3.3. Korollar

Sei \(c \) eine geschlossene Geodätische; \(c^m \) bezeichne die \(m \)-fache Überlegung von \(c \). Dann gilt:

\[
\text{Index } c^m = \sum_{\rho^m=1} I_\rho(c) \]

und die Funktion \(\rho \in S^1 \to I_\rho(c) \) ist bis auf eine Konstante (die etwa durch das Theorem 1 festgelegt ist) bestimmt durch die Poincaré-Abbildung von \(c \).

LITERATURVERZEICHNIS

DISCUSSION

Pr. Marsden – Are these formulas for \(I_\rho(c) \) reflected by any complication in the formula in terms of conjugate points for closed geodesics?

Pr. Klingenberg – It does not seem so.

Pr. Voros – I confirm that, by using the invariance properties of the Maslov index, it is possible to discard the geodesic nature of the flow and define the index of rotation of a closed orbit of a Hamiltonian flow with an elliptic Poincaré map \(P \) (and probably also if \(P \) is the direct sum of a purely elliptic and a purely hyperbolic part).

Pr. Klingenberg – D'accord.

SOME BASIC PROPERTIES
OF INFINITE DIMENSIONAL
HAMILTONIAN SYSTEMS

P. R. Chernoff
and
J. E. Marsden
Department of Mathematics
University of California
Berkeley, California 94720

RESUME

Nous considérons quelques propriétés fondamentales des systèmes hamiltoniens de dimension infinie. Les systèmes sont linéaires ou non linéaires. Par exemple, dans le cas des systèmes linéaires, nous démontrons une version symplectique du théorème de M. Stone. Pour les systèmes généraux, nous établissons les théorèmes de conservation de l'énergie et du moment. (Le moment d'un groupe dynamique a été introduit par B. Kostant et J.M. Souriau). Pour les systèmes de dimension infinie, ces lois de conservation sont plus délicates que dans le cas des systèmes de dimension finie, parce que les équations sont aux dérivées partielles.

ABSTRACT

We consider some fundamental properties of infinite dimensional Hamiltonian systems, both linear and nonlinear. For example, in the case of linear systems, we prove a symplectic version of the theorem of M. Stone. In the general case we establish conservation of energy and the moment function for system with symmetry. (The moment function was introduced by B. Kostant and J.M. Souriau). For infinite dimensional systems these conservation laws are more delicate than those for finite dimensional systems because we are dealing with partial as opposed to ordinary differential equations.

INTRODUCTION

In this paper we prove a few theorems concerning infinite dimensional Hamiltonian systems. Further details and examples may be found in [3, 4, 7, 11, 12].

Partially supported by NSF grants GP-30798X, GP-15735, and the University of California committee on research.
It is evident that the notion of a Hamiltonian system plays a fundamental role in mathematical physics. One needs only to recall a few examples: classical mechanics, classical field theory, quantum mechanics, hydrodynamics of a perfect fluid, elasticity, and the dynamical aspects of general relativity. In view of this, it is useful to set down some of the fundamental properties of such systems, both linear and nonlinear.

After giving the basic definitions, we prove a symplectic version of Stones theorem, i.e. the basic existence theorem for linear Hamiltonian vector fields, and then we prove the basic conservation laws of mechanics in the presence of a symmetry group in the infinite dimensional case.

1. SYMPLECTIC STRUCTURES AND HAMILTONIAN SYSTEMS

Strong and Weak Nondegenerate Bilinear Forms.

Let \mathcal{E} be a Banach space and $B : \mathcal{E} \times \mathcal{E} \to \mathbb{R}$ a continuous bilinear mapping. Then B induces a continuous linear map $B^* : \mathcal{E} \to \mathcal{E}^*$, $e \mapsto B^*(e)$ defined by $B^*(e) \cdot f = B(e, f)$. We call B weakly nondegenerate if B^* is injective; i.e. if $B(e, f) = 0$ for all $f \in \mathcal{E}$ then $e = 0$. We call B nondegenerate or strongly nondegenerate if B^* is an isomorphism. By the open mapping theorem it follows that B is nondegenerate iff B is weakly nondegenerate and B^* is onto.

If \mathcal{E} is finite dimensional there is no difference between strong and weak nondegeneracy. However in infinite dimensions the distinction is important.

Symplectic Forms

Let P be a manifold modelled on a Banach space(*) \mathcal{E}. By a symplectic form we mean a two-form ω on P such that

a) ω is closed: $d\omega = 0$

b) for each $x \in P$, $\omega_x : T_xP \times T_xP \to \mathbb{R}$ is nondegenerate.

If ω_x in (b) is weakly nondegenerate, we call ω a weak symplectic form.

Darboux's theorem in the infinite dimensional case is due to J. Moser and A. Weinstein and is the following (the proof is given in Lang [8]).

Let ω be a symplectic form on the Banach manifold P. For each $x \in P$ there is a local coordinate chart about x in which ω is constant.

Corollary – If P is finite dimensional and ω is a symplectic form then

\[a) \ P \text{ is even dimensional, say } \dim P = m = 2n \]

\[b) \ locally \ about \ each \ point \ there \ are \ coordinates \]

\[x^1, \ldots, x^n, y^1, \ldots, y^n \text{ such that} \]

\[\omega = \sum_{i=1}^n dx^i \wedge dy^i \]

Such coordinates are called canonical.

For Darboux's theorem for weak symplectic forms, see Marsden [10] and Tromba [15].

Hamiltonian Vector Fields

Let N be a Banach manifold, with $D \subseteq N$. A vector field with domain D is a map $X : D \to T(N)$ such that, for all $x \in D$, $X(x)$ lies in $T_x(N)$, the tangent space to N at x. An integral curve for X is a map $c : [a, b] \subseteq \mathbb{R} \to D$ which is differentiable as a map into N and satisfies $c'(t) = X(c(t))$. A flow for X is a flow F_t on D such that, for all $x \in D$, the map $t \mapsto F_t(x)$ is an integral curve of X. (Semi-flows and local flows for X are defined analogously).

A subset D of a Banach manifold N is a manifold domain provided

1) D is dense in N;

2) D carries a Banach manifold structure of its own such that the inclusion $i : D \to N$ is smooth;

3) for each x in D, the linear map $T_xi : T_xD \to T_xN$ is a dense inclusion.

(The linear prototype of such a domain is a dense linear subspace D of a Banach space \mathcal{E} such that D is complete relative to a norm stronger than that of \mathcal{E}).

Definition – Let P, ω be a weak symplectic manifold. A vector field $X : D \to TP$ with manifold domain D is Hamiltonian if there is a C^1 function $H : D \to \mathbb{R}$ such that

\[\omega_x(X(x), v) = dH(x) \cdot v \] (1)

for $x \in D$, $v \in T_xD \subseteq T_xP$. (From this it follows that, for each $x \in D$, the linear functional $dH(x)$ on T_xD extends to a bounded linear functional on T_xP).

As usual, we shall write X_H for X.

Because ω is merely a weak symplectic form, there need not exist a vector field X_H corresponding to every given H on D. Moreover, even if

(*) See [8]. The tangent space to P at $x \in P$ is denoted T_xP.
H is a smooth function defined on all of \(P \), \(X_H \) in general will be defined only on a subset of \(P \). It is, of course, uniquely determined by the condition (1) on the set where it is defined.

Here are two infinite dimensional examples (both linear).

a) The Wave Equation(*) : \(P = H^1(\mathbb{R}^n) \times L_2(\mathbb{R}^n) \),
\[\omega((\phi, \tilde{\phi}), (\psi, \tilde{\psi})) = <\tilde{\phi}, \psi> - <\phi, \tilde{\psi}> \]
where \(<, >\) is the \(L_2\)-inner product, \(D = H^2(\mathbb{R}^n) \times H^1(\mathbb{R}^n) \), and \(H : P \to \mathbb{R} \) is defined by the formula
\[H(\phi, \tilde{\phi}) = \frac{1}{2} <\tilde{\phi}, \phi> + \frac{1}{2} <\nabla\phi, \nabla\phi>. \]
The vector field \(X_H : D \to P \) is given by
\[X_H(\phi, \tilde{\phi}) = (\tilde{\phi}, \Delta\phi) \]

b) The Abstract Schrödinger Equation : \(P = \mathcal{H} \), a complex Hilbert space ; \(\omega(\psi_1, \psi_2) = \text{Im} <\psi_1, \psi_2> ; H_{\text{op}} \) a self-adjoint operator with domain \(D \subset \mathcal{H} \); then
\[X_H(\phi) = -iH_{\text{op}}\phi \]
\[H(\phi) = \frac{1}{2} <H_{\text{op}}\phi, \phi>. \]

Note that in (a), \(H \) is defined and smooth on all of \(P \); while in (b), \(H \) is defined and smooth only on \(D \) (equipped with the graph norm).

Poisson Brackets

If \(X_f : D_1 \to TP \) and \(X_g : D_2 \to TP \) are two Hamiltonian vector fields, we define the Poisson bracket
\[\{f, g\} : D_1 \cap D_2 \to \mathbb{R} \]
by
\[\{f, g\}(x) = \omega_x(X_f(x), X_g(x)). \]

Even in the linear case, it is very important to pay attention to domains of definition when trying to deduce global consequences from formal identities involving Poisson brackets. However, the following result-which is a trivial consequence of the definitions-shows that there is no problem in deducing conservation laws if the conserved quantity is everywhere defined.

\[\{H, f\} = d(f \cdot H) = 0. \]

Then \(f \circ F_t = f \). That is, \(f \) is constant on the trajectories of the flow of \(X_H \).

2. LINEAR HAMILTONIAN SYSTEMS

In this section we shall look at linear semigroup theory in a Hamiltonian setting. Thus let \(\mathcal{B} \) be a Banach space (real or complex), and let \(\omega : \mathcal{B} \times \mathcal{B} \to \mathbb{R} \) be a symplectic bilinear form. Then \(\omega \) determines a differential form \(\Omega \) of degree two, as follows. Because we can identify the tangent space \(T_x\mathcal{B} \) with \(\mathcal{B} \) in a canonical way, we define
\[\Omega_x : T_x\mathcal{B} \times T_x\mathcal{B} \to \mathbb{R} \text{ by } \Omega_x(e, f) = \omega(e, f). \]
Note that \(d\Omega = 0 \) because \(\Omega_x \) is constant as a function of \(x \). If \(S : \mathcal{B} \to \mathcal{B} \) is a linear map, so that \(D_xS = S \), we have
\[(S^*\Omega)_x(e, f) = \Omega_x(Se, Sf) = \omega(Se, Sf). \]
(1)
Hence \(S \) is symplectic (that is, \(S^*\Omega = \Omega \)) if and only if the bilinear form \(\omega \) is invariant under \(S \).

Now let \(U_t = e^{tA} \) be a one-parameter group (or semigroup) with generator \(A \). We know [16] that the domain \(\mathcal{D}(A) \) is a dense linear subspace of \(\mathcal{B} \). We may regard \(A \) as a (linear) vector field if we make the usual identification \(\mathcal{L} \subset \mathcal{B} = \mathcal{T}_x\mathcal{B} \).

Theorem 1 – Let \(\mathcal{B} \) be a real Banach space and let \(\omega \) be a weak symplectic form on \(\mathcal{B} \), with \(\Omega \) the corresponding differential 2-form. Let \(A \) generate a one-parameter group (or semigroup) \(U_t \) on \(\mathcal{B} \). Then the following are equivalent:

i) \(A \) is a locally Hamiltonian vector field(*) : \(i _\lambda \Omega \) is closed

ii) \(A \) is skew-symmetric with respect to \(\omega \); that is,
\[\omega(Ae, f) = -\omega(e, Af) \quad \text{for } e, f \in \mathcal{D}(A) \]

(2)

iii) \(A \) is globally Hamiltonian-with energy function
\[H(e) = \frac{1}{2} \omega(Ae, e), \quad e \in \mathcal{D}(A) \]

(3)

(*) \(I_\lambda \Omega = A \cdot \Omega \) is the interior product of \(A \) with \(\Omega \). It is a one form on \(\mathcal{D}(A) \), and is defined in the usual way [1].
iv) \(U_t \) is symplectic: that is, as remarked above, \(U_t \) preserves \(\omega \).

Moreover, under these conditions energy is conserved: \(H \circ U_t = H \) on \(\mathcal{O}(A) \).

Proof: (i) \(\Rightarrow \) (ii): Write \(\alpha = i_A \Omega \). Thus if \(x \in \mathcal{O}(A) \) we have

\[
\omega(x) \cdot f = \omega(Ax, f).
\]

We say \(A \) is locally Hamiltonian if \(d\alpha = 0 \). Now, by definition, if \(e, f \in \mathcal{O}(A) \)

\[
d\alpha(x) \cdot (e, f) = (d\alpha(x) \cdot e) f - (d\alpha(x) \cdot f) e
\]

\[
= d \left. \frac{d}{dt} \right|_{t=0} [\omega(A(x + te), f) - \omega(A(x + tf), e)]
\]

\[
= \omega(Ae, f) - \omega(Af, e).
\]

Thus \(d\alpha = 0 \) \(\Rightarrow \) \(A \) is skew-symmetric relative to \(\omega \).

(ii) \(\Rightarrow \) (iii): Assuming (ii), we wish to show that \(A = X_{Ht} \), that is, that \(\alpha(= i_A \Omega) = dH \). But if \(x, f \in \mathcal{O}(A) \) we compute

\[
dH(x) \cdot f = \left. \frac{d}{dt} H(x + tf) \right|_{t=0} = \frac{d}{dt} \frac{1}{2} \omega(A(x + tf), x + tf)
\]

\[
= \frac{1}{2} \omega(Ax, f) + \frac{1}{2} \omega(Af, x)
\]

\[
= \frac{1}{2} \omega(Ax, f) - \frac{1}{2} \omega(x, Af) = \omega(Ax, f) \text{ by (ii)}
\]

\[
= (i_A \Omega)_x f.
\]

(iii) \(\Rightarrow \) (i): If (iii) holds, \(i_A \Omega = dH \). That \(d(dH) = 0 \) is clear.

(ii) \(\Rightarrow \) (iv): If \(e, f \in \mathcal{O}(A) \) we have

\[
\frac{d}{dt} \omega(U_t e, U_t f) = \omega(AU_t e, U_t f) + \omega(U_t e, AU_t f),
\]

which vanishes if (ii) is true. Hence \(\omega(U_t e, U_t f) \) is constant, that is, equal to \(\omega(e, f) \). As \(\mathcal{O}(A) \) is dense the same is true for all \(e, f \in \mathcal{B} \). Conversely, if (iv) holds and \(e, f \in \mathcal{O}(A) \), we have the relation

\[
0 = \left. \frac{d}{dt} \omega(U_t e, U_t f) \right|_{t=0} = \omega(Ae, f) + \omega(e, Af);
\]

thus (ii) is true.

Finally, if \(A \) is Hamiltonian and \(e \in \mathcal{O}(A) \), we have

\[
H(U_t e) = \frac{1}{2} \omega(AU_t e, U_t e) = \frac{1}{2} \omega(U_t e, U_t e)
\]

\[
= \frac{1}{2} \omega(Ae, e) = H(e).
\]

In the case of a group of isometries on Hilbert space, Stone's theorem implies that the generator is not merely skew-symmetric, but skew-adjoint. We turn now to the symplectic analogue of this fact.

Theorem 2 — Let \(\omega \) be a weakly non-degenerate symplectic form on \(\mathcal{B} \). Let \(A \) be the generator of a group \(U_t \) of symplectic transformations on \(\mathcal{B} \).

Then \(A \) is skew-adjoint relative to \(\omega \).

Note: If \(B \) is any linear operator on \(\mathcal{B} \) with dense domain \(\mathcal{O}(B) \), we define the adjoint \(B^\dagger \) of \(B \) relative to \(\omega \) in the following way \[16\]. The domain of \(B^\dagger \) is the set of all \(f \in \mathcal{B} \) to which there corresponds a \(g \in \mathcal{B} \) such that

\[\omega(Be, f) = \omega(e, g)\]

for all \(e \in \mathcal{O}(B) \).

We write \(g = B^\dagger f \). It is easy to see that \(B^\dagger \) is a well-defined, closed linear operator.

Proof of Theorem 2: We assert that \(A^\dagger = -A \). Because \(A \) is skew-symmetric we have \(A^\dagger \supseteq -A \). For the opposite inclusion, suppose that \(f \in \mathcal{O}(A^\dagger) \) with \(A^\dagger f = g \). Then for any \(e \in \mathcal{O}(A) \) we have

\[
U_t e = e + \int_0^t AU_t e \, ds.
\]

So

\[
\omega(U_t e, f) = \omega(e, f) + \int_0^t \omega(AU_t e, f) \, ds
\]

\[
= \omega(e, f) + \int_0^t \omega(U_t e, g) \, ds.
\]

Now \(U_t \) is invertible and symplectic, so \(U_t^\dagger = U_{-t} \). Thus

\[
\omega(e, U_{-t} f) = \omega(e, f) + \int_0^t \omega(e, U_{-t} g) \, ds.
\]

Because \(\mathcal{O}(A) \) is dense and \(\omega \) is weakly non-degenerate it follows that

\[
U_{-t} f = f + \int_0^t U_{-t} g \, ds.
\]
Accordingly, $f \in \mathcal{O}(A)$ and $-Af = g = A^T f$.

Theorem 2 is the analogue of the "easy" half of Stone's theorem. It is natural to ask whether its converse is true. Unfortunately, this is definitely not the case. However this can be recovered as follows.

Let B be a real Banach space with a weakly nondegenerate skew form ω. Let A be a densely defined linear operator, and suppose that $A^T = -A$; that is, A is skew-adjoint relative to ω. Define the "energy" inner product by

$$[e, f] = \omega(Ae, f)$$

for $e, f \in \mathcal{O}(A)$. Note that $\langle \cdot, \cdot \rangle$ is a symmetric bilinear form. Suppose in addition the energy is positive definite in the sense that there is a constant $c > 0$ with

$$[e, e] = \omega(Ae, e) \geq c \|e\|^2.$$

(Here $\| \cdot \|$ is the norm of B). Then in particular $\langle \cdot, \cdot \rangle$ is a positive definite inner product on $\mathcal{O}(A)$. Let \mathcal{H} be the completion of $\mathcal{O}(A)$ with respect to this inner product. Then \mathcal{H} is a Hilbert space, and the inclusion map $i : \mathcal{O}(A) \subset \mathcal{H}$ extends to a continuous map $i : \mathcal{H} \rightarrow B$, because of (5). (Here we use the fact that B is complete.)

Lemma – The map $i : \mathcal{H} \rightarrow B$ (defined above) is one-to-one. Thus \mathcal{H} can be identified with a subspace of B, with i the inclusion map.

Proof – Suppose $x \in \mathcal{H}$ with $i(x) = 0$. We shall show that $x = 0$. Since \mathcal{H} is the completion of $\mathcal{O}(A)$ with respect to the inner product (4), we can find a sequence $(x_n)_n$ in $\mathcal{O}(A)$ which is Cauchy relative to this inner product, and which converges to x in \mathcal{H}. Also, as $n \rightarrow \infty$,

$$x_n = i(x_n) \rightarrow i(x) = 0.$$

(6)

Now $\mathcal{O}(A)$ is dense in \mathcal{H}. If $y \in \mathcal{O}(A)$ we have

$$[x, y] = \lim_{n \rightarrow \infty} [x_n, y] = \lim_{n \rightarrow \infty} \omega(Ax_n, y)$$

$$= -\lim_{n \rightarrow \infty} \omega(x_n, Ay) = 0,$$

by (6).

Conclusion: $x = 0$, as claimed.

Let A_1 be the restriction of A to the domain

$$\mathcal{O}(A_1) = \{ e \in \mathcal{O}(A) : Ae \in \mathcal{H} \}.$$

\(*)\ For instance, consider the operator associated to the wave equation $: A = \begin{pmatrix} 0 & 1 \\ \Delta & 0 \end{pmatrix}$ on $L^2 \times L^2$.

We can regard A_1 as an operator on \mathcal{H}.

Theorem 3\(\text{(*)}\) – Under the condition stated above, A_1 is a skew-adjoint operator on \mathcal{H}. Accordingly it generates a one-parameter group U_t of isometries on \mathcal{H}. This group preserves ω_1, the restriction to \mathcal{H} of the symplectic form ω. (Moreover A_1 has a bounded inverse).

Proof – First note that A_1 is skew-symmetric relative to the inner product of \mathcal{H}. Indeed if $e, f \in \mathcal{O}(A_1)$ we have

$$[e, A_1 f] = [e, A f]$$

$$= \omega(Ae, Af) = -\omega(Af, Ae)$$

$$= -[f, A_1 e] = -[A_1 e, f].$$

Let $j : B \rightarrow B^*$ be the adjoint of $i : \mathcal{H} \rightarrow B$ relative to ω. That is, if $e \in B$ and $x \in \mathcal{H}$ we define

$$j(e)x = \omega(e, ix).$$

(8)

Now if $y \in \mathcal{O}(A) \subset \mathcal{H}$ define $Ay = jAy$. We have, then,

$$\langle Ay, x \rangle = \omega(Ay, ix) = \omega(Ay, x) = [y, x].$$

(9)

In other words, if $y \in \mathcal{O}(A)$ then $Ay = \theta y$ where $\theta : \mathcal{H} \rightarrow \mathcal{H}^*$ is the canonical map identifying a Hilbert space with its dual.

Suppose now that $e \in B$; then $be = je$ for some $x \in \mathcal{H}$. Thus, if $y \in \mathcal{O}(A) \subset \mathcal{H}$ we have

$$[x, y] = [je]y = \omega(e, y)$$

and

$$[y, x] = \omega(Ay, x) = -\omega(x, Ay).$$

Thus for all $y \in \mathcal{O}(A)$ we have the relation

$$\omega(x, Ay) = -\omega(e, y).$$

Conclusion: since $A^T = -A$, it follows that $x \in \mathcal{O}(A^t) = \mathcal{O}(A)$ and $Ax = e$. In particular $\mathcal{O}(A)$ maps $\mathcal{O}(A_1)$ onto B.

Since A maps $\mathcal{O}(A)$ onto B it follows immediately that A_1 maps $\mathcal{O}(A_1)$ onto \mathcal{H}.

But now we can show that A_1 is skew-adjoint. First, we check that $\mathcal{O}(A_1)$ is dense in \mathcal{H}. Suppose that $z \in \mathcal{O}(A_1)^t$. Then for all $x \in \mathcal{O}(A_1)$, $0 = [x, z]$. Now $z = Ax$ for some y. Hence $0 = [x, A_1 y] = -[A_1 x, y]$ for all $x \in \mathcal{O}(A_1)$. As A_1 is surjective, y must be 0.

\(*)\ Unfortunately this result is false if we only assume $c = 0$. (See Chernoff-Marsden [3]).
Now suppose \(u \in \mathcal{O}(A_1^*) \). Then for all \(x \in \mathcal{O}(A_1) \) we have
\[
[A_1 x, u] = [x, A_1^* u].
\]
But \(A_1^* u = -A_1 v \) for some \(v \in \mathcal{O}(A_1) \). Hence, for \(x \in \mathcal{O}(A_1) \),
\[
[A_1 x, v] = -[x, A_1 v] = [x, A_1^* u] = [A_1 x, u].
\]
Hence \(v = u \), again because \(A_1 \) is surjective. That is, \(u \in \mathcal{O}(A_1) \) and \(A_1^* u = -A_1 u \). This completes the proof that \(A_1 \) is skew-adjoint.

Finally, we verify that the skew form \(\omega_1 \) is left invariant by \(U_t = e^{t A_1} \). If \(x, y \in \mathcal{O}(A_1) \) we have
\[
\omega_1(A_1 x, y) = \omega(Ax, y) = [x, y] = [y, x]
\]
\[
= \omega_1(A_1 y, x) = -\omega_1(x, A_1 y).
\]
Thus \(A_1 \) is skew-symmetric relative to \(\omega_1 \), and so Theorem 2 implies that \(U_t \) leaves \(\omega_1 \) invariant.

Remark – Theorem 3 was motivated by the modern treatment of “Friedrichs extensions” in terms of so-called scales of Hilbert spaces.

Poisson brackets and commutators

Let \(\mathcal{B} \) be a Banach space with skew form \(\omega \). Let \(A \) and \(B \) be two skew-symmetric linear operators on \(\mathcal{B} \), with corresponding energy functions \(H_A \) and \(H_B \), as in Theorem 1. There is an interesting formal relation between the Poisson bracket \(\{H_A, H_B\} \) and the operator commutator \([A, B] = AB - BA \). (It is easy to check that \([A, B] \) is skew-symmetric if \(A \) and \(B \) are.) But in general \([A, B] \) will not be skew-adjoint, except in the trivial case when \(A \) and \(B \) are bounded. In fact, in general \([A, B] \) will not even be densely defined or closable.

Let \(A \) and \(B \) be skew-symmetric relative to \(\omega \). Then if \(x \) is in the domain of \([A, B] \) we have the relation
\[
\{H_A, H_B\}(x) = H_{[A, B]}(x).
\]
This is easy to check.

Symmetry groups and conservation laws (linear case)

As above, consider \(\mathcal{B} \), equipped with a weak symplectic form \(\omega \). Let \(A \) generate \(U_t \), a group (or semigroup) of symplectic transformations. Also let \(B \) generate a group \(V_t \) of symplectic transformations. Let \(H_A, H_B \) be the corresponding energy functions.

Theorem 4 – Suppose that \(V_t \) is a symmetry group of the energy \(H_A \) in the following sense: each map \(V_t \) leaves \(\mathcal{O}(A) \) invariant, and \(H_A \circ V_t = H_A \). Then \(H_B \) is a constant of the motion: that is, \(U_t \) leaves \(\mathcal{O}(B) \) invariant and \(H_B \circ U_t = H_B \) Moreover, the flows \(U_t \) and \(V_t \) commute: that is, \(U_s V_t = V_t U_s \) for all \(s, t \).

One can give a straightforward proof of this result in the context of semigroup theory. However we shall prove a nonlinear generalization of it shortly.

Note: In order to conclude that the flows \(U_t \) and \(V_t \) commute, it is not enough to have \(\{H_A, H_B\} = 0 \), i.e. \([A, B] = 0 \). In fact Nelson has given a well-known counter-example: two skew-adjoint operators \(A, B \) such that \([A, B] \neq 0 \) on \(\mathcal{O}(AB) \cap \mathcal{O}(BA) \), but such that \(e^{t A} \) and \(e^{t B} \) do not commute. Thus the infinite dimensional case is much subtler than the finite dimensional case and it is well to be wary of reliance on formal calculations alone.

3. A GENERAL CONSERVATION THEOREM

In infinite dimensional systems, conservation laws require rather delicate handling. In most cases (as in example (b) above) the putatively conserved quantity \(f \) is defined only on a dense subset of phase space. Moreover, formal calculations are usually not sufficient to imply the desired conclusions. A very simple example occurs in quantum mechanics: if \(H \) is a symmetric, but non-self-adjoint, operator then energy can "leak out" of the system. There are a number of rigorous general conservation theorems that can be established; the following one seems to be optimal, since the conditions on the flow are mild. The main requirement is that \(f \) and \(H \) have a common manifold domain of definition.

Theorem 5 – Let \(P_t, \omega \) be a weak symplectic manifold. Let \(X_{H_t} : D \to TP \) be a Hamiltonian vector field with manifold domain \(D \). Assume that \(X_{H_t} \) has a \(C^0 \) flow \(F_t : D \to D \). Let \(f : D \to \mathbb{K} \) be a \(C^1 \) function, and assume there is an associated Hamiltonian vector field \(X_f \), a continuous map from \(D \) to \(TP \). Then
\[
\frac{d}{dt} f \circ F_t = \{f, H\} \circ F_t \quad \text{on} \quad D.
\]
In particular, if \(\{f, H\} = 0 \) then \(f \circ F_t = f \) on \(D \).

The crux of the present theorem is that we do not know a priori that \(f \circ F_t \) is differentiable in \(t \), so that we can't simply apply the chain rule.
Proof of Theorem 5 — Given \(u_0 \in D \), we shall show that

\[
\frac{d}{dt} f(F_t(u_0))|_{t=0} = \{f, H\}(u_0).
\]

This will establish the theorem. Choose a local chart(*) so that \(u_0 = 0 \). Abbreviate \(F_t(u_0) \) by \(u_t \). Then from \(df = \iota_{X_f} \omega \), we have the local formula

\[
f(u_t) = f(0) + \int_0^1 \omega_{\tau u_h}(X_f(\tau u_h), u_h) \, d\tau.
\]

Hence

\[
\frac{1}{h} (f(u_h) - f(0)) = \int_0^1 \omega_{\tau u_h}(X_f(\tau u_h), \frac{u_h}{h}) \, d\tau.
\]

Now, as \(h \to 0 \), \(u_h \to u_0 = 0 \) in the topology of \(D \). Therefore, since \(X_f : D \to TP \) is continuous, \(X_f(\tau u_h) \to X_f(u_0) \) uniformly for \(0 \leq \tau \leq 1 \). Also,

\[
\frac{u_h}{h} \xrightarrow{h \to 0} X_H(u_0)
\]

as \(h \to 0 \). Accordingly, the integrand \(\omega_{\tau u_h}(X_f(\tau u_h), \frac{u_h}{h}) \) converges uniformly to

\[
\omega_0(\frac{X_f(u_0)}{X_H(u_0)}), \frac{u_h}{h} \xrightarrow{h \to 0} 0.
\]

Thus

\[
\lim_{h \to 0} \frac{1}{h} (f(u_h) - f(u_0)) = \int_0^1 \omega_{u_0}(X_f(u_0), X_H(u_0)) \, d\tau
\]

\[
= \omega_{u_0}(X_f(u_0), X_H(u_0))
\]

\[
= \{f, H\}(u_0).
\]

Remark — The hypothesis that \(X_H \) has a \(C^0 \) flow on \(D \) is not unreasonable. It will certainly hold (assuming that \(D \) and \(P \) are modelled on separable Banach spaces) provided that \(X_H \) has a \(C^0 \) flow \(F_t \) on \(P \) such that each \(F_t \) maps \(D \) continuously into itself; cf. Chernoff-Marsden [2]. In concrete examples this is very often the case.

The same argument yields the following.

Corollary — Let \(H : D \subset P \to R \) be defined and smooth on the manifold domain \(D \), and let \(X_H \) exist on \(D \). Let \(f : D_f \subset P \to R \) be defined and smooth on the manifold domain \(D_f \), and let \(X_f \) be defined and continuous on \(D_f \).

Suppose that \(D_f \subset D \), and that \(X_H \) has a flow \(F_t \) which leaves \(D_f \) invariant. Moreover, assume that for \(x \in D_f \), the mapping \(t \mapsto F_t(x) \in D_f \) is continuous.

If \(\{f, H\} = 0 \) on \(D_f \), then \(f \circ F_t = f \) on \(D_f \).

Note — We do not assume that the inclusion \(D_f \subset D \) is continuous.

As a special case, we have conservation of energy.

Theorem 6 — Let \(P \) be a weak symplectic manifold. Let \(H : D \subset P \to R \) be defined and smooth on a manifold domain \(D \), and let \(X_H \) be defined and continuous on \(D_f \). Suppose that \(X_H \) has a flow \(F_t \) on \(D_f \), and that, for \(x \in D_f \), the map \(t \mapsto F_t(x) \in D_f \) is continuous. Then \(H \circ F_t = H \) on \(D_f \).

In concrete situations one needs to know that the Hamiltonian \(H \) and the putatively conserved quantity \(f \) have a suitable common domain of definition, as in theorem 5. We turn to this question next and begin with the following proposition.

Proposition 7 — Let \(P, \omega \) be a weak symplectic manifold, \(D \subset P \) a manifold domain, and \(H : D \to R \) a \(C^1 \) function. Assume that there is a Hamiltonian vector field \(X_H : D \to TP \) for \(H \), and that \(X_H \) has a unique (local) flow \(F_t : D \to D \).

Let \(\Phi : P \to P \) be a symplectic \(C^1 \) diffeomorphism such that \(\Phi(D) \subset D \) and \(\Phi \) is \(C^1 \) on \(D \). Finally, assume that \(H \circ \Phi = H \).

Then \(\Phi \circ F_t = F_t \circ \Phi \).

Proof : Let \(x \in D_f \). Since \(\Phi \) is symplectic, we have the relation

\[
\omega_x(X_H(x), v) = \omega_{\Phi(x)}(T\Phi(x) \cdot X_H(x), T\Phi(x) \cdot v)
\]

\[
= dH(x) \cdot v
\]

\[
= d(H \circ \Phi^{-1}) \cdot T\Phi(x) \cdot v.
\]

Thus \(\omega_{\Phi(x)}(T\Phi(x) \cdot X_H(x), \omega) = d(H \circ \Phi^{-1}) \cdot \omega \) for all \(\omega \in T_{\Phi(x)}P \).

Since \(H \circ \Phi^{-1} = H \), we conclude that

\[
X_H(\Phi(x)) = T\Phi(x) \cdot X_H(x).
\]

(1)

Now define \(G_\Phi = \Phi \circ F_t \circ \Phi^{-1} \). Then for \(x \in D \) we have
\[
\frac{d}{ds} G_t(x) = T\Phi \cdot X_H(F_t(\Phi^{-1}(x))
\]
\[
= X_H(\Phi(F_t(\Phi^{-1}(x)))) \quad \text{by } (1)
\]
\[
= X_H(G_t(x)).
\]

It follows that \(G_t \) is a flow for the vector field \(X_H \). Since the flow of \(X_H \) is unique, \(G_t(x) = F_t(x) \).

We are now ready for our main conservation theorem.

Theorem 8 – Let \(P, \omega \) be a weak symplectic manifold. Let \(X_H : \mathbb{D} \to TP \) be a Hamiltonian vector field with flow \(F_t \) as in the hypothesis of Proposition 7. Assume in addition that \(F_t \) is a \(C^0 \) flow on \(\mathbb{D} \) and that each map \(F_t : \mathbb{D} \to \mathbb{D} \) is \(C^1 \).

Let \(\Psi_t \) be a flow of \(C^1 \) symplectic diffeomorphisms on \(P \). Assume that each \(\Phi_t \) satisfies the hypotheses of Proposition 7. Then, in particular, \(\Phi_t : \mathbb{D} \to \mathbb{D} \) is a flow on \(\mathbb{D} \). Let \(Y \) be the generator of this flow, and assume that its domain \(D_Y \) is dense in \(\mathbb{D} \). Moreover, assume that the graph of \(Y \) is a submanifold of \(TD_Y \). We equip \(D_Y \) with the graph manifold structure.

Finally, suppose there is a \(C^1 \) function \(K : D_Y \to \mathbb{R} \) such that \(Y = X_K \), i.e. \(Y \) is the Hamiltonian vector field on \(D_Y \) associated with \(K \).

Conclusions:

a) \(F_t \) leaves \(D_Y \) invariant and gives a \(C^0 \) flow on \(D_Y \)
b) \(F_s \circ \Phi_t = \Phi_s \circ F_t \) for all \(s, t \)
c) \(F \circ F_t = K \) on \(D_Y \).

Proof – Conclusion (b) follows immediately from Proposition 7.

To prove (a): Let \(x \) be an element of \(D_Y \). Because \(\Phi_t(F_t(x)) = F_t(\Phi_t(x)) \) it follows that \(s \mapsto \Phi_t(F_t(x)) \) is differentiable relative to \(\mathbb{D} \); here we use the hypothesis that \(F_t : \mathbb{D} \to \mathbb{D} \) is \(C^1 \). Hence \(F_t(D_Y) \subset D_Y \). Moreover, we have the relation

\[
Y(F_t(x)) = TF_t(x) \cdot Y(x).
\]

It follows that \(F_t \) is continuous on \(D_Y \) relative to the graph topology, so it induces a \(C^0 \) flow on \(D_Y \).

From the relation \(H(x) = H(\Phi_t(x)) \) we deduce that, for \(x \in D_Y, dH(x) \cdot Y(x) = \) that is, \((H, K) = 0 \) on \(D_Y \). We can now apply Theorem 5 of § 3 to the flow \(F_t \) on \(D_Y \), concluding that \(K \circ F_t = K \).

Remarks –

1. The strong smoothness hypothesis that \(F_t \) is \(C^1 \) on \(\mathbb{D} \) was needed only to establish (a). If (a) can be verified by other means(*) then we can drop this smoothness condition.

2. The above form of the conservation theorem is useful primarily because (a) is one of the conclusions, rather than one of the hypotheses. In practice, the symmetry group \(\Phi_t \) will usually be given explicitly, while \(F_t \) is known only implicitly as the flow of some differential equation. Accordingly it may be difficult to write down an explicit domain for \(K \) which is invariant under the flow \(F_t \). This difficulty is avoided above.

3. In many applications \(\Phi_t \) is linear. In such cases the hypotheses on the manifold structure of \(D_Y \) will be satisfied automatically.

Symmetry Groups on Tangent Bundles.

As an example, we spell out the above result in the special case of a symmetry group acting on a tangent bundle.

Recall that the second tangent bundle \(T(TM) = T^2M \) carries a canonical involution \(s \) (see Godbillon [6]). In a local chart, \(TM = \mathbb{U} \times \mathbb{B} \) where \(\mathbb{U} \) is an open subset of \(\mathbb{B} \); then \(T^2M = (\mathbb{U} \times \mathbb{B}) \times (\mathbb{B} \times \mathbb{B}) \), and \(s \) is given by the formula \(s(x, e; e_1, e_2) = (x, e_1, e, e_2) \).

Proposition 9 – Let \(\xi \) be a weak Riemannian manifold. Equip \(TM \) with the associated weak symplectic form. Let \(\Phi_t \) be a continuous flow of smooth mappings, each of which is an isometry of \(M \), so that the tangent flow \(T\Phi_t \) is symplectic.

Let \(X \) be the generator of \(\Phi_t \). Suppose the graph of \(X \) is a submanifold of \(T^1M \). Put on \(D_X \) the associated manifold structure.

The generator \(Y \) of \(T\Phi_t \) is an extension of \(s \circ TX \). Assume \(Y = s \circ TX \). Then \(\Gamma_Y = s(\Gamma_X) \), so that the graph of \(Y \) is a submanifold of \(T^2M \), and \(D_Y = TD_X \).

Finally, \(Y = X_{p(x)} \) where \(P(X) : D_Y = TD_X \to \mathbb{R} \) is given by the formula \(P(X)(u_m) = \langle u_m, X(m) \rangle \).

This momentum function \(P(X) \) is a special case of the moment of a dynamical group introduced by Kostant and Souriau. See [14] and also [9], [13].

We now want to apply the conservation theorem 8.

Theorem 10 – Let \(M \) be a weak Riemannian manifold, as above. Let \(V : D_\mathbb{D} \subset M \to \mathbb{R} \) be smooth on a manifold domain \(D_\mathbb{D} \). Let \(D \) be the
restriction of TM to D_0 and construct X_E on a domain N (the restriction of T_D to $N_0 \subset D_0$), where it exists and where
\[E(v) = \frac{1}{2} \langle v, v \rangle + V(x), \quad v \in T_x M. \]

Suppose X_E has a flow $F_t : N \rightarrow N$ which extends to a continuous flow of C^k mappings of D to D, $k \geq 1$.

Let Φ_t be a continuous flow of smooth isometries of D_0 (relative to the metric obtained from M). The tangents thereby extend to symplectic diffeomorphisms d to D. Suppose $V \circ \Phi_t = V$. Let X be the generator of Φ_t on D_0 and Y that of $T\Phi_t$ on D. Assume the graphs of X and Y are submanifolds.

Then
\[a) \quad F_t = T\Phi_t = T\Phi_t \circ F_t \quad \text{on} \quad D, \]
\[b) \quad F_t \quad \text{leaves} \quad D_N \quad \text{invariant} \]
\[c) \quad P(X) \circ F_t = P(X) \quad \text{on} \quad D_N, \quad \text{(and hence on} \quad D \quad \text{restricted to} \quad D_X). \]

For further details and examples see Chernoff-Marsden [3, 4].

REFERENCES

DISCUSSION

P. Bleuler – 1) May I ask about the difficulties with respect to the non-linear cases. Are there counter examples, i.e. cases (with higher powers of the interaction) in which there are no solutions?

2) May I also ask about the possibilities of second quantization e.g. can the well-known results of Glimm and Jaffe be reproducible?

P. Marsden – I) For the non linear wave equations the situation is not completely settled. For example Segal has shown global weak solutions exist (for positive interaction energies), but uniqueness is not known. Existence of strong solutions holds for short time always and global for $p = 3$, $n = 3$ or even $p (2, 4, n = 3)$ if the initial data is small enough.

2) Hopefully so, but those results are probably several years off.

P. Voros – In the Glimm-Jaffe constructive field theory, the classical limit (Goldstone picture) predicts qualitative but not quantitative features like anomalous critical exponents of the quantum theory.

P. Raczk – It was recently proved by Glassey that for a large class of non linear wave equations $(\chi + m^2) \phi = \lambda \phi^p$ ($p \neq 2$, 4 etc) the global solution does not exist even for very small initial conditions.

P. Marsden – Yes, but I believe the initial data is not small in H^1 norm, at least for $n = 3$, $p = 2$.

P. Tarski – With regard to the previous questions and remarks on constructive field theory, I would like to phrase the question of the applicability of the theory in
this way to your examples you generally assumed a Hilbert space $L^2(\mathbb{R}^n)$. In field theory one has a Fock space, which is a Hilbert space, but not of the above form. But I suppose that the particular form $L^2(\mathbb{R}^n)$ is not necessary for most of the discussion — is this so?

Pr Marsden — Yes. For example, in the Hamiltonian formulation of fluid mechanics the spaces $W^{k,p} = L^p$ are very useful.

DEFORMATIONS OF NON LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Arthur E. FISCHER
and
Jerrold E. MARSDEN
Department of Mathematics
University of California
Santa Cruz and Berkeley

RESUME

Dans cet article, nous examinons en quel sens la linearisation d'un système d'équations aux dérivées partielles non linéaire approche le système complet. Nous appliquons ces idées à l'étude des déformations de l'équation de courbure scalaire et des équations d'Einstein en relativité générale, ainsi qu'à l'étude des ensembles de métriques riemanniennes à courbure scalaire donnée. On montre que ces systèmes sont linéalement stables sous des hypothèses très générales ; nous étudions aussi les cas exceptionnels d'instabilité linéaire.

ABSTRACT

In this article we examine in what sense the linearization of a system of nonlinear partial differential equations approximates the full nonlinear system. These ideas are applied to study the deformations of the scalar curvature equation and Einstein's equations of general relativity, as well as the set of metrics with prescribed scalar curvature. We show that these systems are linearization stable under general hypotheses; in the exceptional cases of instability, we study the isolation of solutions.

0 - INTRODUCTION

Let M be a compact manifold, let X and Y be Banach manifolds of maps over M, such as spaces of tensor fields on M and let

$$\Phi : X \rightarrow Y$$

be a non-linear differential operator between X and Y; we assume Φ itself is a differentiable map. Thus for given $y_0 \in Y$,

$$\Phi(x) = y_0$$

as an equation for $x \in X$, is a system of partial differential equations. If $x_0 \in X$ is a solution to (1), we will say that a differentiable curve $x(\lambda)$,