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QUALITATIVE METHODS IN BIFURCATION THEORY 

Bifurcation decreases entropy 
. . . Helen Petard 

BY JERROLD E. MARSDEN1 

Classical bifurcation theory is undergoing a revitalization with the infusion 
of ideas from singularities of mappings and structural stability. The situation 
now is similar to that a quarter century ago when Krasnosel'skiï introduced 
topological methods, especially degree theory, into the subject (see Krasno
sel'skiï [1964]). Like degree theory, the theory of singularities of mappings is 
playing a fundamental role in the development of the subject. 

Our goal is to give a few examples of how qualitative ideas can give insight 
into bifurcation problems. The literature and full scope of the theory is too 
vast to even attempt to survey here. On the classical bifurcation theory side, 
the survey article of Sather [1973] is valuable, and for the theory of 
singularities of mappings, we refer to Golubitsky and Guillemin [1973]. On 
the overlap, the article of Hale [1977] is recommended. 

The credit for using ideas of singularities of mappings and structural 
stability in bifurcation theory is often attributed to Thorn (see Thorn [1972]) 
and on the engineering side, to Thompson and Hunt [1973], Roorda [1965] 
and Sewell [1966]. However, to penetrate the classical bifurcation circuit is 
another matter. For this, there are a number of recent articles, notably, 
ChiUingworth [1975], Chow, Hale and Mallet-Paret [1975], Magnus and 
Poston [1977], Holmes [1977] and Potier-Ferry [1977]. The literature on this 
interaction is in an explosive state and we merely refer to the above articles, 
ChiUingworth [1976], Golubitsky [1978], Marsden and McCracken [1976], 
Abraham and Marsden [1978] and Poston and Stewart [1978] for further 
references. 

1. The definition of bifurcation point. The very definition of bifurcation 
point varies from author to author, although in any specific situation there is 
usually no doubt about what should be called a bifurcation point. 

The "classical" definition is typified by the foUowing discussion in 
Matkowski and Reiss [1977]: 

"Bifurcation theory is a study of the branching of 
solutions of nonlinear equations ƒ (JC, À) = 0 where ƒ is a 
nonlinear operator, JC is the solution vector and X is a 
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1126 J. E. MARSDEN 

parameter. It is of particular interest in bifurcation theory to 
study how the solutions x(X) and their multiplicities change 
as X varies. Thus we refer to X as the bifurcation parameter. 
A bifurcation point of a solution branch x(X) is a point 
(Xo, x(X0)) from which another solution xx(\) branches. That 
is, X(XQ) = X^XQ) and JC(X) ¥= Xj(X) for all X in an interval 
about XQ." (See Figure 1.) 

x A 

bifurcation point 
(A0,x0) 

solution set of f(x,X)=0 

curve of known 

solutions" 

FEGURE 1 

For studying bifurcation from known solutions, this is an appropriate 
definition. However, solutions can appear spontaneously or need not be 
connected to a "known" solution, as occurs in the saddle-node bifurcation 
(Figure 2) or in subtle dynamical bifurcations such as a global saddle 
connection or the bifurcation to the strange Lorentz attractor (Marsden 
[1977]). 

Thus it seems wise to take a wider view. In doing so, we interpret the 
equation ƒ(x9 X) = 0 liberally, to include dynamic (i.e. evolution) equations 

x A 

saddle-node 
bifurcation 

RGURE 2 
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as well as static equations and allow the parameter X to be multidimensional. 
Any more general definition of bifurcation ought to reduce to the above 
definition for bifurcation from a known branch. 

A way to eliminate having a "known branch" is by means of the following 
definition (see Chow, Hale and Mallet-Paret [1975]) 

"Suppose r is a family of mappings from one Banach 
space X into another Banach space Z and suppose there is a 
norm on the members of r. Let T E T be given and suppose 
there is a n x 0 e l such that Tx0 = 0. The operator Tis said 
to be a bifurcation point for T at x0 if for every neighborhood 
U of T and V of JC0, there is an S E U and xl9 x2 E K, 
JCJ ^ x2 such that Sxx = Sx2 = 0." 

This definition still fails to apply when the solution sets for fixed T are not 
locally isolated, but clearly a bifurcation occurs. In Figure 3, every point on 
2, would be a bifurcation point according to this definition, which is not 
what we want. Such situations occur in bifurcations of Hamiltonian systems 
(see Weinstein [1978]). 

solution set 
Xxuzx 

FIGURE 3 

Crandall and Rabinowitz [1971] were amongst the first to emphasize the 
technical importance of supressing the parameters and treating the map 
ƒ (x, À) as a whole and de-emphasizing the special role of the parameter. In 
fact, this is exactly what is done in singularities of mappings and global 
analysis. (However, in studying perturbations of bifurcation diagrams the 
special role played by the control (or bifurcation) parameter X is crucial; see 
e.g. Golubitsky and Schaeffer [1978].) One usually adopts a definition like the 
following (see Smale [1970] for example). 

DEFINITION (GLOBAL BIFURCATION). If h: M-+N is a continuous map 
between topological spaces then y0B N is a bifurcation point of h if for every 
neighborhood U ofy0, not all the sets h~\y\ y E U, are homeomorphic; i.e. 
h~~l(y) changes topological type aty0. 

(LOCAL BIFURCATION). Ij h: M -+ N is a continuous map, a point x0E M is 
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a bifurcation point/or h if for every neighborhood U ofy0 «• h(x0) and V ofxç, 
the sets h~\y) n V, y E U, are not all homeomorphic; i.e. h~\y) locally 
changes topological type at (x^y^). 

This definition is related to the previous ones for the equation ƒ (x, A) = 0, 
whereJC e Jf, X e A, by letting 

2 « solution set of ƒ - {(*, X)\ f(x, X) = 0} 

and h: 2 -» A, (x, \)H»A. The local definition applied to this map captures 
what we want in the general case and slightly extends the first definition for 
bifurcation from known solutions. For global bifurcations (Figure 4), the 
global definition is appropriate. This definition also suggests that one should 
make direct use of algebraic-topological invariants to detect a change in 
topological type. 

T 2 global bifurcation point 

solution set 2 

» X 

FIGURE 4 

This definition is also desirable because in many problems there are no 
parameters, yet bifurcation techniques are called for. We shall give an 
illustration of this in §3 below. 

In the definition we can modify the relation "homeomorphic" to other 
relations appropriate to the context. For instance let M be a family of vector 
fields on a manifold and let h be the identity map on M. If the relation is that 
of having topologically conjugate flows, then the general definition reduces to 
that in Thorn [1972] i.e. a vector field is a bifurcation point (of a family) if it 
is in the complement of the structurally stable vector fields (relative to the 
given family). See Abraham and Marsden [1978] for additional details. 

There are deep connections between bifurcation and symmetry that are 
only beginning to be understood. For example, Sattinger [1976] and others 
have suggested that bifurcation is closely related to symmetry breaking and 
that bifurcation points necessarily have a degree of symmetry. We shall see 
this borne out in some examples below. Although systems with symmetries 
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are nongeneric, they nevertheless play pivotal roles as bifurcation points. 
(This is one reason why Hamiltonian systems with symmetry are so important 
within the class of all Hamiltonian systems.) 

2. Topological methods in bifurcation theory.2 The use of degree theory in 
bifurcation problems is well known and is described in Krasnosel'skiï [1964]. 
Other topological or differential-topological methods can be useful as well. 
For example, in Duistermaat [1974] and Nirenberg [1974] the Morse lemma is 
shown to yield quite directly some main results on bifurcation at simple 
eigenvalues (cf. Crandall and Rabinowitz [1971], Cesari [1976] and references 
therein). We shall now recall part of their argument. 

Let X and Y be Banach spaces and/: X X Rp -* Y a, Ck map, k > 3. Let 
DJ(x, X) be the (Fréchet) derivative of ƒ with respect to x, a continuous 
linear map of X to Y. Let f(x0, X0) = 0 and 

Xl = ker DJ(x0, X0). 

Assume Xx is finite dimensional with a complement X2 so that X = Xx © X2. 
Also, assume 

y, = Range DJ(x0, XQ) 

is closed and has a finite-dimensional complement Y2. In other words, 
A/(*o> .Vo)is a Fredholm operator. Write Y= YX®Y2 and let P:Y^>YX be 
the projection. By the implicit function theorem, if Dxf(x09 X0) is surjective, 
then (JC0, XQ) is not a bifurcation point. In general, by the same theorem 

Pf(xx + x2, X) = 0 

has a unique solution x2 = u(xl9 X) near JC0, XQ, where x = xx + x2 E X = 
Xx © A .̂ Thus, the equation ƒ (x, À) = 0 is equivalent to the bifurcation 
equation 

( 7 - P ) / ( x 1 + «(x1,X),X) = 0, 

a system of dim Y2 equations in dim Xx unknowns. This reduction is usually 
called the Liapunov-Schmidt procedure. 

Let dim Xx = dim Y2 = 1 (a simple eigenvalue3),/? = 1 and suppose that 

~ö\ (*o> \>) = o» TTi" (*o> \ > ) E ^ i ' "gxâx ^^ ^•*1 ^ ^lB 

7%e« (x0, XQ) is a bifurcation point for f(x, X) = 0; moreover the directions of 
bifurcation are those of the zeros of the quadratic form associated to 

( /- />)P2 / (x0 ,Xo), 

restricted to Xx X R. 

2This section is based on Buchner, Marsden and Schecter [1978]. 
3The terminology "eigenvalue" derives from the case ƒ (x, \) = Lx - \x + higher order terms, 

where L is a linear operator of X to x; then ker DJ(xQy \Q) is the eigenspace of L with 
eigenvalue Ao. 

4These are sample hypotheses relevant for the case in which a trivial solution to an equation 
like the one in the preceding footnote, loses stability. A more general result is proven in the 
theorem below. 
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This result follows by letting / be a linear functional on Y orthogonal to Yv 

letting <p: R2 -» R be defined by 

<p(*„ X) = /(ƒ(*! + u(xl9 X), X)) 

and applying the Morse lemma to <p. Our hypotheses imply that ((x0)i> \>) *s a 

nondegenerate critical point of index 1, so the set of zeros of <p consist of two 
intersecting curves (Figure 5). 

x A 

(Xfj 

(x0,A0) 

* i 

A 

transcritical supercritical subcritical 

Figure 5. Bifurcation at Simple Eigenvalues 

For elementary applications of this result we refer to standard sources such 
as Keller and Antman [1969], Nirenberg [1974] and Pimbley [1969]. 

This theorem can be generalized in many ways. The appropriate generali
zation of the Morse lemma is the list of elementary catastrophes of Thom and 
Zeeman. It is also useful to generalize in a different direction, namely to the 
case in which there is a multiple eigenvalue, but the singularity is still 
quadratic. We now give such a result following the methods of Buchner, 
Marsden and Schecter [1978]. 

Let B: Z X Z->Wbea, continuous symmetric bilinear form on a Banach 
space Z with values in a Banach space W and let Q: Z-+W, z\-*B(z, z)/2 
be the associated quadratic form. Set C = Q " '(O), the cone of zeros of Q. 
We say Q is in general position on C if for each i ) G C , t ) ^ 0 , the map 
zh+B(z, v) from Z to W is surjective. 

THEOREM. Let ƒ: X XRP-*Y be Ck, k > 3, with f (x0, XQ) = 0 and 
DJ(XQ> X0) Fredholm, as above. Assume 

3/ 
-g^ (*0> \) - 0 

and let B = (I - P)D2f(x0, \) restricted to (Xx X R') X (Xx X R') with Q 
the associated quadratic form. Assume Q is in general position onC = Q ~~ l(0). 

Then the set of solutions off(x, X) = 0 near (x0, X0) is homeomorphic to C 
near 0; the set of solutions consists of Ck~2 curves through (x0, Xo) tangent to 
elements of C. 

For the proof, we use the method of blowing up a singularity. 

LEMMA. Let g: Rn -> Rm be C*, k > 3, and g(0) = 0, Dg(0) = 0. Set 
B = 2>2g(0) and Q its quadratic form. Assume Q is in general position on 
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C = g !(0). Then near 0, g !(0) is homeomorphic to C near 0 and is a union 
of Ck~2 curves through 0 tangent to C. 

PROOF. Let S c R " be the unit sphere, a codimension one smooth 
submanif old. We proceed in a number of steps. 

(1) Q\S has Oas a regular value. 
First note that DQ(x)v = B(x, v). Therefore, if x G g ~~ *(()), then DQ(x) 

is surjective. Now for x e Q "'(O) n S, TxR
n » TXS + Rx. Since DQ(x)\Rx 

• 0, Z>Ô(x)|rxS' = £ (6 |£Xx) is surjective, i.e., 0 is a regular value. 
Next we "blow up" the singularity at 0 as follows. Let <p: S X R-^R", 

<p(jc, r) = rx, and note that <p is C00. Observe that <?(* X {0}) = 0, D<p(x9 r) 
is invertible if r ^ 0, and ker Dq>(x, 0) - r^S X {0}. 

By Taylor's theorem, 

g(x)-f\l-t)D2g{tx)(x9x)dt 

- ƒ \ i - 0*>2s(0)(*> *) * + ƒ 'o - 0[ J> V * ) - £2s(0)](*> *) dt 

• e ( x ) + J f ( 1 " ' ^ ^ " x > ^ ° ) ] ^ *>du 

Therefore g ° <p(x, r) » r20(jc) + r2A0c, r), where A is C*~2 and h\S X {0} 
« 0. (In fact, h(x, r) - /J(l - 0[#2g("*) - D2g(0)]{x, x) dt.) Define 
g: S XR->R"by 

g(x, r) * r"2g o <p(x, r) = Q(x) + /*(*, r). 

Then g is of class C*~2 and is Ck away from r *= 0. Notice that g~'(0) and 
(£ ° ç)~!(0) coincide away from S X {0}. While g ° <p is degenerate on 
S X {0}, g is not, so we will be able to describe explicitly the zero set of g. 

(2) For e > 0sufficiently small if \e'\ < e then g\S X [e'} has Oas a regular 
value. 

Indeed, g\S X {0} = Q\S (identifying S and S X {0}) which has 0 as a 
regular value by (1). Since S is compact, (2) follows. 

From (2) and the fact that g is Ck"2 we get 
(3) g~l(0) n S X(-e,e)is a Ck~2 manifold that intersects S X {0} trans-

versally. 
Moreover, 
(4) For e > 0 sufficiently small, g~\0) n (5 X ( -6 , e)) is C*~2 

diffeomorphic to 

[r'(0) n (5 x {0})] x (-6,e) - (ô~l(0) n s) x (-6,6) 
fey a diffeomorphism which is Ck away from S X {0}. 

The Ck~2 diffeomorphism is obtained by noting that by (2) and (3) the 
map r: g~l(0)n S X ( -6 , e)->R is Ck~2 and has no critical points (see 
Milnor [1963]). The diffeomorphism thus obtained is Ck away from S X {0} 
because g~l(0) n S X ( -6 , e) is a C* manifold away from S X {0}, so the 
function r is Ck away from 5 X {0}. 

Notice that <p(g~\0) n S X ( -6 , e)) * g"!(0) n t/where £/is the ball of 
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radius e and that <p{(Q~\0) n S) X ( - e , e)} = Q~\0) n £/. It follows that 
the diffeomorphism of (4) induces a homeomorphism of these two sets which 
is a Ck diffeomorphism away from the origin. Next, let v E Q _1(0), \\v\\ = 1. 
Then (t>, 0) G g~*(0). By (3) there is a Ck~2 curve £($) through (t>, 0) that is 
transverse to S X {0} and lies in g'\0). Assume /}(0) = (t>, 0). Since /?($) is 
transverse to S X {0}, we may assume /}'(0) = (w, 1) where w E 7^5. Let 
a(s) = <p o ^(5). Then a'(0) = Z)<p(t>, 0) o 0'(O) = v. • 

PROOF OF THEOREM. We can assume x0 = 0, Xo = 0. Using the Liapunov-
Schmidt procedure, let 

g(xl9 X) = (ƒ - P ) / ( ^ + u(xx, X), X) 

a C* map on Xx X R' with g(0, 0) = 0 and Z)g(0, 0) = 0. One calculates 
easily that Du(0, 0) = 0 and D2g(0, 0) = (I - P)D2f(09 0) restricted to * , X 
Rp. The lemma now applies to g. Since the zeros of ƒ comprise the graph of u 
over the zeros of g, the theorem follows. • 

In Buchner, Marsden and Schecter [1978] a number of extensions of this 
result are given. For instance the cases in which the leading nonzero deriva
tive is higher than quadratic and in which there may be directions of 
degeneracy are considered. Related results are given in Shearer [1978]. 
Another generalization which is important for the example in §3, treats the 
case where Dxf(x09 XQ) is not Fredholm, and has an infinite-dimensional 
kernel. The proof uses the Morse lemma on Banach spaces developed by 
Tromba [1976a], but the basic idea is already contained in the proof given. 

We would like to point out two other applications of topological methods, 
both of which are due to Alan Weinstein. In the first, one considers a Hubert 
space % and a C2 map V: % -»R with K(0) = 0, DV(0) = 0. We letp = 1 
and 

f(x9\)=VV(x)-\x. 

Problems of this type are considered by Krasnoserskiï [1964] and many other 
authors. See Rabinowitz [1977] for references and the version given here. A 
main result for these equations states that if \Q is an isolated eigenvalue of 
L = D2V(0) (regarded as a linear mapping of % to % « %*) of finite 
multiplicity, then there are three alternatives 

(i) (0, A0) is not an isolated solution of ƒ (x9 X) = 0 in X X {X0}, 
(ii) there is a one-sided neighborhood U of XQ such that for all X E U \ 

{XQ}, there are at least two distinct nonzero solutions of f(x, X) = 0, 
(iii) there is a neighborhood ƒ of XQ such that for all X E I \ [XQ], f(x, X) = 

0 has at least one nontrivial solution. 
As in Rabinowitz [1977], this reduces to a finite-dimensional problem via 

the Liapunov-Schmidt procedure. Instead of using degree theory one can use 
the relative homology groups in Gromoll and Meyer [1969]; see also Kuiper 
[1971]. Since Xo is an eigenvalue of finite multiplicity and if alternative (i) 
does not hold, then these groups must change as X passes Xo and so (0, Xo) is a 
bifurcation point. Depending on whether 0 is an extremum in A' X {Xo} of V 
or not (after reduction) determines case (ii) or (iii). (If V is even one can say 
more; see Fadell and Rabinowitz [1977]... the same information may be 
deduced from the relative homology groups for even functions.) 
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Weinstein [1978] describes a bifurcation theorem for the zero sets of a 
closed one form under a nondegeneracy condition and based on a variational 
principle. It differs from the result just given in the nondegeneracy condition 
assumed and in the fact that bifurcation occurs off a whole manifold. In this 
respect it is similar to the results of Buchner, Marsden, and Schecter [1978] on 
bifurcation from zero sets. Techniques used in the latter may be useful in 
generalizing the result to infinite dimensions. Weinstein's result applies to 
periodic solutions of Hamiltonian systems under resonance and is of 
considerable importance. Some related infinite dimensional problems have 
been considered by Rabinowitz [1978]. 

3. Bifurcations in geometry and general relativity. In this and the following 
section we briefly describe two bifurcation problems in which there are no 
parameters given a priori. In fact, the initial investigations of each problem 
were done in a context outside of bifurcation theory. 

Let V4 be a four manifold and & the set of (time oriented) Lorentz metrics 
on V4. Consider the map Ein from £ to the symmetric two tensors on V4 

which maps (4)g E Ê to its Einstein tensor (in coordinates Gap = Rap 
— \Rgap). We are interested in bifurcation points for the map Ein at 
solutions of Ein((4)g) = 0. 

The situation is complicated by the hyperbolic nature of the equations 
Ein((4)g) = 0. For this reason we shall not specify our function spaces 
precisely. However, we must assume that we are working with globally 
hyperbolic spacetimes which have a compact Cauchy surface M. 

THEOREM (FISCHER, MARSDEN AND MONCRIEF). Let (4)g0 satisfy Ein((4)g) — 
0. Then (4)g0 is a bifurcation point of the Einstein equations if and only if (4)g0 

has a nonzero Killing field. 

The number of Killing fields is, roughly speaking, the multiplicity of the 
eigenvalue. 

One can describe the directions of bifurcation in terms of conserved 
quantities of Taub and show that the singularity is quadratic. 

The proof has a number of interesting features. First of all one reduces the 
problem to one for elliptic constraint equations on the hypersurface M. Here 
one uses the blowing up technique in §2 to analyze the singularities. The 
situation is further complicated by directions of degeneracy for the second 
deriviative and by the fact that the first derivative is not Fredholm; i.e. the 
constraint equations are underdetermined. However, as was mentioned, these 
difficulties can be overcome. The relationship between Killing fields on V4 

and bifurcation directions on M is a long story for which we refer the reader 
to Fischer and Marsden [1975a], Moncrief [1975], Fischer, Marsden and 
Moncrief [1978] and Arms and Marsden [1978]. 

The original motivation for this problem came from perturbation theory. 
One is interested in when a perturbation series accurately represents, to first 
order, a solution i.e. when an equation is linearization stable. The above 
results may be phrased by saying that, for relativity at least, linearization 
stability fails if and only if we have a bifurcation and moreover, a 
perturbation series near a spacetime with symmetries has to be readjusted to 
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second (but no higher) order, in order to be tangent to a curve of exact 
solutions. 

There are corresponding questions in Riemannian geometry. Fix a compact 
rt-manifold M and consider the problem 

where g is a Riemannian metric on M, R(g) is its scalar curvature and p is a 
scalar function on M. (Everything being in suitable Sobolev spaces or C00.) 
Regard p as a parameter. (Note that the parameter space is now infinite 
dimensional.) 

If p0/(n - 1) is not a constant in the spectrum of the Laplace-Beltrami 
operator for g0, then DR (g0) is surjective by a result of Bourguignon, Fischer 
and Marsden (see Fischer and Marsden [1975b]), and so (g0, p0) is not a 
bifurcation point. 

If Sn is the standard sphere of radius r0 in Rrt+1 with metric go, p0 = 
n(n - l)Ao, then (g0, p0) is a bifurcation point and the singularity is 
quadratic. This is proved by the results of §2 adapted to the non-Fredholm 
context. 

If TH is the standard flat torus, then (g0, p0) is also a bifurcation point. 
However, there is a difference: for Sn, R~l(p0) is not a manifold near g0 and 
carries the singularities: for Tn, R~l(p0) is a manifold near go, and in fact 
consists of the flat metrics (a result of Fischer and Marsden [1975b]). 
However, the equation R(g) = p0 (for p0 fixed now) is not linearization stable 
in either case, although g0 is a bifurcation point for S"1, but not Tn (again 
fixing po). 

4. A bifurcation problem in elastostatics. Elasticity is a parent of bifurcation 
theory and continues to provide many of the most challenging problems. See, 
for example, the papers of Antman listed in the bibliography and the articles 
in Keller and Antman [1969]. For different qualitative techniques, see Chil-
lingworth [1975] and Zeeman [1976]. 

A problem which goes back to Signorini in the 1930s is to describe the 
solutions of the traction problem in elastostatics. Signorini was interested in 
this for reasons similar to those for the relativity example discussed in §3, 
namely he wanted to study perturbation expansions and the relationship 
between the linearized and nonlinear theories. We now know that he found 
difficulties with linearization precisely because he was working at a 
bifurcation point. 

body distorted body 

FIGURE 6 
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To describe the problem, let Q c R3 be a bounded open region with 
smooth boundary 3Q and let G be the collection of all diffeomorphisms of Q 
into R3. Then Q is the configuration space of the problem and « 6 Ê 
represents a possible configuration of the body fi (Figure 6). 

Write F = Du, the deformation gradient. Let W be a given (stored energy) 
function of FFr (Fr = F transpose) with W(0) = 0, and let 

T=dW/dF 
the Piola-Kirchhoff stress tensor and A =d2W/d¥d¥ the elasticity tensor. 
We assume that the strong ellipticity condition holds i.e. 

A • ((I, £), (r,, 7,)) = A&ftriW > e ^ V 
for some e > 0 and all £, TJ G R3. 

Let B: Q -> R3 be a given body force and T: 3fi -» R3 be given boundary 
tractions. The traction problem for elastostatics is the problem of finding 
« 6 6 such that 

div T + Po\B = 0 on Q, 
T - N = XT on3Ö 

where (div T)' = 23
i!mldTiJ/dxJ, p0 is a given mass density on fl, N is the unit 

outward normal to 30 and À is a parameter. It readily follows that a 
necessary condition for a solution is that the total force and moment of the 
force acting on the body be zero; i.e. the forces must be equilibrated. 

This problem is equivalent to finding critical points of the mapping 
/ : 6 ^ R , 

f(u) = fw(¥) dx - fPo\B udx- f r-\udx. 

In Stoppelli [1958] (see also van Buren [1968] and Wang and Truesdell 
[1973]) it was proved that if B, T do not have an axis of equilibrium 
(i.e. a vector e such that rotations of the body about e leaving the loads B, T 
fixed, maintains the equilibration of forces), then for X sufficiently small there 
is a unique solution u E 6. On the other hand, if B, T do have an axis of 
equilibrium, then there may be several solutions (0, 1, 2, or 3 depending on 
the hypotheses) growing as a certain power of X (X, Xl/2 or X1/3). 

2 = solution set 

three 
solutions 

M -coefficient 
of FFT in W 

1 cusp s bifurcation set 

FIGURE 7 
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We now know that Stoppelli was looking at sections of a cusp or a fold. 
(See Figure 7.) Indeed this is rather easy to see if we solve the problem by 
looking for critical points of/, follow the usual Liapunov-Schmidt procedure, 
and make a generic hypothesis on W. 

In more degenerate circumstances one can expect a double cusp, with up to 
nine solutions. Details of all this will be given in Chillingworth and Marsden 
[1978]. 

5. Generic finiteness of solutions of elliptic equations. An important 
question for nonlinear elliptic boundary value problems is whether or not the 
set of solutions is generically finite and if so, how this number changes with 
the data of the problem. This problem is not always phrased in terms of 
bifurcation theory, but it seems desirable to do so. 

Three interesting recent works on this problem are those of Uhlenbeck 
[1975], Foia§ and Temam [1977] and Tromba [1978]. Their idea is to use 
transversality techniques. The following abstract result of Tromba [1976b] 
which is a consequence of the Sard-Smale theorem, seems to be representa
tive. 

THEOREM. Let Abe a manifold {the parameter space) and E, F vector bundles 
over A. Let ƒ: E -* F be a smooth bundle map and 2 = f~l{0); for fixed 
\ E A, let fx be the restriction off to Ex, the fiber over X. Assume: 

Ci) for each \ 6 A , x G 2 f l ^ . Df\(x) ™ Fredholm of index zero, 
{ii) for x E 2, Df{x) is surjective, 
(iii) ƒ is ^-proper i.e. if xn E 2 n E^ and \ , converge, then xn has a 

convergent subsequence. 
Then 2 c E is a submanifold {by (ii)) and there is an open dense set U C A 

such that 2 n 4 is finite for X E U. 

This is related to bifurcation theory because the projection h: 2 -» A will, 
in interesting examples, have bifurcation points. 

For the stationary Navier-Stokes equations this result shows easily that for 
generic forces or boundary conditions, there is a finite number of solutions, a 
result of Foia§ and Temam [1977]. In Marsden and Tromba [1978] the same 
result is shown for the Navier-Stokes equations on generic regions. The 
methods of Tromba [1978], developed for the Plateau problem, seem impor
tant for counting the solutions. 

6. Dynamical bifurcations and a problem of flutter.5 Many bifurcation 
problems study the bifurcation of fixed points of some dynamical system. In 
such cases it is important to tie these bifurcations up with any additional 
dynamical bifurcations and to consider questions of stability. Stability can be 
either dynamical or structural stability. 

To illustrate what we mean by structural stability, we consider Euler 
buckling. 

Viewed as a one parameter system with parameter the beam tension, one 
gets the traditional picture shown in Figure 8. 

5This section was written jointly with Philip Holmes. 
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FIGURE 8 

However, this bifurcation diagram is "unstable". It can be stabilized by 
adding a second parameter e, which describes the asymmetry of the force X; 
see Figure 9. 

A d = deflection of center 
of beam 

saddle-node 
bifurcation 

(see below) 
( £ > o ) 

For additional details on this example, see Zeeman [1976], and, if one 
wishes to distinguish between the bifurcation and imperfection parameters, 
see Golubitsky and Schaeffer [1978]. 

The dynamical framework in which we operate is described as follows. Let 
X c Y be Banach spaces (or manifolds) and let 

f:X x A ^ y 
be a given Ck mapping. Here A is the parameter space and ƒ may be defined 
only on an open subset of X X A. The dynamics are given by 

dx/dt = ƒ (x, X) 

which defines a semiflow 

by letting Ft
x(x0) be the solution of x = /(JC, X) with initial condition x(0) = 
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x0. We assume that this equation has, at least locally in time, unique 
solutions, which can be continued if they lie in a bounded set. 

A fixed point is a point (x0, X) such that f(x^ X) = 0. Therefore, FÏ(xJ » 
x0 i.e. x0 is an equilibrium point of the dynamics. 

A fixed point (JC0, X) is called stable if there is a neighborhood U0 of x0 on 
which Ft

x(x) is defined for all t > 0 and if for any neighborhood U c U& 
there is a neighborhood V c U0 such that F*(x) E £ƒ if x E K and f > 0. 
The fixed point is called asymptotically stable if, in addition, fJx(jc)-> JC0 as 
/ -» + oo, for x in a neighborhood of x0. 

Many nonlinear partial differential equations of evolution type fall into this 
framework. Many semilinear hyperbolic and most parabolic equations satisfy 
an additional smoothness condition; we say F* is a smooth semiflow if for 
each /, A, Ft

x: X->X (where defined) is a Ck map and its derivatives are 
strongly continuous in /, X. 

For general conditions under which a semiflow is smooth, see Marsden and 
McCracken [1976]. One especially simple case occurs when 

/ (x , X) = Axx + B(x, X) 

where Ax: X-* Y is a linear generator depending continuously on X and B: 
Y X Rp -» Y is a Ck map. This result is readily proved by the variation of 
constants formula 

x{t) - etA*xQ + f e('-*>V(*(*)» fyb-

(See Segal [1962] for details.) 
Standard estimates and the classical proof for ordinary differential 

equations prove the following. 

LIAPUNOV'S THEOREM. Suppose Fx is a smooth flow, (XQ, X) is a fixed point 
and the spectrum of the linear semigroup 

Ut = DxF*(x0):X^X. 

(The Fréchet derivative with respect to x EL X) is eta where o lies in the left half 
plane a distance > 8 > 0 from the imaginary axis. Then x0 is asymptotically 
stable and for x sufficiently close to x0 we have an estimate 

\\F*(x) - x0\\x< (Constant)*-'*. 

If we are interested in the location of fixed points, then we solve the 
equation 

/(*,A) = 0, 

and their stability will be determined by the spectrum a of the linearization 

Ax-DJ(x»\). 
(We assume the operator is nonpathological-e.g. has discrete spectrum-so 
o(etAx) = eta{Ax).) In critical cases where the spectrum lies on the imaginary 
axis, stability has to be determined by other means. It is at criticality where, 
for example, a curve of fixed points x0(X), changes from stable to unstable, 
that a bifurcation can occur. 



QUALITATIVE METHODS IN BIFURCATION THEORY 1139 

The second major point we wish to make is that within the context of 
smooth semiflows, the usual invariant manifold theorems from ordinary 
differential equations carry over. 

In bifurcation theory it is often useful to apply the invariant manifold 
theorems to the suspended flow 

Ft:X X R ^ I XR', 

(*,X)w ( /*(*) , A). 

The invariant manifold theorem states that if the spectrum of the 
linearization A at a fixed point (XQ, X) splits into as u oc, where as lies in the 
left half plane and oc is on the imaginary axis, then the flow Fg leaves 
invariant manifolds Ms and Mc tangent to the eigenspaces corresponding to 
as and ac respectively; Ms is the stable and Mc is the center manifold. (One 
can allow an unstable manifold too if that part of the spectrum is finite.) By 
Liapunov's theorem, orbits on Ms converge to (XQ, X) exponentially. For 
suspended systems, note that we always have 1 E ac. 

The idea of the proof is this: we apply invariant manifold theorems for 
smooth maps with a fixed point to each Ft separately. Then one shows that 
since Ft and Fs commute (Ft ° F, = f/+, = F, ° Ft), these invariant mani
folds can be chosen in common for all the Fr 

For bifurcation problems the center manifold theorem is the most relevant, 
so we summarize the situation. (See Marsden and McCracken [1976] for 
details.) 

CENTER MANIFOLD THEOREM FOR FLOWS. Let Z be a Banach space admit-
ting a C00 norm away from 0 and let Ft be a C° semiflow defined on a 
neighborhood of 0 for 0 < t < r. Assume Ft(0) « 0 and for each t > 0, Ft: 
Z-> Z is a C*+1 map whose derivatives are strongly continuous in t. Assume 
that the spectrum of the linear semigroup DFt(0): Z-> Z is of the form et{PsKJ°c^ 
where e'°s lies inside the unit circle a nonzero distance from it, for t > 0; i.e. os 

is in the left half plane. Let Y be the generalized eigenspace corresponding to the 
part of the spectrum on the unit circle. Assume dim Y * d < oo. 

Then there exists a neighborhood VofO in Z and a Ck submanifold Mc c V 
of dimension dpassing through 0 and tangent to Y at 0 such that 

(a) IfxEMC9t>0 and Ft(x) E K, then Ft(x) E Mc. 
(b) If t > 0 and Ft

n(x) remains defined and in V for all n * 0, 1, 2 , . . . , 
then Ft

n(x) -» Mc as n-*oo. 

See Figure 10. 

FIGURE 10 
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For dynamical bifurcations, the center manifold theorem plays the same 
role as the Liapunov-Schmidt procedure. It reduces the bifurcation problem 
to a finite-dimensional one. Using this gives, for example, an easy proof of 
the Hopf theorem (see Marsden and McCracken [1976]). 

We shall now outline briefly how one can obtain a structurally stable 
bifurcation diagram for a particular two parameter problem. The method is 
taken from Holmes [1977] and Holmes and Marsden [1978] which should be 
consulted for details. Although one could probably obtain the same answers 
faster using, e.g. Boa and Cohen [1976], the present methods seem to fit into 
the theoretical framework of structural stability (or imperfection insensitivity) 
more satisfactorily. 

FIGURE 11 

We consider the one-dimensional thin panel shown in Figure 11 and are 
concerned with bifurcations near the trivial (zero) solution. The equation of 
motion of such a panel, fixed at both ends and undergoing "cylindrical" 
bending can be written as (cf. Dowell [1975]) 

- [ r + K$\v'(z)fdz + of\v'{z)i>\z)) dz\t>H 

+ pt /+Vp8t3+t5~0. (1) 

Here • = 3/3/, ' » 3/3z and we have included viscoelastic structural damping 
terms a, a as well as aerodynamic damping Vp 8. K represents nonlinear 
(membrane) stiffness, p the dynamic pressure and T an in-plane tensile load. 
All quantities are nondimensionalized, and associated with (1) we have 
boundary conditions at z * 0, 1 which might typically be simply supported 
(p m x>" » 0) or clamped (v * v' » 0). We assume that a, a, 8, K are fixed 
> 0 and let the control parameter ft • {(p, T)|p > 0} vary. 

We redefine (1) as an ordinary differential equation on a Banach space, 
choosing as our basic space X * #o([0, 1]) X L2([0, 1]), where HQ denotes 
H2 functions6 on [0, 1] which vanish at 0, 1. Set ||{o, v}\\x - (|t3|2 + |t /f)1 / 2 , 
where | | denotes the L2 norm and define the linear operator 

\C* D*r D^v - at)"" - V ^ S v . ( ) 

The basic domain of A^, D (AJ, consists of {t>, i5} G X such that o G H$ and 
v + av G H4; particular boundary conditions necessitate further restrictions. 

A, 

*H2 is the Sobolev space of functions which, together with their first and second derivatives are 
inL2. 
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After defining the nonlinear operator B(v9 v) = (0, [*c|t/|2 + o(v', v')]v")9 

where ( , ) denotes the L2 inner product, (1) can be rewritten as 

dx/dt = A^x + B(x) = Gp(x); x « {v9v}; x(t) G D{Ay). (3) 

We next define an energy function H: X -» R by 

n{* «} = \ |t3|2+ ±\v'f+ f H2+ f H4 

and compute that 

</#/<// - -p(ü', t;) + V^S\v\2- a\v"\2- a(t/, it')2. 

Using the methods of Segal [1962] one shows that (3) and hence (1) defines 
a unique smooth local semiflow Ff on X. Using the energy function (4) and 
some arguments of Parks [1966], one .shows that Ff is in fact globally defined 
for all / > 0. 

By making Galerkin approximations and taking 5 = 0.1, a = 0.005 one 
finds that the operator A^ has a double zero eigenvalue at /x = (p, T) « 
(107.8, —22.91) the remaining eigenvalues being in the left half plane. Thus 
around the zero solution we obtain a three-dimensional suspended center 
manifold. The eigenvalue evolution at the zero solution, obtained 
numerically, enables us to fill in the portions of the bifurcation diagram 
shown in Figure 12. In particular, a supercritical Hopf bifurcation occurs 
crossing Bh from I to II and a symmetrical saddle node on Bsl and Bs2. 

10 O -20 -40 
FIGURE 12. Partial bifurcation set for the panel (a = 0.005, S = 0.1). 

Moreover, computations for the two fixed points { ± x0} appearing on Bsl and 
existing in region III shows that they are sinks below a curve B'h originating at 
0 which we also show on Figure 12. As /x crosses B'h transversally from III to 
HIa { ± x0) undergo simultaneous subcritical Hopf bifurcations. 

(The stability formulas in Marsden and McCracken [1976] were used to 
make these calculations. They were confirmed by a stability program kindly 
computed by B. Hassard.) Now let JU cross Bs2 \ 0 from region II to region 
IIIa. Here the closed orbits presumably persist, since they he at a finite 
distance from the bifurcating fixed point {0}. In fact the new points {±x0} 
appearing on Bs2 are saddles in region IIIa, with two eigenvalues of spectrum 
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Z)G/i(±x0) outside the unit circle and all others within it. Thus, crossing Bs2 

from II to IIIa produces three fixed points surrounded by a stable closed 
orbit. We now have a partial picutre of the behavior near 0. They key to 
completing the analysis lies in the point 0, the "organizing center" of the 
bifurcation set at which Bs2, Bh and B'h meet. 

We now postulate that our bifurcation diagram near 0 is stable7 to small 
perturbations in our (approximate) equations. We look in Taken's classi
fication (with symmetry) and find that exactly one of them is consistent with 
the information found in Figure 12, namely the one shown in Figure 13 (see 
Takens [1974b]). Thus we are led to the complete bifurcation diagram shown 
in Figure 14 with the oscillations in various regions as shown in Figure 13. 

FIGURE 13 

The Andronov-Takens "m = 2: - " normal form, with associated flows: 
x * - p2x - vxx - x3 - x2x. 

FIGURE 14 

A local model for bifurcations of the panel near 0, (p, T) ^ (110, - 220); 
a » 0.005,8 » 0.1. 

7If the bifurcation was not structurally stable, this procedure would stabilize, or unfold it 
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In this work we have used rather drastic semilinear approximations to the 
full equations of elastodynamics. It is an open problem to determine in what 
sense the solutions are approximations. (Presumably it is related to a high-
frequency cut-off approximation.) See Ball [1974] for a related problem. More 
generally, the problem of embedding results from a bifurcation analysis of an 
elastostatics problem such as bifurcations of the plate equation into a dy
namic picture is difficult. For instance it is still an open problem whether or 
not minima of the elastic energy give stable points dynamically. There are, in 
fact, unpleasant examples due to Knops and Payne; see Marsden and Hughes 
[1978] for a discussion. 

Finally we mention that because the Andronov-Takens bifurcation in 
Figure 13 is structurally stable8, it can be expected to arise in a number of 
problems; see, for instance Sel'kov [1968]. It seems to occur in some 
nonlinear oscillation problems for circuits as well. It also occurs in the 
population dynamics equations of Gurtin and MacCamy [1974]. Their 
equations (4.8) can be written, in the special case fi(P) = fi0 = constant, as 

P = Ô, Q - -KP)P - \'(P)PP + (A) - a - \{P))(P + HP)P). 
If \(P) = fto + /XjP2 + . . . , these equations have the form of those gov
erning Figure 13 up to cubic terms (which are all that matter for bifurcations 
near the trivial solution) with 

v\ " 2Mo - A) + «> vi = Mo - Mo( A> ~ «)• 
One concludes that if 2/jto > j80 - a, there are no closed (periodic) orbits, 
while if 2/io < /30 - a, we are in the left half plane in Figure 13, so closed 
orbits are possible. In specific models studied by Gurtin and his co-workers 
2/IQ < fi0— a does not occur (private communication). 
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