proof of giobai existence is generally not so 
simple, and may require the use of Liapunov functions or related energy methods. 
However, a proof of local existence suffices for application of the center manifold 
theorem (THEOREM 2). When (1) is defined on a function space, existence-unique- 
ness results are often considerably more difficult to obtain, but in many cases may 
be obtained by use of this theorem originally due to Sega126 (see Holmes and 
MarsdenL8 for further details and proof). 

Let X be a Banach space and let A ,  with domain D ( A )  be the 
generator of a Co (linear) semigroup U ,  = el” on X. Let B:X+ X be of class Ck, 
k 2 1, and let G = A + B, D ( G )  = D ( A ) .  Then there is a unique local semiflow 
F, (x )  = F(t ,  x )  defined on an open set of (0,m ) x X containing 101 x X such that 
for x o  E D(A) ,  F , (xo )  

THEOREM 1. 

D ( A )  and F,(xo)  is the unique solution of, 

~ ( 0 )  = XO E D ( G )  

REMARK. In the terminology of Marsden and McCracken, G generates a 
smoothsemiflow.2L The proof shows that if G, depends continuously on a param- 
eter p (with domain fixed), then so does its semiflow F,?X - X. From Chernoff 
and Marsden we note that separate continuity implies joint continuity! As we 
shall see, a certain amount of smoothness (say Ck, k 2 3) is required for applica- 
tion of the center manifold theorem and for subsequent bifurcation analysis. 

Checking the hypotheses of THEOREM 1 in specific cases is generally a lengthy 
process (for equations of panel and pipe flutter, see Holmes and Mar~den.~’,’~ 
We obtain global existence results with a modification of Liapunov’s second 
method:I8 

PROPOSITION 1. Suppose the conditions of THEOREM 1 hold, and there is a 
C’ function H :  X - R such that: 

(i) There is a monotone increasing function, $:[x, m) - [O, m), where 

(ii) There is a constant K 2 0 such that ifx(r) satisfies Equation 1, then 
[a, 0 0 )  2 range of H satisfying I I x I I < d [ H ( x ) ] ;  

Then F,(xo)  is defined for all t 2 0 and xo E A’. If, in addition, H is bounded on 
bounded sets and, 

dr 
(iii) H [ x ( t ) ]  I 0, if 1 1  x ( t )  I I  2 B 

then any solution of (1) remains uniformly bounded in X for all time (i.e., given 
x ~ ) ,  there is a constant C = C ( x o )  such that 1 1  x ( t )  1 1  5 C for all t 2 0. 
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If H decreases along solution curves of (1) on all of X and H ( 0 )  = 0 is the global 
minimum of H ,  then we can conclude that x = 0 is globally stable and that no 
bifurcations are possible while this condition holds. 

In the succeeding discussion we will assume that the bifurcations to be studied 
occur from a curve of known solutions which, prior to bifurcation, are hyper- 
bolic sinks and thus locally stable. We will further assume that the eigenvalues of 
(l), linearized at such a sink, can be calculated directly or at least estimated by 
numerical computations based on a finite-dimensional Specifically, 
let t ingqp) denote the sink, we consider the system, 

dx - I. DG,(P(p))x 
dt 

and compute the spectrum u(DG,[X(p)]}  ofthe (Frtchet) derivative of G, at X(p) .  
If the eigenvalues all lie strictly in the left-hand half plane, then T ( p )  is a hyper- 
bolic sink. Bifurcation from F(p)  occurs at some parameter value p o  when 
U { D G ~ ~ [ X ( ~ ~ ) ] )  has at least one eigenvalue on the imaginary axis. If this eigen- 
value passes into the right-hand half plane as p changes, then a bifurcation occurs 
in which T ( p )  becomes a repelling fixed point (either a source or a saddle). In this 
situation the classical bifurcation theorems, such as that of Hopf*’ can be applied 
to determine the nature of the secondary solutions bifurcation from X(p)  at X(p0). 
For example, closed orbits and/or additional fixed points may appear near X ( p )  
forp  > po. 

However, in general, only a relatively small number of eigenvalues cross the 
imaginary axis simultaneously at p = PO, thus T(p) “loses stability” in relatively 
few directions. In the case of an ODE on a Banach space of functions, for exam- 
ple, suppose a finite number d of eigenvalues crosses the imaginary axis as p passes 
through po. For p > PO, then (say p = po + c, c small) the unstable monifold 
W”[Z(p)]  of i ( p )  is of dimension d and the srable monifold WJ[T(p ) ] ,  of codimen- 
sion d. At least in some neighborhood of ?i(ro) and po in X x A the new solu- 
tions can be studied by restricting our attention to a &dimensional submanifold 
of X .  If d is small (say d = 1,2) then this dramatically reduces the complexity of 
the problem, and, in specific cases, enables us to obtain a complete characteriza- 
tion of local bifurcational behavior. To formalize this notion we use invariant 
manifold methods. 

INVARIANT MANIFOLDS .AND THE CENTER MANIFOLD THEOREM 

We have already mentioned the stable and unstable manifolds of a fixed point 
in the second section. 

DEFINITION 2. The local stable manifold of a fixed point 5 E X is the set of 
points y in some neighborhood Uof K which approach 7 under the flow F, as t - 
+ OD ; thus, 

W,,,l(sS) = ( Y E  uIFt(y)+ST;t -+aI  

The unstable manifold is obtained by reversing time in the above definition; hence, 
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These definitions can be globalized by taking the unions of the local manifolds 
over all time(cf. Ref. 5 ,  pp. 215-221). Clearly W,,"(?) and Wlms(jz) describe the 
local splitting of the "phase space" X induced by the flow F, of ( l ) ,  or by the semi- 
flow F, in the case of the PDE. The definitions generalize to  more complex invari- 
ant sets, such as closed orbits, e t ~ . ~ . ~ '  

When the fixed point a(p) is structurally unstable and p = po is a bifurcation 
value then we can define a third local submanifold, the center mangold M(R). 
Just as the stable and unstable manifolds are associated with (and tangent to) the 
eigenspaces of those eigenvalues of DG,,[S?(po)] with negative and positive real 
parts, respectively, so M(T(po)) is associated with those eigenvalues with zero real 
parts. The center manifold theorem may be stated for ODE's or for semiflows; 
here we give the latter version." Without loss of generality we take F ( p c o )  = 

0 E x. 
THEOREM 2 (Center manifold theorem for flows). Let X be a Banach space 

admitting a C" norm away from 0, and let F, be a C" semiflow defined in a neigh- 
borhood of0 for 0 < t I T. Assume F,(O) = 0 and that, for f > 0, F , ( x )  is Ck+I 
jointly in t and x. Assume also that the spectrum of the linear semigroup 
D F , ( O ) : X +  X is of the form exp[t(ui U Q)], where exp(tul)  lies on the unit cir- 
cle-i.e., Re(ulj  = 0-and exp(tu2) lies inside the unit circle a nonzero distance 
from i t ,  for t > 0; i.e., Re(u2) < 0. Let Y be the generalized eigenspace corre- 
sponding to exp(ial ), and assume dim Y = d < =.  Then there exists a neighbor- 
hood Vof 0 i n  X and a Ck submanifold M C V of dimension d passing through 0 
and tangent to Y at 0 such that: 

(a) I f  x E M ,  i > 0 and F , ( x )  E V ,  then F , ( x )  E M (local invariance); 
(b) I f  r > 0 and F,(x) remains defined and in V for all t, then F,(x) - M a s  t- 

REMARK. I f  F, is C" then M can be chosen so as to  be C' for any I < m. For 
the semigroup F,'(x) with control parameter p E R", i f  F,'(x) is only assumed to  
be Ck+l in x; and its x-derivatives depend continuously on t and p, and at  p = 
po part o f  the spectrum o f  DF,"o(O) is on the unit circle, as  above, then for p near 
po we can choose a family of C' invariant manifolds M ,  depending continuously 
on p.  This family completely captures the bijiircational behavior locally. 

We note that Henryi3 has a version of the theorem to cover the case in which 
the spectrum of'DF,(O) also has a component exp(ru3) comprising a finite number 
of eigenvalues outside the unit circle; i.e., Re(u3) > 0. Thus, in addition to  M ,  
we also have invariant stable and unstable manifolds W', W', the dimensions 
of which are determined by the number of eigenvalues within and outside the unit 
circle; thus dim W y  < = .  The theorem now provides a full infinite-dimensional 
analog of that for ODE's in R"." However, in this case we need a further result 
derived from the generalized Bechner-Montgomery theorem: 

and 
suppose F, leaves invariant a finite-dimensional submanifold M C M .  Then on 
M ,  F, is locally reversible jointly Ck in t and x ,  and is generated by a Ck-' vector 
field on M.*l 

THEOREM 2 and PROPOSITION 2 imply that, under their assumptions, we can 
find a (d  + m)-dimensional subsystem M x U ,  where U is a neighborhood of the 
critical parameter value p = po such that M x U provides a local, finite-dimen- 

z (local attractivity). 

PROPOSITION 2. Let F, be a local Ck semiflow on a Banach manifold 
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sional essential model. More details o n  the concept of essential models can be 
found in Holmes and Rand19, where a general approach t o  the identification of 
nonlinear systems is suggested based on the concept of structural stability and the 
assumption of generic properties. 

Since the new fixed points, closed orbits and other invariant sets of F,' created 
in the bifurcation all lie in the center manifold for p near po, their structure may 
be considerably easier to  analyze than would otherwise be the case. Of course, the 
global problem of relating these invariant sets to  other invariant sets, perhaps 
created in other bifurcations, still remains, but, as  we shall see in the next section, 
considerable progress can be made by use of the essential model concept. 

AN APPLICATION TO PANEL FLUTTER 

The problem of panel flutter has been extensively studied by D0we11~'~ who 
has used numerical time-marching methods to  solve a finite-dimensional Galerkin 
approximation to  the governing PDE. In this way a parrial picture of the be- 
havior was obtained, in that only the attracting invariant sets such as sinks and 
attracting limit cycles were found. Moreover, the convergence of a finite-dimen- 
sional Galerkin system to the full PDE is tacitly assumed. The method proposed 
here is, we feel, complementary to  such techniques in that, while it lacks the 
quantitative accuracy of numerical methods, it provides a fuller description of 
qualitative behavior and, in particular, of the surprisingly rich bifurcational 
behavior of the panel. Since the work has been extensively reported elsewhere, 
we merely outline the main  result^.'^''^''^ 

The equation of motion of a thin panel of length I ,  fixed at  both ends and 
undergoing cylindrical bending, can be written in terms of lateral deflection t i  = 

u(z, t )  as, 

air"" + u"" - (r + k 1 v' 1 + ~~(v',ir')~)v~' + pv' + f i 6 v  + ii = 0 (3) 

Here (.) = a / a r ,  (') = a / a z  and I . 1 and (-,.) denote the L2 norm and inner 
product, respectively; a, k ,  U ,  6 > 0 are fixed mechanical parameters and only the 
axial load; r and the dynamic pressure of the fluid flowing over the panel p vary. 
We collect these in a control parameter = ( p ,  r). Note the strong symmetry of 
(3) due to  the absence of even-order nonlinear terms. We prove the existence, 
uniqueness, and smoothness of the semiflow generat;d by (3) in Reference 18. 

Working with fixed points and eigenvalues calculated from a finite-dimensional 
(four mode) a p p r o ~ i m a t i o n , ' ~  we obtain the bifurcation set of FIGURE 2, in which 
the bifurcation curves for fixed points only are shown. On B,, a pair of sinks 
bifurcate off the trivial solution x = (v,6) = {O,O) = (01 E X and a Hopf bi- 
furcation occurs on Bhl in which an attracting closed orbit is created. The stability 
and "direction" of the family of orbits created o n  B,,, can be checked by use of 
the " ~ ' "  ( - )  algorithm" described by Marsden and McCracken.t*' The two non- 

t B .  Hassard (SUNY Buffalo) reports that he has carried out computations for 4, 6 ,  8, and 
10 mode models using a version of the stability formula due to himself and Y.-H. Wan. He 
detected a strong convergence as the order of the approximation increases. The results re- 
ported and summarized here are qualitatively correct, although possibly in error by "57; 
in quantitative accuracy.'4*'7 
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trivial fixed points X = l u ,  fi] = I&, 0) undergo simultaneous Hopf bifurcations 
on B h 2 .  Here the bifurcations are subcritical so that repelling orbits encircle the 
sinks for parameter values “below” Bh2. We thus have a partial picture of bifur- 
cational behavior near the point 0 = po, where B h , ,  Bh2 ,  and B, meet. 

To complete the picture we note that a t  0, pa = (rO, po), A , : X  - X has a zero 
eigenvalue with multiplicity two, and that near 10) E X and the point lo = 

(r0, p o )  E R2 we can define a 2-dimensional center manifold M and a 4-dimen- 
sional essential model M x U ,  where U C R2 is a neighborhood of PO. All the 
nontrivial invariant sets created as p crosses Bh, u po u B, from left to  right lie 
on M C X. Thus the problem reduces to  that of completing the bifurcation picture 

I1 

100 t 1 

-40 r 10 -20 

FIGURE 2. A partial bifurcation set for panel flutter. 

for a two-parameter, 2-dimensional vector field. In particular, the degenerate 
singularity occurring at {O) E M for p = po contains our  information in its versa1 
un folding.2 

We now make the key assumption that the bifurcation at  10) x pa E M x U is 
generic in the sense that, under the symmetry group acting in (3) it is the 
“simplest” degenerate singularity of a 2-dimensional vector field with double zero 
eigenvalues. We then use the classification of such codimension-2 singularities, due 
to  T a k e n ~ , ~ ~  and select the singularity whose unfolding contains the phase por- 
traits we have already detected, specifically, a sink in region I of FIGURE 2, a 
source and limit cycle in region 11, two sinks, and a saddle in region 111 (near Bs), 
etc. This is the “m = 2; -” normal form. We therefore have: 
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CONJECTURE 1. Flutter and divergence near (0) x ( p o , r 0 )  E X x R 2  can 
be modeled by a two-parameter vector field V, on a 2-manifold M ,  where V,, is 
diffeomorphic to  Takens’ “m = 2;-” normal form (FIGURE 3). The actual vector 
fields portrayed in FIGURE 3a belong to  the nonlinear oscillator x + v I  x + v2x + 
x2.t + x3 = 0, which is diffeomorphic to  the more complicated form of T a k e n ~ . ~ ’  
It is interesting t o  note that the essential model is in a sense a nonlinear normal 
mode. 

Note that the double saddle connection occurring as p crosses the curve B,, 
from region IIIb to  IIIc is an example of a global bifurcation in which the phase 
portrait changes topological type without local bifurcations of fixed points or  
closed orbits occurring. The period of the two repelling closed orbits existing in 
region IIIb tends t o  infinity and the orbits reappear as  a single repelling orbit in 
region IIIc, whose period decreases from infinity and approaches that of the at- 
tracting orbit until the two orbits coalesce and annihilate each other as p crosses 
BIc,’7 It is interesting to note that the use of Takens’ “m = 2;-” normal form as 
an essential model for panel flutter was proposed by Holmes and Rand’’ purely 
on the basis of “generic” arguments, without detailed knowledge of the PDE’s 
governing panel motions. 

FORCED NONPERIODIC OSCILLATIONS 

As a final example we outline some recent work of the first author on the 
forced oscillations of a system possessing three equilibria, two sinks, and a saddle 
(the actual system studied is the second-order ODE); hence, 

2 + 6x - e x  + a x 3  = f cos wr; a, 6, p, w > 0 fixed, f 2 0, varies (4) 

A detailed preliminary study of Equation 4 has been completed and will appear 
in due course.’6 Here we merely give the main results. 

Although (4) is an ODE, we believe it can be derived from the PDE for the 
oscillations of a buckled column under transverse sinusoidal loading by invari- 
ant  manifold techniques. The PDE, in nondimensional form (v = v ( z , r )  again 
represents transverse deflections), is 

( 5 )  

where k and 6 are structural constants and r > A’ is the fixed axial end load. Cer- 
tainly a study of the behavior of (4) is necessary before the full problem (5) is 
tackled. 

Holmes16 proves that (4) is globally stable in the sense that after sufficient 
time all solution curves enter and remain within a bounded set A in the state 
space, thus (4) always has a t  least one attractor. We rewrite (4) as an autonomous 
system on R’ x s’,  as follows: 

f,  = x2 

U t f “  + rut‘ + k 1 u t  I z v l ~  + t id + i; = f ( z )  cos wr, 

R~ = pxl  - 6x2 - *xl3 + f c o s  8 

8 = w  

and consider the Poincari map P,:Z - Z induced by the flow &:R2 x SI - 
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FIGURE 3. A local model for panel flutter near (0) x ( ~ 0 ,  Ao) E X x R2. (a) Takens’ 
‘‘m = 2;-” normal form and associated structurally stable vector fields. (b) The completed 
bifurcation set. 
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R2 x S' of (6), where Z is a global cross section Z = { (x ,y ,  0) E RZ x S' 1 0 = 

0, ~ T / w , .  . .); Pjis the time ~ T / W  o r  period-1 Poincart map. 
First consider the trivial system for f = 0. Here all cross sections of (6) are 

identical for all 0 E [0 ,27r /w] .  The Poincart map thus has a structure identical to  
that of the vector field of the autonomous 2-dimensional system, 

(7) XI = X2,Xz = B X l  - 6x2 - ffX1 

in the sense that the stable and unstable manifolds of the saddle (0,O) of the 
PoincarC map are curves identical to  the stable and unstable seperatrices of (0,O) 
for the vector field. However, we must recall that an orbit of the map is a sequence 
ofpoints and not a curve, as in the case of vector field.5 It is easy to  check that the 
vector field of (7, and hence the Poincart map of (6) for f = 0, is (globally) struc- 
turullystabfe. We can conclude that for f z 0, small, the topological type will be 
identical to  that for f = 0. This is confirmed by analog computer analysis 

3 

FIGURE 4. Stable and unstable manifolds of the saddle point of P j  for f = 0.2 (a = I ,  
p = 10, 6 = 100, w = 3.76). 

(FIGURE 4).16 Thus, for small 5 PJ has a hyperbolic saddle and two hyperbolic 
sinks, corresponding to the two attracting and one repelling closed orbits of (6). 

As fincreases it is possible t o  prove, using the methods of Melnikov", that 
the stable and unstable manifolds of the saddle point approach and ultimately 
intersect, giving rise to  infinitely many homoclinic points. We note that this proof 
apparently has much in common with recent work of Hale" and others. The 
critical valuef = fe(a, 6, @, w)- = 0.79 for the case studied-thus computed agrees 
well with that found in analog computations. FIGURE 5 shows the dispositions of 
stable and unstable manifolds W' and W" just before and after intersection takes 
place at  f = 0.76. Note that the presence of the period-1 sinks in FIGURE 5b im- 
plies that almost all orbits converge t o  either one of these fixed points of PJ as 
t - m . However, since Pjc has tangencies of W s  and W " ,  according to  a theorem 
proved by N e w h o u ~ e , ~ ~ ~ ~ ~  there is an open set of diffeomorphisms near Pfc where 
each possesses an infinite number of periodic sinks. In addition to the creation of 
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ornoclinic intersections 

FIGURE 5 .  Stable and unstable manifolds of Pffor (a)f = 0.75 and (b) 0.90. 

Smale horseshoes, then, we may have (weakly) attracting sets of periodic points 
of Plfor f > /;. 

As f continues to increase, analog computations show that the fixed points 
of FIGURE 5b bifurcate to sinks of period 2, and then of period 4. It is possible that 
further bifurcations, to periods 8, 16, 32,. . . also occur but they are difficult to 
detect with reliability. I n  any event, for f 2 1.08, successive iterates of P, are no 
longer attracted to a clearly periodic orbit, and they appear to wander chaotically 
back and forth across 2 .  FIGURE 6 indicates that this wandering is in fact ordered 
in the sense that the orbits rapidly converge to and appear to remain on a 1 -dimen- 
sional curve close to, and perhaps identified with,  W ” .  Computations of the power 
spectrum for some 50,000 samples (12,000 cycles of the forcing function) clearly 
suggest nonperiodic behavior.Is*l6 We suggesti6 that for f E (1.08,2.45), Pf has 
a strange at tracto r . 1 ~ 2 5  

In  order to study the structure of the attractor more fully, we approximate16 
the true Poincari map Pfby a simple cubic polynomial mapping Pdgiven by, 

( x , y )  I--, ( y ,  -bx  + d y  - y 3 ) ,  b ; d  > 0 (8) 

Fixing b = 0.2 and varying d,  d E (l.2,2.8), we were able to reproduce much of 
the behavior of P,for fe (0, 1.2). 

Under a suitable assumption on generic properties, and taking the symmetry 
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of (6) into account, we might expect a Taylor series expansion of the true PoincarB 
map at (0,O) to include only odd terms. We cun explicitly calculate the linear terms 
by integrating (6), these terms have the form assumed in (8). We thus obtain an 
approximate map by ignoring all terms of order 5 and higher in the Taylor series. 
We assume that it is possible to choose coordinates such that the nonlinear term 
appears in only one component of the map.’* 

The cubic mapping (8) has much in common with the quadratic planar map- 
ping discussed by HCnon, and digital computations strongly suggest that the in- 
variant attracting set &, for a large number of values of d in the range (2.7,2.8), 
has a local structure isomorphic to the product of a smooth curve and a Cantor 
set. Successive iterates of Pd(d = 2.77) behave much as do successive iterates of 
the true Poincark map P, for f f  ( I  .08,2.45) as shown in FIGURE 7. In addition 
to computing successive iterates, the structure of stable and unstable manifolds 
of the saddle of Pf at (0,O) was also studied. As for the true map Pf ,  the mani- 
folds become tangent at a critical valued = d, = 2.60. 

Summarizing, then, we prove that ( 5 )  has homoclinic orbits for f > fe. 
(a, p ,  6, w )  = 0.79 and that ( 5 )  has at least one attracting set for all f < m .I6 Ana- 
log computer solutions of ( 5 )  indicate (but cannot prove) that the sinks of the 
Poincark map Pfof ( 5 )  undergo a sequence of “Rip” bifurcations for f = fo > 

(b) 

FIGURE 6. (a) The attracting invariant set of PI for f = 1.10. (b) Schematic structure 
of one “lobe.” 
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fc in  which sinks of periods 2, 4, 8,. . . , 2”, . . . are created. Ultimately f o r f l  
= 1.08 (>fb) all orbits apparently approach a nonperiodic attractor as t - + m . 

Working with an approximate Poincart map Pd, we can prove that Pd indeed 
undergoes such a succession of flip bifurcations. We then use the digital com- 
puter to  study the structure of the invariant attracting set & of Pd for the ap- 
propriate range of values of d in which s d  appears to  be topologically conjugate 
to  the strange attractor S of P,forfE (1.08,2.45). 

Very little is presently known about the behavior of polynomial mappings 
of RZ, such as Pd(Equation 8) or the map studied by HCnon.” In order to  obtain 
more information in the present case, we intend to  study the cubic mapping on R 
given by, 

Y - (dv - Y ’ )  ( 9 )  

If we introduce a dummy small parameter t < I into (8), and rewrite the equation 
as 

(10) 

we see that (9 )  is essentially identical to  the limiting case of (10) when t = 0. In 
this way we hope to  reduce the complexity of the problem much as Gucken- 
heimeraS9 and Williams2* did in their studies of Lorenz equations. Guckenheimer 
has also reduced the study of the Poincart map of the forced van der Pol oscillator 
to  that of a map on the circle.” 

3 
(x, Y )  (EY, -bx + 4 - Y 1 

CONCLUSION 

We have outlined a general approach to  the qualitative analysis of nonlinear 
dynamical problems and illustrated our methods with two examples taken from 
engineering science. One of the most interesting features in these examples is the 
detection of global bifurcations in which periodic orbits are created or annihilated 
in a manner which depends upon the global disposition of stable and unstable 
manifolds of some invariant set. The “figure-8’’ loop occurring on B,, (FIGURE 3b) 
is a simple example, while the creation of infinitely many periodic points when 
W” and W s  intersect homoclinically (FIGURE 5) is considerably more complex. 
In the latter case we have the creation of a countable infinity of periodic points 
as W” is “pulled through” W s ,  and vice versa. These examples illustrate the 
need for a more general definition of bifurcation, such as that proposed in the 
first section. 
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