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0. Introduction and Statement of Results.
Our main goal is to study the relationship between infinitesimal and actual

perturbations of the scalar curvature function with respect to varying metric
and to describe when solutions of the linearized equations can be used to approxi-
mate solutions of the nonlinear ones. Many of the results are motivated by
corresponding questions in general relativity [17]. This paper supplies details
and extensions of the results announced in [19] and described in [20]. The
starting point of our proofs is the basic work of Ebin [14] and Berger-Ebin [4].
We begin with a few general notions.

DEFINITION. Let X and Y be topological vector spaces and F X Y a

differentiable mapping. We say F is linearization stable at Xo X iff ]or every
h X such that DF(xo).h 0 there exists a differentiable curve x(t) X with
x(O) xo F(x(t)) F(xo) and x’(O) h.

The implicit function theorem gives a simple criterion for linearization
stability as follows.

CRITERION. Let X, Y be Banach spaces, let F X Y be C and suppose
DF(xo): X -- Y is surjective and its kernel splits, i.e. F is a submersion at Xo
Then F is linearization stable at Xo
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520 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

If F is a submersion at Xo we note also that F-l(F(xo)) is a submanifold
in a neighborhood of Xo with tangent space the kernel of DF(xo).
We shall use the above criterion as our basic method, suitably .modified

for Frechet spaces, except in a few exceptional cases which are dealt with by
a direct analysis.

If linearization stability at Xo fails, we shall investigate to what extent Xo is
isolated among the solutions of F(x) F(xo).

It is obvious that if x(t) is an actual de]ormation of the equation F(x) yo
(i.e., if F(x(t)) Yo x(O) Xo), then DF(xo).h O, where h x’(0), i.e.,
h is an infinitesimal de]ormation. Linearization stability requires that every
infinitesimal deformation be tangent to an actual deformation.
To state our main results, we introduce the following terminolog.- M is a

compact C n-manifold without boundary (the noncompact case is discussed
in 3). denotes the space of C Riemannian metrics on M, with the C
topology. For g , R(g) denotes the scalar curvature of g (positive on the
standard sphere; conventions as in [30]). C denotes the C (real valued)
functions on M. We let Ric(g) be the Ricci tensor of g, A be the Laplace-
DeRham operator (= -Laplace-Beltrami) on scalars and spec(A) its spectrum,
including zero.

Fixing go , and letting p R (go) our first main result states the following.

THEOREM A. The mapping R 9 ---. C, g R(g) is linearization stable
at go i] one o] the ]ollowing holds:

(i) n=2
(ii) n >_ 3 and p/(n 1) is not a constant spec(A)
(iii) n >_ 3, p 0 and Ric(go) is not identically zero.
In cases (ii) and (iii), R is a submersion at go
I] n >_ 3 and either p 0 and go is Ricci fiat or (M, go) is a standard sphere o]

radius ro (n(n 1)/p) 1/2, then R is not linearization stable at go. In ]act, i]
n >_ 3 and R is not a submersion at go, then R is linearization unstable at go.

The proof of theorem A, (ii), (iii) uses the basic criterion for linearization
stability of R " - W’-’’, where ", W are the corresponding Sobolev
spaces of maps of class W"’( H’’ L,’), together with a regularity argument.
Case (ii) was sharpened over an earlier version by some remarks of J. P.
Bourguignon.
Based on work of Obata [35], and a suggestion of J. P. Bourguignon, we

make the following, which would cover all cases,

CONJECTURE. I] n >_ 3, p (n 1) ), where spec(A), 3, 0 and i] R is
linearization unstable at go, then (M, go) is a standard sphere o] radius ro ro
n(n 1)/p. In other words, we conjecture that i] n > 3 and p (n 1), where
3, spec(/), , 0 and (M, go) is not a standard sphere, then R is a submersion.

Closely connected with theorem A is the question of whether or not ),
g 9r R (g) p} is a submanifold.



DEFORMATIONS OF THE SCALAR CURVATURE 521

THEOREM A’. Fix p C and assume one o] the following holds:
(i) n 2

(ii) n 3 and p is not a positive constant
or (iii) n >_ 4, p is not a positive constant and i] p O, there exists a fiat metric

on M. Then C is a smooth (closed) submani]old.

The only part which does not come directly from the analysis of theorem A
re the cases p 0 in (i), (ii), (iii) and p constant > 0 in (i) which depend
on Theorem B and are stated in more detail in Theorem B’ below.
At flat metrics, R is not linearization stable. In this situation we show

that they are isolated among those metrics with non-negative scalar curvature.

THEOREM B. Suppose go is fiat. Then there is a neighborhood U in 9
about go such that g U and R(g) >_ 0 implies g is fiat.
The proof shows that in fact by coordinate changes and scaling, g can be

transformed to go (See remark 4 following Theorem 10).
"Second order versions" of Theorem B (i.e. computations of the Hessian

of g - R(g) d(g)) are done in Brill-Deser [8], Kazdan-Warner [25], Ebin-
Bourguignon [unpublished], and Berger [3].

I,et ff denote the fiat metrics in and as above, 1o consists of metrics g
with R (g) 0. Another way of expressing the isolation of solutions of R (g) 0
is as follows

THEOREM B’. I] n <_ 3 or i] n >_ 4 and 2J, then

o (o ) w
is a disjoint union o] closed submani]olds.

In Theorem A’, the case when p is not a positive constant is proved by showing
R is a submersion on ’. However this is not the case when p 0 and
so a direct analysis is needed.
The surjectivity of the derivative DR(g) used in the proof of theorem A

is also useful in the proof of some results of Kazdan and Warner; see [26].
For example, using those ideas one has easily that if M admits a metric g with
R(g) 0 and Ric(g) 0, then any function p on M is the scalar curvature
of some metric.

In this paper we shall prove theorems A, A’, B and B’ along with u number
of related results and extensions.
We thank J. P. Bourguignon for suggesting substantial improvements in

Theorem A, M. Cantor for correcting an error in 3, und Y. Choquet-Bruhat,
D. Ebin, J. Guckenheimer, J. Kazdan, R. Palais, F. Warner, A. Weinstein and
J. A. Wolf for miscellaneous helpful remarks.

1. Some Preliminaries.
Except for 3, M will denote a C compact, connected, oriented n-manifold

without boundary, n >_ 2. T(M) denotes the vector bundle of tensors of
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type (p, q) and C (T(M)) the space of C cross sections; i.e., C tensor fields.
W"(T(M)) denotes the space of tensor fields of class W ;i.e., derivatives
up to ordersareL,s_> 0, 1 p . In casep 2wewriteH"forW
as usual. (See e.g. Palais [40, 41] for properties of these spaces).
Ifwe just write W or H we mean this class of real valued functions. We let

9C W (To (M)), the W’ vector fields,
S. W ’(T,.mmot O(M)), the W symmetric 2-covariant tensors
)" the group of W diffeomorphisms of M (see Ebin [14, 15] for a

discussion); these are well defined if s > (n/p) - 1
9E C S the open subset of Riemannian metrics of class W’’, defined

if s > nip
Sg C i) denote a slice at g for the action of lI)/1’ on’ (see [14]).

(g) denote the volume element of a metric g.
If the is omitted, C is understood.
A few other notational conventions follow: g-1 will denote the contravariant

form of g; i.e. in coordinates gi, the inverse of gi For a tensor t, g-t then
raises an index of and gt lowers one, in the usual way. If all the indices are
lowered, we write (totally covariant form) and if they are all raised, we write .
For h S tr h means the trace of h (this depends on the metric g, but it
will not cause confusion). Also, for example if h $2 X E, h.X denotes
the pointwise contraction, a one form.
We shall also make heavy use of a splitting lemma. Let E, F be vector

bundles over M with a fixed riemannian structure (i.e. inner products on the
fibers and a volume fixed on M). Let D C (E) - C (F) be a kth order dif-
ferential operator, and D* :C (F) --) C (E) its L adjoint (see Palais [40]).

SPLITTING LEMMA (C] Berger-Ebin [4]).
that D* has injective symbol. Then

Assume D has injective symbol or

W"(F) range D ( ker D*

On the right, D is regarded mapping W’/"(E) -- W’"(F) and D* W"(F)
W’-’(E). Here >_ s >_ It, 1 p < . I] D has injective symbol, ker D
is finite dimensional and consists o] C elements.

Remarks.
1. This is proved in [4] in case p 2 and D has injective symbol. It is not

difficult to give a direct proof of this using the elliptic estimates and Rellich’s
theorem (see, e.g. [23], [27] in which "elliptic" means "injective symbol").
The main point to be proved in that the range of D is closed. The case of D*
with injective symbol can be deduced from that for D, for if D* has injective
symbol, Range (D) Range (DD*) and as DD* is elliptic, this is closed.

2. If an operator D maps into a product space F F ) ( F with
different orders in each factor D C(E) --) C(F) and if one computes the
symbol of each D separately and each of these is injective, then the basic
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elliptic estimates, and hence the splitting lemma still hold. Similarly, if E
E, @) @ Era, the symbol may be computed as an m X matrix of sub-
symbols. This is a remark of L. HSrmander [23] and is needed in applications;
cf. 5.

3. Applying the splitting theorem to the Laplacian on a Riemannian manifold
results at once in the Hodge decomposition on forms.

The main consequence of the splitting lemma we shall need is the following:
i] D* is injective and has injective symbol, then D is surjective.
We note that an iniective operator need not have iniective symbol as is

seen by considering the example Db(xl x2) AIAlk(x x2) + Ak(xl x) +
k(x, x2) where k :M M. -- R is defined on the product of two Riemannian
manifolds and A and h are their respective Laplacians.
Some more notation: for X 9, g , Lxg denotes the Lie derivative

(in coordinates (Lxg) X + X where a vertical bar denotes covariant
differentiation). For h $2 gh denotes the divergence of h; in coordinates
(note the sign), (gh) -h;,; Thus we have two differential operators
(notation following Berger-Ebin [4]); for g fixed in /’, s > n/p,

C8+1 S ; X Lxg

g "$2 rs-l’p" h gh

It is easy to check that a* 2,
get the splitting of Berger-Ebin"

where

Also, the symbol of a is injective so we

o
$2’’’ ker .

We refer to this s the canonical decomposition.
Note that g is required to be of class W/1’ (g is assumed C in [4] but W

suffices; g of class W is not sufficient in general since for X 9C/’, Lxg
would be only W- see however 4 below).
We shall write the canonical splitting as

(1) h h + Lxg.

Notice that X in (1) is unique up to a killng field of g, i.e. an X with Lxg O.
A by product of the splitting theorem is a quick proof of the fact that the killing
fields form a finite dimensional Lie Mgebra.
A couple of simple identities will be useful for later purposes. First of all,

one computes that

(2) (Lxg) AX + (dX) 2 Ric(g).X

where AX ((di + d)X) is the Laplace-de Rham operator on vector
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fields. A is related to the rough Laplacian [XX -gX by the WeitzenbSck
formula (see e.g. Nelson [35]):

(3) AX 5X + Ric(g).X.

Secondly, if Hess is the Hessian of h :M --. R (in coordinates Hess
then applying (2) to X grad , using Lxg 2 Hess yields the identity

(4) i Hess b (dA) Ric(g).db.

As in Ebin [14], we let A ’/’ OZ --. grc denote the action by pull
back: (, g) *g. For s > n/p, it is a continuous (right) action. Let
denote the orbit through g 9r’’. For g 9r/’, 9 is a C submanifold
and T(9"’" a(9C’/’); i.e. the Lxg piece of (1) is in the direction of isometric
changes and roughly speaking, h is in the direction of true geometric
deformations i.e. in the direction of a slice S’’’.
Thus the canonical splitting may be written as TOZ T 0" @ TS"’.
These same ideas can be used to prove a number of splittings of importance

in geometry and relativity and will be a basic tool used in this paper; see Berger-
Ebin [4] and 5 for further details).

2. Local Surjectivity of R.
Let us begin with the following remark:

LEMMA 1. Let s > nip 1. Then R maps’ into W-2’ and Ric maps

’ into S,-2’ and are C mappings.

Proo]. The easiest way to see this is to use the local formulas:

0 0
OxOx OxOx OxOx

gab 02gab gab
Ox Ox

g,g F F W

R giR (i.e. R g-l.Ric)

together with the multiplicative properties of Sobolev spaces (these are con-
veniently summarized in Palais [40]). For instance, since Ws-l’" is a ring,
the last two terms of R; are rational combinations of g and Dg, so are smooth
functions of g. Since s > nip - 1, multiplication W W-2’" -- W’-’’
is continuous bilinear, so the first four terms are smooth functions of g as well.

Let AL denote the Lichnerowicz Laplacian (see [30]), acting on symmetric
two tensors; in coordinates

ALh gabi i[a [b + Riahai - Riahai 2Riaibhab
The classical computations (see, e.g. [30]) of the variations of Ric and R give
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LEMMA 2.

(I)

and

(2)

Note.

In Lemma 1 the derivatives o] Ric and R are given by

D Ric(g).h 1/2(Ah a,h Hess tr h)

DR(g).h -h. Ric(g) -t- g-l(D Ric(g).h)

h(tr h) + iih h. Ric(g).

Recall our conventions:/xf --gaflolb.
In connection with these formulas, some simple identities are worth noting"

tr(/x,h) A(tr h), tr Hess(tr h) --A tr h, and tr(aigh) -2tih.
Following notation in Berger-Ebin [4], we let

g(h) A(tr h) - tth- h,Ric(g).

It is easy to see that

(3) *] gA] + Hess ]- ] Ric(g).

Now we can prove a W8’ version of theorem A, in cases (ii), (iii).

THEOREM 1. Let g ’, > s > nip - 1 and assume that either (i)
R(g) p is not a constant h(n- 1) where spec(A), or (ii) p=O and Ric(g) 0.
Then , is surjective, its kernel splits and R ---, W-’ maps any neighborhood
o] g onto a neighborhood o] p.

Proo]. By the basic splitting theorems, it suffices to show that ,* is injective
with injective symbol, for then , S -- W’-’ will be surjective and its
kernel will have a closed complement, namely Range ,g*. The local surjectivity
of R then follows by the implicit function theorem (e.g. see Lang [28]).
The symbol of * is s- (-g I111 -t- () )s which is injective if 0

and n >_ 2, for its trace is (1 n) IIlls.
To show /* injective, assume ] ker ,*, so that
(a) * gA] + tIess - Ric(g) 0.

Taking the trace yields
(b) (n- 1)A] R(g)],

and combining (a) and (b) yields
(c) Hess (aic(g)- (1In- 1)gR(g))].
First we show that if ] t 0, then R(g) (n 1), where , is a constant in

spec(A). Indeed, taking the divergence of (a) yields
(d) (d/]) - Hess ] + d].Ric(g) /ti(Ric(g)) 0.

From (4)2 and the contracted Bianchi identity iRic(g) -1/2(d(R(g))) , (d)
reduces to

1/2/d(()) 0.

If ] is never zero, d(R(g)) O, so R(g) constant, and from (b) is (1In 1)
times an eigenvalue of the Laplacian, and hence >_ O.
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On the other hand, assume there is some Xo M with ](Xo) 0. We must
have d](xo) O. To see this, assume d](xo) O, let ,(t) be a geodesic starting
at x, and !et h(t) ](,(t)). Hence from (c), h(t) satisfies the linear second
order differential equation

h"(t) (Hess 1)(,).(,),’(t), ,),’(t))

{(ltie(g)1 )) ,())}n 1
gR(g .(,’(t), "r h(t)

()

with h(O) ](Xo) 0 and h’(O) dJ(’r(O))"’(O) O. Thus J is zero along
,(t) and so (by the Hopf-Rinow theorem) J vanishes on all of M. Thus
cannot vanish on ]-1 (0) so 0 is a regular value of J, and so j-l(0) is an n 1
dimensional submanifold of M. Hence d(R(g)) 0 on an open dense set
and hence everywhere.

If condition (i) holds, we can conclude from the above that ] 0.
Assume (ii) holds. Then from (b), J constant and from (a), ] Ric(g) 0,

so/ O.
Note. We thank J. P. Bourguignon for pointing out that %*J 0, f 0

implies R(g) constant. Previously we had assumed p _< 0, p 0.

Remark. Ifp > n, then we can choose s 2inTheorem 1 and soR hits
a whole neighborhood of o in L,.
We now prove that theorem 1 remains valid if s o, by a regularity argu-

ment, as in [14].

THEOREM 2. Let g gg and assume (i) or (ii) holds in Theorem 1. Then
R "gg -- C maps any neighborhood oJ g onto a neighborhood oJ p R(g) C.
Pro@ From theorem 1 we know that if k Range %* in S and X is

small, that R(g + Xk) covers a neighborhood of g in W-2’’. What we need
to show here is that if R(g + hk) is C, then k is C. However, R(g + hk) C
implies %.k C, by differentiating in. h. If k ,*], then A’*] C.
But from 1, ’A’* is elliptic. Hence ] and so k is C.

Following is a list of miscellaneous remarks concerning these results"

1. If n 2, then (ii) of Theorem 1 cannot hold. If n 3, Ric(g) 0 is equiv-
alent to g being not flat. For n >_ 4 it is unknown if Ric(g) 0 implies g is
flat, although this implication does hold if M admits some flat metric (Fischer-
Wolf [22]).
2. If Ric(g) 0, then ker g* consists of constant functions, so g is not surjective
in this case. See however 3.
3. If M S" C Rn+l is the standard sphere of radius ro with go the standard
metric, Ric(go)= (n- 1/ro)g and R(go) n(n- 1)/ro. hus J ker ,o*
if and only if

Hess J -r(-5
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from (c) in the proof of theorem 1. On the standard sphere this is actually
equivalent to A] (n/ro)] (see [5]); i.e. is an eigenfunction for the first
(non-zero) eigenvalue of /. Thus 3’o is not surjective in this case and misses
the space ker go* {] A] (n/ro2)]}.
A theorem of Obata [37-38] states that if (M, g) admits a non-trivial solution of

Hess ] -c2]g c > O,

then the manifold is isometric to a standard sphere.
We conjecture that i] Hess ] (Ric(g) gR(g)/(n 1))f admits a non-

constant solution ] then the space is Ricci fiat or is isometric to a standard sphere.
This is essentially the conjecture of 0. If true, then R would be linearization

stable at go iff (M, go) is not Ricci flat or a standard sphere, n >_ 3 (see Theorems
7, 8, 9). In support of the conjecture, we offer these remarks: (a) If (M, g)
is an Einstein space, Ric(g) )g, , > 0, then by Obata’s theorem, the conjecture
is true.

(b) If Ric(g) 0 is parallel then the conjecture is true by an examination
of the proof of Obata’s theorem.

(c) If n 2 the conjecture is true.

4. Using local surjectivity of R together with an approximation lemma, Kazdan
and.Warner [26] have been able to recover some of their results on what functions
are realizable as scalar curvatures.

Example. If there exists g such that R(g) O, Ric(g) 0, then R
? C is surjective.

Pro@ By theorem 1, R is locally surjective. Hence constants of either
sign, but near zero, are scalar curvatures. Global surjectivity now follows
rom the Kazdan-Warner result [25], Theorem 4.3.

5. From Theorems 1, 2 and the implicit function theorem, we have established
(ii), and (iii) of Theorem A.
In Theorem 3 we establish part of Theorem A’. Here

n
3o /g ’lRic(g) 0} and oo >_s >- 1.

THEOREM 3. (i) Let p W-’’ and assume p is not a constant >_ O. Then

’ C is a C closed submani]old.
(ii) )/o’" o C ’’ is a C submani]old.
In either case, the tangent space at g is equal to ker DR(g).

Proo]. Immediate from the. fact that R is a submersion on the given spaces,
from Theorem 1, with Theorem 2 being used if s .
The case n 2 and the case p 0 for (ii) and (iii) of Theorem A’ will be

given in 6 and 7.



528 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

3. The Noncompact Case.

We now consider the above results when M is replaced by R. Presumably
similar results hold for general noncompact manifolds satisfying suitable
curvature and completeness restrictions, such as those in Cantor [9].
The results depend on choosing the correct function spaces. We briefly

note these here. See Nirenberg-Walker [34] and Cantor [10] for details
Let IT denote the L norm on Rn, (x) + ix , i Rand s >_ 0

an integer. Let

lals

where D" is 0 /0x"’ Ox corresponding to a multi-index .
Let M,:(R, R) be the completion of Co(R, R) (C functions with

compact support) in the norm ]. ]],.,,
One can establish various Sobolev type inequalities for these spaces analogous

to the usual ones. The spaces are primarily designed so the following holds:

LEMMA 1. For p > n/(n 2), 1/p + 1/p’ 1,
the Laplacian is an isomorphism (onto)

Pro@ See Cantor [10], Nirenberg-Walker [34].
Similar results hold for other elliptic operators.

metrics of class M,,:, we have"

--(n/p) < < --2 + nip’,

Letting ,." denote the

Proo]. That R is a C map and has derivative /go is proved as before. Here
go is the standard metric on
We claim the following splitting holds:

Range ’go @) ker ’o*"s--2,8+2

(cf. 1 and a corresponding splitting in Cantor [10]).
To prove this, let / M,_,,+ and let lc A-z/ M,,,’. Then Hess

lc M,_:,,: since Hess k consists just of second derivatives of lc. Let h
p and h A-lh M,,, and f /(go/ + Hess lc)/(n 1)

7,oh1 M,_2,,/:. One checks Xo*/1 0, so we have our splitting. (General
considerations of functional analysis show that the splitting is topological as
well as algebraic, as in 1; cf. [4]).

Thus, as in Theorem 1, what we need to do is check that /o* is injective.
But "o*] goA] + Hess ] 0 implies A] 0, so as A is an isomorphism,
1=o.

THEOREM 4. Assume n >_ 3, s > n/p + 1, >_ 0 and the inequalities o/
lemma 1 hold. (It is possible to choose >_ 0 i] p > n/(n 2)). Then

R ",,: ---) M,-u,+2
covers a neighborhood o] zero. The equation R(g) 0 is linearization stable about
the Euclidean metric in these spaces.
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We thank M. Cantor for correcting an error in an earlier version of this proof.
Remarks and Examples. 1. Notice the difference with Theorem 1 (ii). In

the noncompact case with the proper asymptotic conditions h is an isomorphism;
thus ,g., is surjective even if Ric(go) 0. In the compact case A is not an
isomorphism and go is not surjective if Ric(g,,) 0.
2. It follows that any function near zero is a scalar curvature. This is related
to the non-compact results of Kazdan and Warner [24]. However the metrics
constructed by the methods here, being in a C neighborhood of the standard
metric, are necessarily complete. On R a characterization of when a function
is the scalar curvature of a metric can be given. See [24].
3. The following corollary partially answers a question raised by N. O’Mur-
chadha and J. W. York [39]: On R there exists a C riemannian metric g which
is i O(1/r) at ,, and has scalar curvature p O, p is C o] compact support
and p 0 (precisely, in the ]unction spaces above, choose n 3, p > 3 and
< 2p 3/p; then M,. includes ]unctions O(1/r) at i.e. no higher order

asymptotic behaviour, like O(1/r) can be expected).
4. For compact manifolds, the fiat metrics are isolated amongst the metrics g
with R(g) >_ 0 (see 8). The above shows that this is not true in the non-
compact case. It is true that the fiat metrics are isolated amongst Ricci fiat
metrics on 1t
5. It would be interesting to prove the slice theorem and the results of 4
for the noncompact case and the case of a manifold with boundary.

4. The Space of Flat Riemannian Metrics.

We return again to the case of M compact, and study the space ff’ of fiat
metrics of class W"’. For g "’, ler F(g) denote its Levi-Cevita connection.
Let C’’ denote the set of fiat riemannian connections of class W’’. Thus,
if s > n/p-1, g " implies F(g) 5C’-’.
The following regularity theorem will be basic"

THEOREM 5. Let s nip 1 and F C*-’. Then there exists
such that *F C; i.e. *F, the pull back o] F by is a C fiat riemannian con-
nection. Similarly, i]g ft,.T, there exists a 5)"/’ such that *g
We thank Alan Weinstein for pointing out the following proof. We first

prove a local version:

LEMMA. Let F 5C"-’. Then the coordinate change to normal coordinates
is o] class W/’. One could use C spaces here as well.)

Proo]. Let r; be the Christoffel symbols of F in a coordinate system x;,
and let (x) be the coordinate change to normal coordinates so that 0.
Thus from the transformation rules for the Christoffel symbols,

02 O(1)
Ox Ox Ox

F

and the Christoffel symbols F are of class W’-’.
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We know by construction of normal coordinates from the exponential map
that (xi) has the same differentiability as the Christoffel symbols (see e.g.
Lang [28, p. 96]); thus (x;) is of class W-1’ and (O/Oxa) is of class W’-.
Thus from multiplication properties of Sobolev spaces, the right hand side
of (1) is also of class W-’. Thus (xk) is of class W’’, and from (1) again
is actually of class W +1’’.
Now we prove the first part of Theorem 5. Using the exponential map we

get a new differentiable structure on M in which the connection r is smooth.
Call this manifold M The identity is a map of class W+’ (by the lemma)
so can be W"+1’ approximated by a C diffeomorphism J :M --* M1. Pulling
back P on M1 by J gives a C flat connection on M which is W close and
W,+I. diffeomorphic to the original connection.

Recall from Wolf [45], Theorem 3.3.1 that all C flat riemannian connections
on M are affinely equivalent. This, together with Theorem 5 gives:

COROLLARY 1. Let s > nip + 1 and rt F2 3C-’. Then rl F2 are
anely equivalent; i.e. there is 3+’ with *F1
We recall that in order for the canonical splitting to hold at g in C8’, g had

to be of class W"+’ (see 0). However if g is flat we can use theorem 5 to
transport the splitting and the slice (see Ebin [14]) of a C metric to deduce
the following"

COROLLARY 2. Let g ’, s > n/Po+ 1. Then there is a slice S at g.

Also, the canonical decomposition S’ S2’ @ a,(C"+’) is valid at g.

For h S g 91Z let g-1 o h denote h regarded as an endomorphism of
TM at each x M; in coordinates g- o h is h;. Set, for g

E S’’ -- 91Z"’ h g exp(g- o h).

For r 4s-I’p set

and

where V is the covariant derivative of I’.

THEOREM 6. For s > nip -k 1, ’ g)"+l’(r"’’) and r’’
submaniJolds o] "’. Moreover, ]or g r’,

and

Pro@ That "’

are closed

’) follows from Corollary 1 of Theorem 5.
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From Ebin [14], Eg S8’ -- E8’ is a C diffeomorphism. But for g r’,

(C follows using coordinates in which g and h are constant. To prove ,
let g fir ’’, gl g exp(h). In a coordinate system in which g is constant,
the Christoffel symbols of g exp(h) must be zero. Hence exp(h) and thus h
are constant.) Thus, s S.,,’ is a closed linear subspce, r’’ is smooth
manifold, with tangent space as claimed.
Now we need to show that the orbit ’+’(r’) is a smooth manifold.

We follow the ideas in Ebin [14] for this result. First we need:

LEMMA 1. Let gx g r’. Then the isometry groups o] g g have the
same Lie algebra and hence the same component o] the identity.

Proo]. The Lie algebra of the isometry group of g, {X ’+1’ Lxg 0},
is the Lie algebra of the holonomy group, which depends only on the connection
of g.
Denote this Lie algebra by r
We also use the following version of the implicit function theorem which

is proved in the usual way (as in Lang [28]). We thank J. Guckenheimer
for discussions on this point.

LEMMA 2. Let ] N P be a C map o] Banach manifolds such that ker
T] C TN is a C subbundle o] TN (with a local closed complement), and at each
x N, Range TN is closed with a closed complement.

Then [(N) C P is a C" (locally) immersed submanifold. I] [ is an open map
onto its image, then ](N) is a submanifold.

Now we apply lemma 2 to the map

’+’ X r’ ’ (, g) *g.

Then as in [14], is a C map because of the regularity theorem 5, and

T(.o)(X, hit) *(htt + Lx,g)

where X, X o n- a vector field on M.
The range of T(,.o) is closed by the splitting theorems and, since the space

of hit is finite dimensional, it is complemented.
Now if h, +Lxg =0, hit =0 and Lxg 0 since the summands are L orthogonal.
Thus the kernel of T(,.) is {(X, htt) X, ar’+’, htt 0}. Thus the

kernel is exactly the Lie algebra, ar’+1’ made right invariant on D’+’ cross
the zero bundle on r’. Again, by theorem 5, r+1’ consists of C objects
when acted on by a suitable diffeomorphism, and it is finite dimensional. This
is enough to guarantee we have a smooth subbundle of T’+1’ (see [16], ap-
pendix A for some similar arguments which yield the result stated here).
Thus by lemma 2, the image of , namely " is an immersed submanifold.
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However one sees, s in Ebin [14], that the mp I, is open onto its image so
that the image is actually a closed submanifold.

Consider the obvious projection --. C It has fiber fir over
F 3C-1’ and the above theorem then shows that ff" is a homogeneous
fiber bundle over 3C -1’" with finite dimensional fiber

This bundle is not trivial however because an affine diffeomorphism need
not be an isometry (i.e. in lemma 1, we need not have equality of the full iso-
merry groups).
We conclude with a few brief remarks. Let "" denote the orbit of’under )/1.,. Then "may not be a submanifold of ’’ (compare Theorem

6). Indeed, the formal tangent space at g
a(gc’/1) and the second summand is not defined if g is only W’’.
We conjecture that !Ft is a submanifold of . This is because the orbit

map X --* has derivatives whose ranges and kernels are locally
isomorphic; i.e. T W a(9) -- T -t- a(C) which, follows from the fact
that T ( () 9C/ where 9 {X L.p 0} and where is
the Lie algebra of Killing fields of g. The problems of differentiability mentioned
above should disappear as s - .

5. Splittings of S.

We shall now discuss some splittings of S related to ; and other sub-
manifolds of i) which are discussed in Barbance [1], Deser [13], Berger-Ebin [4],
York [46-47], and Moncrief [32].
We begin with splittings based on the operator , using the basic splitting

lemma of 1.
The following formulas are useful"

(1) DR(g). i):g L:(R(g))

D Ric(g).L:g L(Ric(g))

where X is a vector field and L. is the Lie derivative. These formulas follow
at once from n*(R(g)) R(n*g) and n*(Ric(g)) Ric(n*g).

Notice that any infinitesimal deformation of R(g) p of the form h L.,:g
can be immediately integrated to **g, where , is the flow of X, as follows
from (1).

Since * has injective symbol, (Theorem 1, 2), S’’ splits as

$2’’ ker % ( *(W+’’), g

_
I/’

as in Berger-Ebin [4]. Explicitly, we write this as

(2) h -t- (g/f A- Hess ]- ] Ric(g))

where

A(tr ) + ii- .Ric(g) 0
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The portion is tangent to the submanifold 9Tip (if conditions of Theorem 2
hold), and the remaining piece is L2 orthogonal to it; i.e. Tgyrt Tt )
Range (g*).
We can further split into two parts; o Lxg according to the canonical

decomposition, with Lxg being "inessential" in that it is tangent to the orbit
through g. If R(g) p constant, then .yg(L.g) 0 by (1), i.e. Range ag C
ker ,, so in this case we have the finer splitting of Berger,Ebin [4]"

(3) S.,. (ker ’o Yh ker ) (ker Yh ag(gC)) ) Range v*
(ker ’o Fh ker ) ( a(gC) Range ,g*.

explicitly written

h + L.g + gA] -+- Hess ] ] Ric(g),

where 0 and h tr o O.Ric(g) 0

This finer splitting may be written Tgg T(tp F S) T 0. It is
not hard to show that Ig Fh So is a manifold under the conditions of Theorem 2
by restricting R to the slice S.
LEMMA. I] g is Einstein, Ric(g) kg, k 0 then tr() 0 while i/ O,

tr o is constant.

Proo]. From (2) A(tr ) h.Ric(g) k(tr ), so if , < 0, tr o 0.
If > 0 then it is known (Lichnerowicz [30]) that the first eigenvalue of A is
k, >_ n/(n- 1) > ,,soagaintr 0. If, 0, trY constant.
Thus if g is Einstein we get the splittings"

(4) (a) (k 0) h hrr -t- Lxg gh] + Hess ] ].Ric g
(where hrr satisfies hrr 0, tr(hrr) 0)

(b) (k 0) h (hrr + c )n
g + Lxg + (g J + Hess J),

c J tr h d(g)/volume (M).

These splittings are useful in general relativity because the TT part (= trans-

To "9C --- $2
2
(x)X - Lxg -t- n-

with adjoint r,*(h) 2h + (2/n) grad (tr h). rg has injective symbol

verse-traceless) is believed to describe the space of true gravitational degrees
of freedom ([13], [21], [46]).
By utilizing the conformal group in place of , York [47] has introduced

another decomposition which is very useful in general relativity, since it has
no curvature restrictions. This decomposition uses the conformal Lie derivative
in place of the Lie derivative in the canonical splitting:
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2
(XO}o)g,.(-).X x,} + X} -setting this equal to zero and contracting with }X gives

(1-) ,IX.,,2 + ,,,, ,,X,, 0 so X O

since } 0 and this is the sum of two non-negative terms, and so we have
the splitting

$2 ker rg* ( r(C);

thus each h can be decomposed as

2
(Z)gh f-t-Lxg+

with satisfying + 1/n grad (tr ) ti( 1/n (tr )g) 0. Setting
hrr 1In (tr )g and noting that tr h tr gives York’s splitting

s s. ,,() (R) (c @ {}),

written as

1(5) h hrr + Lxg + 2
n
(#X)g -t" (tr h)g.

The part hTT is orthogonal to the conformal orbit of g in .
The tangent space to g splits orthogonally to a piece Lxg -t-- (2/n)(itX)g

tangent to V ,, where , is the space of metrics with a fixed volume ([14])
and a piece (1/n)(tr h)g tangent to Pg, the metrics pointwise conformal to g.
The underlying geometry involved in these splittings is considered in more
detail in [21].

Let T*) denote the bundle over ) whose fiber at g is $2 g ;i.e.
tensor densities. We shall write elements of T* as (g, r). Moncrief [32]
has introduced a splitting of the tangent space to T*; which is of basic im-
portance in relativity. It is based on the mapping 4) T*OZ -- C X ff:
d standing for ’densities’,

,(, ) (c(, ), )

where C(g, r) {1/2(tr r) .r % R(g)} see [17, 20]. The set e -(0)
is the manifold of constraints of general relativity. We have the splitting

(6) T(.,) (T*) ker D(g, -) ( Range D,(g, -)*

since D((g, r)* always has injective symbol ([17]). Let

--1
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the usual symplectic matrix. One can show by a direct calculation that

Range J o D((g, 7)* C ker D(g, -)

so we get a finer splitting"

(7) ker D((g, 7) ker D6p(g, r) ker(D(g, 7) o J) ( Range (J o D((g, r)*).

The first summand can be used as a model for the space of ’true gravitational
degrees of freedom’ and is a generalized TT part.

If r tg and g is Einstein, this reduces to the Barbance-Deser-Berger-Ebin
decomposition above; note that if 0, 3C reduces to R(g)tg. The geometry
of these ideas will be treated in greater detail elsewhere.

6. Linearization Stability of R(g) p.

We begin by establishing results which will fill in some missing cases in
Theorems A and A’, namely A(i) and A’(i).

LEMMA 1. Let go )8,, hll S.II’ and set

g(h) go exp (go-1 o hll).

Then g’(O) h and Ric(g(h)) Ric(go).

Proo]. A straightforward calculation as in Theorem 6: F(g(h)) F(go) and
Ric depends only on the connection.

In general R(g()) R(go). However if Ric(go) 0, then hll " Lxg is an
infinitesimal deformation of R(g) 0 and if Ox is the flow of X, Ox*g(k) is an
actual deformation of R(g) 0 tangent to h - Lxg.

LEMMA 2. Let M S2. Let g , h $2 Then there exists ] C (M, 1)
and Y 9 such that

(1) h ]g- L.g.

I] h 0 and d(tr h) O, then h (c/2)g, c tr h const.

Proo]. Any two riemannian metrics on S are conformally equivalent
(Wolf [45], 2.5.17). Let h g’(O) where g(,) i), g(0) g. Thus there
exist Ox , o identity with g() Ox*(Pg), P M -- R, Px > O, Po 1.
Henceg’(0) h ]g + Lrgwhere] Po’, Y (d/d) O. Thus
the hTT part in York’s decomposition (5) of 5, is zero.

LEMMA 3. Let M T with g a fiat metric. Let h S. Then

h h,, ]g Lrg, hll S.II.
I] h 0 and d tr h O, then h hll (c/2)g, c a constant.

Proof. On T, every metric is pointwise conformal to a flat metric.
the conformal orbit of g is everything except possibly . Thus

But S.II Tr is
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orthogonal to fg - Lrg, so the hrr piece must lie in it, again using York’s
decomposition. The result follows.
One can prove lemma 3 directly in coordinates by showing h 0, tr h 0

implies h 0; i.e. on a flat two torus, transverse traceless (rT) is the same
as covariant constant.

THEOREM 7. Let n 2. Then R(g) p is linearization stable about any
g 9E. Also, 9Ep is a submani]old with tangent space ker /g at g 9Ep.

Proo]. Theorems 1, 2, 3 cover the case in which p is not a constant > 0.
So we are left with two cases:

Case 1. p constant > 0. Then for any metric gonMwithR(g) p,

(M, g) is isometric to a standard 2-sphere of radius ro (2/p). Thus we can
takeM S2CR3and

,ps,p )s+l,p(go)

where go is the standard metric. This set is a C submanifold of 8.
an orbit of a C metric (Ebin [14]), with

as it is

T+,gorg8’

(s+l ,p)We assert that kcr ao which will finish the proof in this case.
Now since p is constant, kero a (,+1.) (formula (1) of 5). Let oh 0.
Hence by the lemma in 5, tr 0. From lemma 2 it follows that h 0,
so h Lg. This completes case 1.

Note. This infinitesimal deformation h Lxg can be explicitly integrated
up to g() *go, flow of X.

Case 2. p 0. In this case any element of ro ’ is isometric to a fiat metric
on the two torus T2. Hence )o’’ fiT’ ’" which, by Theorem 6 is a submanifold
with tangent space S. ,," ( a(ff:"/1’) at g. This obviously les in ker
Conversely, let ,h 0’. Then .h ,gh A(tr h 0, so tr constant,
so from Lemma 3, h is parallel. Hence h S.I ’’" ( a(9’/1’) bythe canonical
decomposition.

Note. In case 2, every infinitesimal deformation can be explicitly integrated
up using lemma 1.

In Theorem 7 it should be noted that in order for an equation F(x) 0 to
be linearization stable, it is not enough that F- (0) be a submanifold; its tangent
space must also be ker DF(x). In the exceptional cases of Theorem 7, R is not
a submersion, so our basic criterion does not apply.
We have now established all parts of Theorems A, A’ except the last sentence

of A and the case p 0 in (ii) and (iii) of A’. We shall do this in the next
sections.
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7. Linearization Instability.

In 2 we saw that on a standard sphere or on a Ricci-flat space, /g is not
surjective. We now establish that linearization instability holds if n _> 3
on S and on fiat spaces. We do this by showing there exist infinitesimal
deformations which do not satisfy necessary second order conditions, and hence
cannot be tangent to actual deformations. We begin with the following

LEMMA 1. Let s n/p 1, g ’. Assume "g DR(g) is not sur.iective.
Let ] ker ..*, ] O. Le g(k) 9E’ be a C curve with R(g(k)) p ]or all ,
g(O) g and h g’(O). Then

(1) DR(g) h 0

and

(2) J ] DR(g) (h, h) du(g) O.

where DR(g) S’ X S.’ -- W-’ is the second derivative of R at g.

Proof. (1) is obvious from the chain rule. To prove (2) we differentiate
R(g(k)) p twice and evaluate at k 0:

d(3) 0 - R(g(k)) Io DR(g) (h, h) - DR(g). g"(O).

Multiplying by ] and integrating over M gives

f f DR(g) (h, h) d(g) f ].y. g"(O) d(g)

f *(]). "(o) d,()

=0.

If Ric(go) 0 then ker /go* constant functions, so (2) reads.

(4) f DR(go) (h, h) d(g) O.

If (M, go) is a standard n-sphere than ker %o* consists of eigenfunctions
of Ago with eigenvalue n/ro, so (2) reads:

(5) f ] DR(go) (h, h) d(g) 0

for the n + 1 dimensional spce of first order spherical eigenfunctions on S
(See Berger et. al. [5] for elementary properties of the eigenfunctions on S).
In case dim M 2, then from 6 we know that (1) will imply (2) automatically

even though ker ,g* {0}. But if dim M _> 3 then (1) need not imply (2)
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and in this ease we must have linearization instability.
shall need the following:

To prove this, we

LEMMA 2. For g gg and h S.,

(6) DR(g).(h, h) -1/2(Vh) + 2Ric (g).(h h)

1/2(dtr h) - hilkhikl - 2h.Hess (tr h)

2 tih.d(tr h) A(h.h) 2 tii(h X h).

,where (h X k)i hik. and A] -Jl,jgi is the rough Laplacian.

ProoJ. This is a straightforward, though tedious calculation starting from
DR(g).h A(tr h) + tiih h. Ric (g) and using the methods of [10].
Some straightforward consequences of (6) follow:

COROLLARY 1. For g 91Z, h S2

1f DR(g)(h, h) d,(g) -- f+ f Ric (g).(h X h) d(g) + f R"ih,h, d(g)

2

IJ g is fiat, this becomes

if if f-- (Vh) dry(g) - (d tr h) dry(g) + (h) dry(g).

(s)

For g 91Z, h S. and J ker %*,

f DR()(, ) d.(e) f ]l-() ( tr ) + ()1 d.()

+ f J{Rabhha + 2h.Hess (tr h) 2 ih.d(tr h)} dry(g)

IJ h O, tr h constant, this becomes

f If f(8’) J DR(g).(h, h) dry(g) -- J(Vh) d,(g) + ]Rabhh d,(g).

(From 5, note that iJ g is Einstein, ,(h) 0 and h 0 implies tr h constant).
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3. I], in addition, g has constant sectional curvature, and trh O,

p 1(9) f ] D2R(g)(h, h)dry(g)= -n(n 1)f h.h] dry(g)- - f (Th) dry(g).

For a standard sphere of radius ro, p n(n 1)/ro.
These formulas follow from lemma 2 and the formula

R P
=b -n(n- 1)(gabi gaib’)

for a space of constant curvature.
If (M, g) is Einstein, and ih 0, tr h 0 then h is an infinitesimal deforma-

tion of R. In the fiat case, if h comes from an actual deformation, it must also
satisfy

Th.h dry(g) 0

by (7’), i.e. h 0.
Now we use this to prove instability in the fiat case"

THEOaEM 8. Suppose (MI g) is fiat, dim M >_ 3. Then R(g) 0 is lineariza-
tion unstable at g.

Note. In the noncompact case on Rn, R(g) 0 is linearization stable at
the Euclidean metric, as we showed in 3.

Proo]. By the Bieberbach theorem [45], p. 105, M admits a riemannian
covering by a fiat torus T. On T construct an h with tih 0, tr h 0 by
setting

0 l(x x.)

h I(x x) 0

0 0

0

where the upper left block is 2 X 2 and the lower right is (n 2) X (n 2).
Here ] Tn- -- R is any smooth function. Projecting h to M yields h on M
with the same properties tih 0, tr h 0. However h need not be covariant
constant, so by lemmas 1 and 3, R(g) 0 is linearization unstable.

Note. Such an example is impossible on T as we showed earlier" /th 0,
tr h constant implies Th 0.

THEOREM 9. The equation R(g) n(n 1)/ro is linearization unstable
at the standard metric go on a standard sphere S o radius ro > 0 in I(/1 i] n >_ 3.

Proo]. Let h be an infinitesimal deformation which is divergence free. By
the lemma in 5, this means precisely that h 0 and tr h 0; i.e. h hrr.
Now suppose in addition that h comes from an actual deformation. Then
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by (9) we find that h must satisfy

1(9’) ro fs. ](h)2 d(go) - fs. ](Vh)2 d(g)

for all eigenfunetions J on S with eigenvalue n/ro ;i.e." for linear functions f
on R/1 restricted to S.

h hWe claim that there exists an satisfying ih 0, tr 0, but not (9’)
onS,n )_ 3.

Let h be a symmetric two tensor on 1.n+l. If tr h 0, h 0 and if the rows
of h are, as vectors in Rn/l, tangent to Sn, then the pull back of h to S is an
h such that tr h 0, h 0 on S. This is easily checked using the fact
that h 0 is equivalent to being orthogonal to Lie derivatives.
On 1 1, n )_ 3 an example of such an h is given by the following matrix:

hi(x x2, x3, x4, Xn+ 1)

0 X4X 2X2X X2X

X4X3 0 XlX4 2XlXa

2X2Xa XX 0 XX2

X.X 2XXa XX 0

0 0 0 0

0

where the last column of zeros is (n 3) X (n - 1). This h has its rows and
columns tangent to S, each row and column is divergence free and h is
symmetric.
Thus the pull back of h to S defines a symmetric two tensor h with ih 0,

tr h 0. However using known properties of the standard sphere, (see [5])
it is not hard to see that the first term in (9) vanishes, but the second does not.
Hence h cannot come from an actual deformation and the result follows.
Recently, using elliptic theory and results of HSrmander [23], Bourguignon-

Ebin and Marsden (not yet published) have shown thatthe set of TTtensorsh (i.e.
satisfying gih 0 and tr h 0) is infinite dimensional, as are those with support
in a given open set t M, if dim M _> 3. In fact, the dimensions are still
correct to make the same conclusion for h satisfying ih 0, tr h 0 and
h.Ric (g) 0 (since these equations define a non-elliptic operator from a
bundle with six dimensional fiber to one with dimension five for dim M 3).
However, from Rellich’s theorem, on a suitable ft where ] ) 0, (8’) cannot

be zero on an infinite dimensional space of h.
Hence we can conclude that, more generally than Theorems 8 and 9, R(g)

is linearization unstable at go if and only if DR(go) is not surjective, in dimensions
>3.
Of course as we have proved, in dimension 2, R(g) is linearization stable and

DR(go) is not surjective.
Open Case. n )_ 3, R(go) p where p constant h(n 1) ) 0where
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), spec(A) and Ric (go) is not parallel (in particular (M, go) is not a standard
sphere ).
Our conjecture of 1 can be formulated by saying that this case should be

linearization stable.

8. Isolated Solutions of R(g) O.

The aim of this section is to show that if g is flat and if g is near g and
R(g) >_ O, then g is also flat, i.e. to prove Theorem B. This is somewhat sur-
prising in that R(g) is a relatively weak measure of the curvature. "Near"
here means near in a W8’ topology, s > nip -t- 1. For instance, in three
dimensions near in W’, p > 3 suffices.
We begin by setting up some notations and lemmas.
Fix a smooth volume dt on M and define

"’ ---. R, g f R(g) dt.

(Compare with [7] where f R(g) d(g) is used; here t is fixed, independent of g.)

LEMMA 1. g ’ is a critical point o] iff Ric(g) 0 and dt c dry(g)
]or c a constant > O. At a critical point, the second derivative o] is:

(1) d2(g).(h, h) -5 h. ALh d,

1 f (d tr h) d - f (tih) dt.2

Proof.
Then

For g ", let p W"(M; R), p > 0 be such that dt p dry(g).

d(a), h f DR(g).h dt f (Atr h -t- titih h. Ric(g))p dry(g)

f (g / Hess p p Ric(g)).h d(g).

This vanishes for all h S’ ’" iff

(2) ,g*(p) gap-t- Hess p- p Ric(g) 0.

Contracting (2) gives

(3) (n- 1)Ap R(g)p, p > O.

From the proof of Theorem 1, 2 this implies R(g) constant >_ 0.
(3) over M gives

0 (n- 1)f Ap dry(g) R(g) f p d(g).

Integrating
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If R(g) constant > 0, then f p d(g) O, contradicting p > 0. Thus R(g) O,
so from (3), p constant c > 0, so that d c d(g). Since p constant
> 0, from (2), Ric(g) 0.
Now suppose g is a critical metric of , so Ric(g) 0 and d c d(g). Thus

g().(h, h) f D2R(g) (h, h) d

c f D2R(g).(h, h) dt(g).

The theorem now follows from Lemma 2 of 7.
Now let

and let

{g gs’ dg(g) c dg for a constant c > 0} C 8 ’"

:,/’ l )’" ,*, 1 C )’"

the volume preserving diffeomorphisms. By known results [14, 16] these are
smooth manifolds, with

,p ,{h $2 tr h constant}

nd

T,’ {X X is divergence free vector field covering }.

Recall that we set 3o’ {g ’ Ric(g) 0}, nd " is the flt metrics
(see 4).
We cn rephrase the first prt of lemm 1 by sying that the critical set

ofiso’, ’ Rememberthtif ,o ’’ ’’
LEMMA 2. Let g g2 ’ and assu’me F(g) F(g) i.e. g and g2 have

the same connection. Then (g) cp(g) ]or a constant c > 0 ((g) is the volume
element of g).

Proo]. Let (g) p(g) for p function > 0. However the covrint
derivatives of (g) nd (g2) re zero in the common connection, so p 0
nd thus p is constant.

LEMMA 3. Let gs ’ ’ and let F be the connection of gs and
the volume element of gs Then, , +,’( ,)

and his se is a smooh submani]old o] ’.

Proo]. To shov g’ , +’(gr ’), let (gr snd
F *g r’. Bylemms2, (F) cndso () cssdl. Thus
F ’, snd Clearly is fist. Conversely, let g ’ A’ so (F) ;.
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Now *g r8’ for some )8+1. by Theorem 6. However (*g) c
again by lemma 2. But (O*g) O*(g) *. By integrating over M,
we see that c , so is -volume preserving.
That the , +’ orbit of r ’ is smooth mnifold is proved in exactly

the sme wy s we did in Theorem 6.
The tngent space is

T(’ .)
where h is prllel nd tr h constant}

where h is prllel nd X 0}.

The two expressions correspond to the set equality in lemma 3 (see 4).
If it follows that 8 ’ (% 9 ’ is exactly the critical set of

LEMMA 4. In lemma 3, let S be a slice at gF (See corollary 2 o] Theorem 5).
Then ’ 9 ( S N is a submani]old o] S in a neighborhood o] g
(I] S is constructed as in [14], N :r’).

Proo]. From Theorem 6 we see that both N and Fr are obtained by
exponentiating $2’, so N Fr which is a smooth manifold.

LEMMA 5. Let P be a Banach mani]old and ] P --> 1 a C ]unction. Suppose
that Q P is a submani]old, ] 0 and d] 0 on Q and that there is a smooth
normal bundle neighborhood U o] Q such that i] E is the normal complement
to TQ in TP then d](x) is weakly negative definite on E (i.e. d](x)(v, v)

_
0

with equality only i] v 0). Let (, } be a weak Riemannian structure [14, 16]
with a smooth connection and assume that ] has a smooth (, }z-gradient, Y(x).
Assume DY(x) maps Ex to Ex and is an isomorphism ]or x Q. Then there is
a neighborhood U o] Q such that y U, ](y) >_ 0 implies y Q.

Proo]. These hypotheses are sufficient for the Morse lemma to hold in the
normal variables as is seen by a proof analogous to the Moser-Weinstein-Palais-
Tromba treatment of the Morse lemma (see [28], [42], [43]). The result there-
fore follows.
To second order, Brill [7] and Brill-Deser [8] show that the flat solutions

of R(g) 0 are isolated, and Kazdan-Warner [25, 5] show that near a flat
metric, to second order there are no metrics with positive scalar curvature.
The following extends these results to a full neighborhood of the flat metrics.

THEOREM 10. Let g. ’, s > nip + 1. Then there exists a neighborhood
U ’ o] g such that i] g U and R(g) >_ 0 then g is also in ’.

Proo]. Let d denote the volume element of gF, let F denote its Levi-Civita
connection, and let ’ -- R, (g) f R(g) d, as above. Also, let S
be a slice at g, and I, denote the restriction of I, to S.
The manifold N C S (lemma 4) consists of critical points of I,s and we have

formula (1) for dI,s Since ih 0 for h tangent to S at g. we get
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ifd2s(gF).(h, h) -- (h) d - (d tr h) dt.

Nowd2(gF) .(h, h) Oiff h 0;i.e. his tangent to Nas well as S.
Thus d2s(g) is (weakly) negative definite on a complementary bundle to N
at g and hence also in a neighborhood W of g in S.
From Lemma 5, it follows that N is a (locally) isolated set of zeros of I, in S.

In fact, there is a neighborhood V of N W in S such that if g V, I,(g) _> 0
then g N. Here we choose (h, h}g f (h.h - h.h)dl(g) and as in [14]
this has a smooth connection. Also, from the proof of Lemma 1, Y(g) Pg(1
) ’*p, a smooth vector field fulfilling Lemma 5 on S as one computes, where
P is the orthogonal projection to the slice.
Now let U )8/1’(V) be the saturation of V. By the slice theorem [14, 15]

this is a neighborhood of g in 8’.
By Lemma 3, the ,/1’ saturation of N is ’/% ,’ and by Moser’s

theorem [33, 14, 16] the ’/’" saturation of this is if’". Thus the ),/1., satura-
tion of N is

Let g U and suppose R(g) >_ O. Then there is :D’/’" (near the identity)
such that *g V. But (4*g) f R(4)*g) dt f R(g) ),J(4) dt >_ 0 (J is
the -Jacobian of ). Hence g N, so g ff’" i.e. g is fiat.

Remarks. 1. For dim M 2, we need not restrict to a neighborhood U.
Indeed, from the Gauss-Bonnet Theorem, if ff" , the Euler-Poincar
characteristic XM 0, SO that for any metric g, f R(g) dl(g) 0. Thus R(g) >_ 0
implies R(g) 0 implies g is fiat.

2. Usually one considers an integrated scalar curvature (g) R(g) d(g)
with volume element dry(g) induced from g rather than ,I,(g) f R(g) dt with
fixed volume element dt, as e.g. in [3]. One then has at a critical fiat metric

1 1
(4) d,(g).(h, h) -- f (h) d(gy) -t- - f (d tr h) dt(gF)

rather than

1 1
(5) d(gy).(h, h) -- f (h) dt(g) - f (d tr h) dt(g).

There is now an important sign change in the second term due to the con-
tribution of the volume element. Because of this sign change, a flat metric
g is a saddle point of the integrated scalar curvature, even when restricted
to a slice [14] whereas f DR(gF) (h, h) dry(g) <_ 0 on a slice. Thus the behavior
of the integrated scalar curvature is somewhat different from the pointwise
scalar curvature R(g) at g
Thus the indefinite sign in (4) is a property of the volume element and not

the pointwise scalar curvature.
3. Brill [7] uses (4), together with the condition tr h constant implied

by the first order equations DR(g). h A tr h 0 to deduce h 0 and
hence his second order result.
To extend this result to a full neighborhood of the flat metrics, one may not
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make use of the first order condit{on tr h constant. The indefinite sign
in (4) in fact is a nontrivial difficulty. We introduced the map I, with fixed
volume element d since this difficulty is not present in (5).

4. If g is near g and if R(g) >_ O, the proof actually shows that g *(g - h,)
for some near the identity and some parallel tensor h, In particular, any
other flat metric near g must be obtained this way by a coordinate change
and a "scale change" h,, which leaves the connection fixed. Thus the local
structure of the space of flat metrics is exactly what one might expect, from

().
As a consequence of Theorem 10 we have the following structure theorem

for o’ ’

THEOREM 11.
" . Then

Let s > n/p -- 1, dim M >_ 3, and i] dim M >_ 4, assume

is the disjoint union o] two C closed submani]olds, and hence o8’ is itsel] a
C closed submani]old o]’ similarly, No (o ) k_) is a union o] C
closed submani]olds of

Proo]. If dim M 3, Ric(g) 0implies gis flat. If dim M _> 4 and

’ , then from [22], ’ .’. Thus in either case

which from Theorems 3 and 6 is the disjoint union of C submnifolds.
Obviously ’ is closed. On the other hand, o ’ 8’ is closed in ’since o is closed in’ and theorem 10 implies that’ is open in o’.
This result completes the proof of Theorem A’.
Remarks. 1 If dim M 2, o ’ ’ also a C closed submanifold (4)
2. We are allowing the possibility that o ’-’ is empty, and if dim M 3,

we are also allowing the possibility that ’ is empty.
3. There are various conditions on M, dim M >_ 4, that imply a Ricci-flt

metric is flat; see [22]. If we adopt any of these condtions, then we can drop
the ’ assumption.

4. If dim M >_ 4, ’= , then o8’ is still the union o’= (o’-
o’) t;o’, with o8’ o’’ submanifold (Theorem 3). But we do not
know if o ’, if non-empty, is a submanifold.

5. Although o’ is a manifold (under the hypothesis ’ D’), the equa-
tion R(g) 0 is not linearizationstable at flat solution, as we hve seen in
Theorem 8. The difficulty can be traced to the fact that o8’ is a union of
closed manifolds of different "dimensionalities," ’ being finite-dimensional
modulo the orbit directions as was explained in 4.

6. The following comments, related to the above isolation results and calcula-
tions of Y. Muto [34], and which show Theorem 10 is sharp, were communicated
by P. Ehrlich.
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H. Karcher has observed that suitably deforming a fiat product metric go
on M T X S on the T factor produces a smooth curve g(t) of metrics
through go, non-fiat for 0 but with f R(g(t))(g(t)) 0 for all t. In this
example the integral is forced to vanish by the two-dimensional Gauss-Bonnet
Theorem. However P. Ehrlich and B. Smyth have observed (unpublished) the
following result in 9/5) which seems to show that the example of Karcher
is not entirely an accident of the two dimensional Gauss-Bonnet Theorem.
Let [go] be any Ricci fiat Riemannian structure in )/) ([go] denotes its equiv-
alence class). Then given any open neighborhood U of [go] in )/5) there is
a Riemannian structure [g] U with f R(g)(g) 0 but Ric(g) 0.
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