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LINEARIZATION STABILITY OF NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

ARTHUR E. FISCHER! AND JERROLD E. MARSDEN!

0. Intreduction. In this article we study solutions to systems of nonlinear partial
differential equations that arise in riemannian geometry and in general relativity.
The systems we shall be considering are the scalar curvature equations R(g) = P
and the Einstein equations Ric (g) = 0 for an empty spacetime. Here g is a rie-
mannian metric and R(g) is the scalar curvature of g, p is a given function, Weis
a Lorentz metric on a 4-manifold and Ric (@g) denotes the Ricci curvature tensor
of (4)8.

To study the nature of a solution to a given system of partial differential equa-
tions, it is common to linearize the equations about the given solution, solve the
linearized equations, and assert that the solution to these linearized equations can
be used to approximate solutions to the nonlinear equations in the sense that there
exists a curve of solutions to the full equations which is tangent to the linearized
solution. This assertion, however, is not always valid. In our study of the above
equations we give precise conditions on solutions guarantecing that such an
assertion is valid—at these solutions, the equations are called linearization stable.
We also give examples of solutions which are not linearization stable. Although
such solutions are exceptional, they still point up the need to exercise caution
when such sweeping assumptions are made. .

The term “stable™ has the general meaning that a stated property is not de-
stroyed when certain perturbations are made, as in structural stability or dynam-
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ical (Liapunov) stability. For linearization stability the persistent property is
“finding solutions in a given direction”. If the equations are linearization stable,
this property is not destroyed when we pass from the linearized equations to the
nonlinear ones by adding on the “higher order terms”.

The general set-up is as follows: let X and ¥ be Banach spaces or Banach
manifolds of maps over a compact manifold M, and let @: X —» Ybea given map,
€.g., a nonlinear differential operator between X and Y ; we assume @ itself is a
differentiable map. Thus for yye ¥

) P(x) = yo

is a system of partial differential equations.
Let T, X denote the tangent space to X at x € X and let

D(D(x) = Tm(x): T.X - Tq)(,)y
be the derivative of @ at x. Thus to each solution Xxo of (1),
#))] DO(x)-h =0, heT. X

~ is the associated system of linearized equations about x, and a solution 4 € T.X
to (2) is an infinitesimal deformation (or first order deformation) of the solution
Xo to (1). ,

Working in charts, the sum x, + / is then to first order also a solution to (0,
since

D(xo + h) = D(xo) + DP(xo)-h + higher order terms
= y + higher order terms.

We now ask if there exist a > 0 and a curve x(4), JA| < &, of exact solutions
of (1), ®(x(2)) = yo which is tangent to 4 at xo; i.e., such that x(0) = x, and
x'(0) = h. If there exists such a curve for each solution 4 to (2) we say that the
equations (1) are linearization stable at x,; the curve x(R) is a finite deformation
tangent to h.

We apply our general set-up and procedures to study the linearization stability
and instability of the scalar curvature equation in riemannian geometry, and the
Einstein empty space field equations of general relativity, We also study the pos-
sibility of isolated unstable solutions to these equations.

In the course of proving our results, we shall prove that several subsets of the
space of riemannian metrics .# and its cotangent bundle 7*.« are actually sub-
manifolds; these submanifolds are of interest to geometers and relativitists.

We summarize our main results as follows:

L. Riemannian geometry. Let M be a a compact C> manifold, dim M = 2, and
p: M — R a C* map.

LA. LINEARIZATION STABILITY. The equation R(g) = p is linearization stable
about any solution g, if either

(@) dim M = 2;
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(b) dim M = 3 and p is not a constant 2 0; or

() dim M = 3, p = 0.and Ric (g) # 0 (here Ric (g) is the Ricci tensor of go).
If dim M = 3, and either

(d) p = constant > 0, and (M, g) is a standard n-sphere in R**; or

© p =0 and go is flat,
then R(g) = p is not linearization stable around g,.

These results occur in suitable Hs, W*?, or C* function spaces.

L.B. SUBMANIFOLDS OF /. Let #,= {ge: R(g) = p} denote the set of
riemannian metrics with prescribed scalar curvature. Assume that one of the following
conditions is satisfied:

(@) dim M = 2;

(b) dim M = 3, p is not a positive constant;

(c) dim M 2 4, p is not a positive constant, and if p = 0, then there exists a flat

riemannian metric on M.
Then 4, is a C= closed submanifold of 4.

Also, the space % of flat riemannian metrics on M is a C™ closed submanifold
of 4, and has the structure of a homogeneous fibre bundle.

LC. IsoLATION. If gr € &, there exists a neighborhood U, < .# such that
ifg € U, and R(g) 2 O, then g is also flat. Consequently, .4, is the disjoint union
of the closed submanifolds My — F and F, under the hypothesis that F #
@ (not needed if dim M = 2 or 3).

11. General relativity.

I1.A. LINEARIZATION STABILITY OF THE EINSTEIN EQUATIONS. Let V be a spacetime,
dim V = 4, and Wg a Lorentz metric satisfying Einstein’s empty space equations
Ric (Wg) = 0. Let M denotea compact spacelike hypersurface with metric gand
second fundamental form k. Assume that (g, k) satisfies conditions
" Ce:Ifk =0, then g is not flat;

Cs:If Lxg =0 and Lx k = 0, then X = O (Lx denotes the Lie derivative by

the vector field X);

Cy: tr k (= the trace of k) is constant on M.

If M is noncompact, one imposes asymptotic conditions, and we assume

s g is complete and asymptotically flat, k is asymptotically zero;

Cs: If Lxg = Oand Lxk = 0, and X is asymptotically zero, then X = 0.

Then Ric (@g) is linearization stable on the appropriate maximal Cauchy develop-
ment of M. .

I1.B. SUBMANIFOLDS OF T*.#/ AND LINEARIZATION STABILITY OF THE CONSTRAINT
EQUATIONS. Let G = {(g, ®) e T*.t(: H# (g, %) =0} and €5 = {(g, 7)) € T*. 4 : 3m
= 0} denote the set of solutions to the Hamiltonian and divergence constraint on a
compact spacelike hypersurface M. Replace k with = in conditions Cyx, Cj, and C,,.

ILB.1. The set Gx = (€x —F % {0})) U (F x {0)) is the disjoint union
of submanifolds of T* 4, and & x {0} is closed. G itself, however, need not be a
submanifold as €x» — F x {0} is not closed.

The Hamiltonian constraint equation (g, ) = 0 is linearization stable about a
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solution (g, =) if and only if (g, %) satisfies condition C.e <> (g.7) ¢ & x {0}.

II.B2 Let (g,7) €¥;s satisfy condition Cs. Then s is a C™ submanifold of
T*.4 in a neighborhood of (g, 7). The divergence constraint 8, x = 0 is linearization
stable about a(g, )€ € if and only if condition Cy is satisfied.

11.B.3. The constraint set € = €.» N €5 is a C submanifold in a neighborhood
of those (g, &) € € that satisfy conditions Ce, Cs, and C..

IL.C. IsOLATION. There are no isolated solutions tot he empty space constraint
equations of general relativity. However, the solutions & x {0} c T*.# are isola-
ted among those solutions which also satisfy tr z = 0.

As a consequence of 1.C, in a neighborhood U, of a flat metric, (i) there are no
metrics with R(g) 2 0 and R(g) # 0, and (ji) R(g) = 0 implies g is flat, so the flat
solutions of R(g) = 0 are isolated solutions. This result extends to a full neighbor-
hood of the flat metrics the “second order version” of these results obtained by
Kazdan-Warner [21] and Brill {5]. Our isolation result 1.C. was inspired by the
work of Brill. ’

In [6], Brill-Deser obtain to second order similar results for the linearization
stability and the isolation problem of the constraint equations, and in [10), [11],
Chogquet-Bruhat and Deser prove that Minkowski space (which satisfies conditions
&/ and Cj) is linearization stable.

The following simple but useful test for proving linearization stability will be our
basic technique. !

THEOREM. Let X, Y be Banach manifolds and ®: X — Y be C.. Let xoe X
and &(x0) = y,. Suppose that T®(xo) is surjective with splitting kernel. Then the equa-
tion O(x) = y, is linearization stable about x,.

ProoF. From the implicit function theorem, the set @-1(y,) is a C! submanifold
near xo with tangent space the kernel of Td(x,). Thus ke T, X is a first order
deformation iff he ker T®(xp) iff he T (9-'(»0)), and since @—1(y,) is a submani-
fold, there exists a curve x{(1) € ®-1(y,) which is actually tangent to 4. [

REMARKs. 1. If T®(xo) is surjective, then @ maps a neighborhood of x, onto a
neighborhood of y,. '

2. In this paper we work with Hilbert manifolds so that the splitting condition
is automatic. However, the Banach space context is important as the spaces Ws»
are often needed; see 1.2.1, Remark 4.

In the cases of immediate concern, the hard part of the linearization stability
problem will be to establish surjectivity of the appropriate map under as minimal
assumptions as possible. This is done pretty much on an ad hoc basis by using vari-
ous elliptic operator methods.

If TO(xo) is not surjective, the equation @(x) = y, may still be linearization
stable about x,. This actually happens for the equation R(g) = p, p = constant = 0,
on a 2-dimensional manifold M; see 1.2.3, Remark 1.

On the other band, even if ®~1( y,) is a submanifold of X, the equation @(x) = y,
need not be linearization stable around a solution Xo.

ExAMPLE 1. Let @: R? — R, (x, y) + x(x2 + y2). Then 9-1(0) = {(0, y) :ye R}
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= {y-axis} is a submanifold of R?, and d®(0, 0) = 0, so that any h = (h,, k) is a
solution to the linearized equations d®(0, 0)-k = 0. However, if &, # 0, h cannot
be tangent to any curve (x(2), (1)) € @1 (0) of exact solutions of #(x, y) = 0.
REMARK. The difficulty in this example is that the tangent space Ti0(® ! (0))=
R is smaller than the formal tangent space ker (d 9(0, 0)) = R?; the formal tangent
space therefore contains nonintegrable directions. A similiar phenomenon occurs
for the equation R(g) = O (dim M = 3) which is linearization unstable about a
flat solution but whose solution set .4, is a C* submanifold; see 1.5.2, Remark 4.
In the applications we shall see that if equation (1) is not linearization stable at a
solution xo, and if & is a solution to the linearized equations (2) at xo, then it is
possible to get an extra condition on 4 in order that it be tangent to a curve of exact
solutions of (1). For suppose x{2) is a curve of solutions to (1) with (x(0), x'(0)) =

(x0, b) and h a solution to (2). Differentiating $(x(1)) = yo twice and evaluating
at 1 =0 gives

o) I = Dox@)-x )|, = Do) h=0

and

I <) = D2O(xD)-(* W, X W) | _ + DOAxD)-x"D |,
= D905 ) + D050 °@) = 0,

so that (2) and (3) are necessary conditions on the derivatives x’(0) = 4 and x"(0)

of a curve x(A) € 9~1(yo). Condition (2), the linearized equations, is a condition on

h alone; (3) is then a condition on x“(0) in terms of a solution A. If, however, the

second term involving x“(0) could be made to drop out, (3) might provide a

“second order” gondition on A. For example, if @: X+ R and xo is a critical
- point of @, d®(xe) = 0, but d%P(xp) # 0, then (3) becomes

@ d2P(xo0)-(h, h) = 0,

a second order condition on A4, which may not be implied by the first order equa-
tions (2). In that case solutions A to (2) which do not also satisfy (4) cannot be
tangent to any curve x(1) € ®~(y,). When this occurs, we say that (4) is an “extra
(second order) condition” on A. '

If d2®(xg) = 0, then of course (4) does not generate an extra condition on A.
However, if (1) is unstable, we can get an extra condition by going to higher order
deformations. For example, by considering third order derivatives, we have

3)

® LD | = d0-th b )

+ 3d%P(xo) - (h, x"(0)) + dP(x0)-x™(0) = 0.

Thus if dP(x) =0, d2P(xg) = 0, but d3P(xp) # O, then there is an extra third
order condition

© d3P(xo)-(h, h, h) =0
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on first order deformations A.

ExXAMPLE2. Let®: R? - R,(x, )+ x2 ~ y2. Then 0710) = {(x,y) : y = £x},
d®(0, 0) = 0, and the extra second order condition on 4 = (A, k) is d29X(0,0)-
B, =2 — ) =0<sh, = + by,

ExampLE 3. Let @(x, y) = X3 + xy2 as in Example 1. Then do(o, 0) = 0 and
d2$(0, 0) = 0. But we now have a third order condition on # = (M, k),

d=0(0,0)-(h, b, k) = 6hy(2 + 1) = O<o h =(0, hy).

REMARKS. 1. If in these examples the extra condition on 4 is satisfied, then 4 is
actually the tangent to a curve (x(2), y(2)) € ®-1(0). In our later applications, we will
not always know if satisfaction of the extra condition will be sufficient to find a
curve x(2) € -1(y,) tangent to /; see the end of 1.4.

2. In Example 2, when d*h(xy) # 0, the third order equations (5) do not provide
an extra condition on first order dcformations.

In the main applications we have in mind, the following example will be more
generic:

EXAMPLE 4. Let X = H¥T/{(M)) and Y = H*-¥TZ(M)) be the linear spaces of
Sobolev sections of tensor bundles over a compact manifold M with volume ele-
ment du (see 1.1), and let

: H¥(THM)) — Hs-XTL(M)) =

be a nonlinear differential opc-ator of order k. If for y, € ¥, &(x) = yy is not lin-
earization stable about a solution x, € X, then 7 = D®(xp) is not surjective, and
this condition can bz expressed via the Fredholm alternative by the fact that

ker 7:c # {0}’
where 7}, : H(TH(M)) — H*~*(T}(M)) is the L-adjoint of 7,,, defined by

fun hau=§, s -Goh dn

Thus if fe ker 7%, f+# 0, transvecting (3) with fand integrating over M gives the
extra condition on A,

™ frpoey-6.hydu=o,
since the term involving_ x"(0),
fr ot x" O du = (2, 1)-x" @ du = 0,

drops out for x"(0) arbritrary.

REMARKS. 1. The extra condition (7) is now an integrated condition, correspond-
ing to the fact that D®(x,)* is an L, -adjoint; i.c. we do not get an extra condition
on h until we integrate (3) with f'e ker (D®(x,))* so that the term involving x"(0)
drops out. Equation (3) itself is just a pointwise condition on the acceleration
x"(0) in terms of 4 and does not lead to an extra condition on .
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2. In this example and in our later applications there will be an “independent”
extra condition for each dimension in ker ( D®(xo))*, as is evident from (7) (provid-
ing (7) really is an extra condition; see Remark 3). Note that in Examples 2 and 3,
ker (d9(0, 0))* =R, and there is one extra condition on % as expected.

3. It may happen that solutions to the linearized equations automatically satisfy
(7) for all fe ker 7%,; e.g., this occurs when D®(xo) is not surjective but ¢(x) = y,
is linearization stable. This actually happens for the equation R(g) = p = constant
2 0 when dim M = 2. Of course, in these cases we can never find an extra condi-
tion on first order deformations & by considering higher order variations of @(x)
= Yo-

4. In certain circumstances, the extra integrated condition implied by lineariza-
tion instability can be converted to a pointwise condition on first order deforma-
tions. This situation signals that an even stronger type of instability is occurring;
viz., that xo€ § = @-1(y,), and that S is an isolated subset of solutions; i.c., there
exist no solutions near S which are not in S. This situation actually occurs in a
neighborhood of the flat solutions of R(g) = 0; see L.5.

In Part 11 of this paper we will consider the problem of linearization stability of
the Einstein equations, a system of nonlinear evolution equations. The problem of
linearization stability for a nonlinear evolution equation is interesting when there
are some nonlinear constraints on the initial data of the form @(x) = y,. Then
linearization stability of @ implies that the corresponding evolution equation,
say

® X = F(x),

(is also linearization stable, if it satisfies suitable uniqueness and existence
theorems. Indeed, we can argue formally as follows: let @(xo) = y, and let x(7)
satisfy X = F(x), x(0) = xo. Let h(t) satisfy the linearized evolution equations
© h(e) = DF(x(1))-h(r)
with initial condition 4(0) satisfying the linearized constraint equation

DP(xp) - h(0)=0.

Let x(2) be a curve through xo with (d/d2) xo(3)|1=0 =#(0). Now solve (8)
with initial data x¢(2) to get a one-parameter family of solutions x(t, 1),

(10 X, ) = F(x(1,2)), -

with x(t, 0) = x(t) and x(0, 1) = x¢(1). Then x(¢, 2) is a curve of solutions of (8)
which is tangent to the linearized solution A(r); i.e., (x(t, 1), dx(z, 2)/dA |1=0 =(x(2),
h(t)). For by differentiating (10),

d . _d _d
TN =G D L=o

= DF(x(t, 0)-55 0.3 _ = DF0). 5 0, _
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and

dx d.
aon| = SR, =Ho;
thus

dx
20, z)L:o = h(r)

since both sides satisfy (9) with the same initial conditions. :

For these reasons, linearization stability of the Einstein equations reduces to the
linearization stability of the constraint equations on the initial Cauchy data (g, 7)
(although in the above argument, one needs uniqueness of solutions for the
equations (8) and (9); for the Einstein equations one has uniqueness only up to
coordinate-transformation so that a further argument is needed; see IL.5). Since
these constraint equations involve the scalar curvature rather than the Ricci curva-
ture of a riemannian metric g, the linearization stability of the Einstein equations
is similar to the scalar curvature equation in the riemannian case. Thus because
of the dynamical aspect of Lorentz manifolds (see e.g. [1], [14)), Ricci-flat Lorentz
manifolds are in some ways more manageable than Ricci-flat riemannian
manifolds. For example, we have not been able to establish whether Ric(g) = O is
lincarization stable around a nonflat Ricci-flat solution; indeed 'the ‘existence of
complete ricmannian nonflat Ricci-flat metrics is unknown. r=%\

During the course of this work, many pcople were consulted. We would espe-
cially like to thank Professors J. P. Bourguignon, D. Ebin, J. Guckenheimer, R.
Palais, A. Weinstein and J. A. Wolf. The final form of Theorem 1.2.1 was obtained
jointly with J. P. Bourguignon and 1.3.1 with A. Weinstein.

For further details of the topics and results presented in this paper, see [16], [18).

1. DEFORMATIONS OF RIEMANNIAN STRUCTURES

L1. Some preliminaries. Throughout, M will denote a C* compact connected
oricnted n-manifold without boundary, n > 2, T%(M) the bundle of p-contra-
variant and g-covariant tensors on M, and C*( T4(M)) the C* sections, 0 < k < co.
Let g, be a fixed “background” C* riemannian metric on M with associated co-
variant derivative V: C¥T5(M)) ~ C*-! (T2, (M)) and volume element du,.
Then for sections #, ;€ C<(T?(M)) and for integer s 2 0, we let

tntdm = 5 j' (Vi (%), Vitfx))s dps (),
hd o=isisJd M

the H* inner product on sections C<(T%(M)). In the above V/ = VoVo..-oV js
the covariant derivative iterated / times, and { , ), is the pointwise inner product
on tensors at x. We let || ||, denote the associated H* norm, and let H*(T(M))
denote the completion of C=(T?(M)) in this norm. Thus H¥ TI(M)) is the Sobolev
space of H* sections. While the norm depends on g,, the space and thé topology
do not.

We will make use of the following two basic Sobolev theorems that are standard
in functional analysis (see [27] for more information and references):
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@) For s> nf2 + k, H(TYM)) < C{T)M)), and |[t]c < (constant) {¢[s
for t € H*(T%(M)), where

Itle = s“g{ 11> V), -+, UVE 2(x) .}

(' i) Fors > nIZ, H: is a ring under pointwise multiplication; i.e., if B: THM) x
TS (M) - T? %+ (M) is some pointwisc bilinear map, then B mduccs a continuous
bnlmear map of the corresponding Sobolev spaces, and

1B(ty, )llr < const llallsr ezl
We shall refer to this property as the Schauder ring property. More generally, if

s > nf2, multiplication from H* x H* to H* iscontinuous,0 < k < s.
For s > nf2, we let

H* = H*(M; R),the H* functions on M;
= H*(Ty(M)), the H* vector fields;
83 = H¥(T3,,.(M)), the H* 2-covariant symmetric tensor fields;
§? = H*(T},,.(M)), the H* 2-contravariant symmetric fields;
2+ = {the group of H+*! diffecomorphisms on M};
= .° (1 83, the space of H* riemannian metrics on M,
where ./ is the space of continuous riemannian metrics.

4* < §}is an open convex cone, so that for ge ., T, 4* = S; and T./*
=.4" x S}, the tangent bundle of .4*.

For g € .4, we let dy, denote the associated volume element.

As in Ebin [13], when the “s™ is omitted on any of the above spaces, “c0” will
be understood; e.g5, 4 = ﬂ.>.,z.d’ is the space of all C* riemannian metrics on M.
" For ge 4", X e 2°%, and he S}, we let Lyge S} be the Lie derivative of
£ with respect to X, and ;4 € 2 the divergence of 4. In local coordinates, Lxg
= Xas + Xj; and Jh = — g ki, (a vertical bar denotes covariant derivative
with respect to the metric g).

Let a, : 2°+1 — §; denote the map X~ Lyg. Using g to define the L, inner
products

X = [ G, X)) dud)

(k) = K1), 1) i)
we can see from Stokes’ theorem that a, and 2§, are adjoints:
(ag X, h) = 2X, 3, h), XeZ*+, he S3*.

Also a; has injective symbol, so from Berger-Ebin [4] (modified to use an H**1
metric), S; splits as a L, orthogonal direct sum
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()] 8} = S ® a2+

where S = ker 0z = {h e 53:8:h =0}, the divergence free symmetric tensors.
Thus each 4 € S3 can be decomposed as

@ h=h+ Lyg

where 3.4 = 0 and where the pieces /i and Lxg are unique and orthogonal in the
L, metric. We will refer to this decomposition as the canonical decomposition of
he S}

Note that the splitting in (1) is not valid if gisonly of class H*, since then ay(X)
= Lxg need only be of class H+-1. If however g is a flat riemannian H* metric, then
the splitting (1) is still valid (see L.3). ‘

In the decomposition (2), the vector field X satisfies

&) 0h = 0Lxg = AX + (d5X) — 2Ric(g)- X

where (d5.X)* denotes the vector corresponding to the 1-form d5.X; in general we will
let ¢2 denote the totally contravariant form of any tensor ¢, and ¢* denote the totally
covariant form; e.g., if ¢ is of type (3), (1¥) = gP gk pi;y and ()i = 8iat%,
AX = ((d3 + 3d)X")* is the Laplace-de Rham operator acting on vector fields,
0X = — div X = — X is the divergence of X, Ric(g) = Ry is the Ricci tensor of
g and Ric(g)-X = R;; X7, The above computation uses the contracted Ricci
commutation formula X’; — X/;; = R; X7, and the Weitzenbdck formula for
the Laplace-de Rham operator (sce e.g. Nelson [29]), AX = AX + Ric(g)-X
where 4X = — git Xi;,, is the “rough Laplacian” on vector fields, Throughout
we use the conventions of Nelson [29] and Lichnerowicz [25].

If X = grad ¢ is a gradient vector field, then Lyg = 2 Hess ¢ =2VV¢ = 2¢45,
the Hessian or double covariant derivative of ¢, and (4X)* + do.X = 4dg + dag
= 2dA$. Thus we have the identity ) . .

@ 6 Hess ¢ = (d4gy — Ric(g)-dg

which we shall need in the proof of 1.2.1. By contracting the Biahchi identities
one also has

® : d Ric(g) = — § (d(R(g)

where R(g) = R; is the scalar curvature of g.

Finally, as in [13], we let 4: 9**1 x 45— 43, (1, £) ~ 5°g denote the right
group action of 2*+1 on .4+ by pullback of metrics (locally this is just coodinate
transformation of g by 7). Fixing ge.4*, let 0, = {5"g: 7 € 2511} be the orbit
of g. For g € 4°t1, @, is a C! submanifold and T, Oy = a{(Z*+Y). Thus in the
decomposition of ke Tpndf*, h =k + Lyg, the Lyg picce is tangent to the orbit
which is the direction of isometric changes of &, while the orthogonally directed &
piece is in the direction of “true” geometric: deformatiors. : ‘

For g € 4/°, the orbit map ¢, : D*+1 - g3, ¢ ++ @*g is only continuous and need
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not be C!. Thus @, need only be a C? submanifold. This is another reason why the
splitting (1) is not valid for g € .«#* (unless g is a flat H* metric); however for g €
11, the orbit map ¢, is C.

1.2. Deformations of the scalar curvature equation. Let s > n/2 + 1, g€ * and
let R(g) denote the scalar curvature of g. Consider R(-) as a map

R(:) : 0> - H*2, g+~ R(g).

Since R(g) is a rational combination of g and its first two derivatives, we sce from
the Schauder ring property that if s > n/2 + 2, Risa C* map. This is also true
for s > nf2 + 1 if we use the fact that the second derivatives of g occur linearly.

Thus we consider R(-) to be a nonlinear second order differential operator.

Forge 4t s> nf2 + 1, we let

7¢ = DR(@) : T, M* = S; » TrigH*"2 = H*2

denote the derivative of R(-). A classical computation, given for example in [25],
shows that for h € S}

14(h) = dtr h + 33k — h-Ric(g).

Here tr h = g% h;; is the trace of h, dtr h = — gi(tr h)),;is the Laplacian, 66k =
h¥,,); is the double covariant divergence, Ric(g) € S;~2 is the Ricci tensor of g, and '
h-Ric(g) = {h, Ric(g)) = g¥g*h;, R; is the pointwise contraction.

Welet 7§ : H® — S372 be the Lo-adjoint of y,, defined by

- _f TS B dpg = f u<S TP dpte.
.Using Stokes’ theorem, r2/ is easily computed to be

73S = g4f + Hess f — f Ric(g).

A somewhat remarkable property of the scalar curvature map is that locally it is
almost always a surjection.

L2.1. THEOREM. Let g € M*, s > nf2 + 1, and suppose that

(1) R(g) is not a positive constant, and -

(2) if R(g) = 0, then Ric(g) # 0.

Then R(-) : 4* — H*~2maps any neighborhood of g ofito a neighborhood of R(g).

Proor. First assume 5 < co. It then suffices by the standard implicit function
theorem to show that 7, : S} — H*-2 is surjective. From elliptic theory (see e.g.
[4]), this follows if 7§ : H* — S3~% is injective and has injective symbol. For §, €
T* M (the cotangent space at x), the symbol o¢,(785) : R— TeM ®uyn T M
(® 4y means the symmetric tensor product) is given by s+ (—g [&:12 + £&:® £J)s,
s€ R, which is clearly injective for£, #£ 0 andn = 2.

To show 7} injective, assume f € ker 73, so that
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(@ 72S = 84f + Hess f — f Ric(g) = 0.
Taking the trace yields
(b) (n—=14f= R(g)/.

First we consider case (2). Thus if R(g) =0, Af = 0, so fis a constant. Thus from
(a), fRic(g) = 0, and since Ric(g) # 0, J = 0. Thus in case (2), 7% is injective.

Now consider case (1). We shall show that if S # 0, R(g) = constant > 0. Tak-
ing the divergence of (a) yields

© —dAf + & Hessf + df-Ric(g) — fo(Ric(g)) = 0

(where df- Ric(g) = f; R/) and using the identities § Hess f—dAf + df-Ric(g) =0,
and J Ric(g) = — (1/2)d(R(g)), (c) reduces to —(1/2) fd(R(g)) = 0. If f is never
zero, then d(R(g)) =0 so R(g) = constant, and in fact from (b) an eigenvalue
of the Laplacian, and thus > 0. If R(g) =0, then f= constant # 0 = Ric(g)
=0, contradicting (2), and R(g) = constant > 0 contradicts (1). Thus find x,
€ M such that f{x;) = 0. We must have df(xo) # 0; indeed, if df{xg) = 0, let 7(t) be
a geodesic starting at x, and let h(f) = f (7(1)). Combining (a) and (b) we have

(d) Hess /' = (Ric(g) ~ (1/(n — D)gR@)/.

Hence k(z) satisfies the linear second order differential equation

h*(1) = (Hess ;0 -(r' (0,7 (1)
={(Ric(g) — (n — D1 g R(&)),00 - (7' (), 7'(1)} A1)

with 4(0) = 0 and #'(0) = df(y(0)) -7'(0) = 0. Thus fis zero along 7(7) and so by
the Hopf-Rinow theorem on all of M. Thus df cannot vanish on f-1(0) so 0 is
a regular value of f and so f-1(0)isann — 1 dimensional submanifold of M.
Hence d(R(g)) = 0 on an open dense set and hence everywhere. Thus as before
R(g) = constant 2 0, contradicting (1) or (2). Thus if (1) and (2) hold, f = 0,
7z is injective, 7, is surjective, and R(-) is locally surjective.

The case s = oo requires some additional arguments. One needs to show that the
image neighborhood of R(g) can be chosen independent of s. This is possible be-
cause one.can construct local right inverses for R by maps independent of s; they
depend only on the right inverse for the derivative and the geometry of the space.
The idea is similar to one occurring in Ebin [13] and works quite generally when
we have L, orthogonal splittings for elliptic operators. []

Note. We thank J. P. Bourguignon for pointing out the substantial improvement
that 77 f=0, f# 0implies R(g) = constant. Previously we had condition (1)
replaced with the condition R(g) < 0. Bourguignon’s argument appears in [37].

RemMarks. (1) If Ric(g) = 0, ker 7§ = {constant functions on M }, so that 73 is
not surjective. It is not known if there exist any nonflat Ricci-flat complete rieman-
nian metrics. If there are none, then condition (2) can be replaced by (2)': If R(g)
= 0, then g is not flat.



LINEARIZATION STABILITY 231

If dim M = 3, then Ric(g) = 0 implies that g is flat so that (2) can be replaced
by (2).
(2) f M = S* has the metric g, of a standard sphere of radius r, in R**!, then

Ric(g) = (51 )eo and R(gy = 72210
0 0

so that fe ker 72, if

Hess f= (Ric(go) - _l T 80 R(gu))f =~ 7',2;80-
0

But the eigenfunctions of the Laplacian with first nonzero cigenvalue n/r3 also
satisfy Hess /= — (f/r3) go. Hence again 7, is not surjective, and ker 73, = { fe H*:
Af=(n/r3)}.

Conversely, a theorem of Obata [31], {32] states that if a riemannian manifold
admits a solutionf # 0 of Hessf = — c%fg, then the manifold is isometric to a
standard sphere in R*+!1 of radius 1/c.

If in Theorem 1.2.1., R(g) = constant > 0 and 7, is not surjective, then there
exists a solution f # 0 of

© Hess / = (Ric(g) — (n — ' g R(g))/.

" This equation is similiar to Obata’s equation, and it is reasonable to conjecture
that a solution " # 0 of (¢) implies that the space is a sphere. For example if g is an
Einstein space, Ric(g) = Ag with 2 > 0, then the space is a standard sphere. In
fact, if Ric(g) is parallel (e.g., g is a product of Einstein spaces) then Obata’s proof
goes through and proves that (e) has solutions only on the standard sphere.

Thus it is reasonable to conjecture that y, is surjective unless (M, g) is flat, or
unless (M, g) is a standard sphere. This would be quite a nice result.

(3) Also note that among the spaces with positive constant scalar curvature, if
R(g)/(n — 1) is not an eigenvalue of the Laplacian, 4f = (R(g)/(n — 1))/, then
T« is surjective.

(4) If R(g) is not a constant 2 0, then from surjectivity of DR(g), it follows that
R(-) is locally surjective inan H*neighborhood of g. Thus if p is sufficiently ncar
R(g) in the H: topology, p is the scalar curyature of some metric. An analogous
theorem holds using W*? spaces. In fact, Kazdan and Warner [22] have pointed
out that local surjectivity of R(-), together with an approximation lemma, can be
used to prove their results concerning what functions can be realized as scalar
curvatures for dim M = 2. A variant of this technique yields, for example: If n 2
3 and there isag e #* with R(g) = 0, Ric(g) # 0, then R(-) : 45— H*~2 is sur-
Jjective; i.e., every function can be realized as a scalar curvature of some metric. This
follows from local surjectivity of R(-), together with [22, Theorem C).

(5) Using some recent sharp elliptic estimates of Nirenberg and Walker [30]
one can extend much of the above work to noncompact manifolds satisfying suit-
able asymptotic conditions. We discuss this aspect in [18].
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Forp:M— RaC=map,s > nf2 + 1, we set
A= {ge*:R(g) =p} and #p={ge : R(g) = p},

sets of metrics with prescribed scalar curvature p- Using 1.2.1, we can now prove
that under certain mild conditions on p, 4, is a C> submanifold of .¢>.

1.2.2. THEOREM. Let p: M - R bea C~ map, and s > nf2 + 1. If either

(@) dm M = 2, or

(b) dim M = 3 and p is not a constant = 0,
then M, (respectively, .4¢,) is a C* closed submanifold of 4+ (respectively, ).

If dim M 2 3, p =0, g € 4} (respectively, g € 4% and Ric(g) # O (or if
dim M =3, g is not flat), then A3 (respectively, .4y is a C*= closed submanifold
in a neighborhood of g.

Proor. The cases (b) and p = 0 are a direct consequence of the surjectivity of
DR(g) and the inverse function theorem.

If dim M = 2, we need only consider the case p = constant 2 0 since otherwise
DR(g) is surjective. If p =0, then .#§ = %* = {the set of H’ flat riemannian
metrics on M }, which from 1.3.3 is a C* closed submanifold of 4¢¢; similiarly for
M 0= F.

If g € .4 and R(g) = p = constant > 0, then (M, g) is H* isometric to (52, go), '
a standard 2-sphere in R?® with radius ry = (2/p)2. Thus 43 = D*+1 (g) = {ge
S : p°g = g for some ¢ € P*+1} = @, the orbit through go, which by [13] is a
C™ closed submanifold of .4 since gy is C; similiarly .4, = 9(go) is a C* closed
submanifold of .. O

ReMARES. 1. If R(g) = p = constant > 0, dim M = 2, DR(g) is not surjective
but .#, is still a submanifold, as remarked in the introduction; sce also 1.2.3,
Remark 1.

2. We are not making any statements about whether 4, is empty or not. This is
another question. For example, Lichnerowicz [26] has shown that for spin manifolds
with 4 genus not zero, 4, = @ if p 2 0,p #0. However Kazdan and Warner
[21], [22] bave shown that if n > 3 and p is negative somewhere, or if n = 2 and
psatisfies a sign condition consistent with the Gauss-Bonnet formula, then.#° # @&.

3. If dim M = 1, then M = S'and R(g) =0 for all metrics in #". Thus, #; = @
if p # 0, 43 = .4 and R(-) is not locally surjective around any g.

As another application of 1.2.1, we have the following result concerning the
linearization stability of the equation R(g) = p- -

1.2.3. THEOREM. Let goe.4* (respectively, g, € ), and let p = R(gy). Assume
that one of the following conditions is satisfied: .~ _

(a) dim M = 2;

(b) dim M = 3, p is not a constant > 0; :

(c) dim M 2 3, p = 0, and Ric(go) # O (or if dim M = 3, g, is not flat).
Then R(g) = p is linearization stable about gy; i.e. for any h €.5; (respectively,
he ) satisfying the linearized equations



LINEARIZATION STABILITY 233

DR(go)-h = A tr h + 36k — h-Ric(gg) =0

there exists a C*™ curve g(A) € 4} of exact solutions of R(g) = p such that (2(0),
£(0) = (g0, h).

ProoF. Cases (b) and (c) are a consequence of 1.2.1 and Theorem 1 in §0, the
case s = o0, as before, requiring a special regularity argument.

Suppose dim M = 2; we will show directly that R(g) = p is linearization stable
about a solution g, € .#* by showing that we can integrate any first order deforma-
tion & to a curve of exact solutions. We need only consider the case p = constant.
= 0; otherwise stability follows as in case (b). Thus (M, g) is H* isometric to either
a flat torus (if p = 0) or a standard 2-sphere S with radius ro = (2/p)/% (if p > 0).
Ifhe S}, let h = k + Lygo be the canonical decomposition of A. Such a decompo-
sition always exists even if go is only of class H*; one decomposes the push-forward
of & on the torus or sphere using their C*™ riemannian structures and then pulls
back this decomposition; see 1.3.

Now suppose 4 is a solution to the linearized equations,

DR(go)-h = DR(go)-h = 4 tr k — h-Ric(ge) = 0,

where we have used DR(go)- Lxgo= Lx{R(g0)) = X-d(R(go)) = O since R(go) = p
= constant = 0 (see also the proof of 1.3.4). If p = 0, gois flat; thus A tr b= 0=
_ tr h = constant =Vk =0, as can be seen by writing out 3k =0 and dtr k= 0.
But if & is parallel, we can explicitly find a curve g(2) such that g’(0) = k4 Lygo
by the method at the end of 1.4.

If R(go) = p = constant > 0, then Ric(go) = 4pgo and DR(ge)-h=Atch —
ptrh=0=4 tr h = 3p tr h. But the first nonzero eigenvalue on the standard
sphere is 2/r¢ = p. Thustr b = 0.

From the unifornrization theorem, any two riemannian metrics on the manifold
S are conformally equivalent; i.e. if g, g€ 4, then § = ¢"(pg) for some ¢ € D and
peC=(M; R), p > 0. Thus if he Tp#, and g(A) is a curve tangent to h, g(2)
= @i(P(A) 8), po = idas p(0) = 1. Thus any h € T, .4 is of the form

h=g©) = ps(p’Ng + Lr(pA)e)i=0=/fg + Lvg, feC>(M;R),

which we write as & = Lyg + (3Y) g + 3 (tr h)g. Note that fg is not divergence free
so that & = fg + Lyg is not the canonical decomposition. '
Thusiftrh =0and 6h =0, 3h =3 (Lyg + (3Y)g) = 0. But since tr 2 = 0,

0= _" Y-3h dp—;-j'z,yg-h dp = —;—I(Lyg + (3Y)g)-h du
1
=—2—_"h-hdp=ah=o.
Thus if tr & = 0, then the above argument implies that h = 0. Thus a first order
deformation of R(g) = constant > 0 must be of the form /4 = Lxgo (using the

canonical decomposition). Thus if ¢; is the flow of X, @o = idas the curve g(4)
= pigo€ 4, since R(p} £0) = pi(R(20) = (R(g0)) > 2 = p° 2 = p, and (g(0), £'(0))
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= (g0, Lxgo). A similiar argument can be adapted for the H* case. [J

ReMARKs. 1. If dim M = 2, p = constant = 0, R(g) = p is linearization stable
about gy even though DR(g) is not surjective. Note, however, that this is not implied
by the submanifold structure of .#,; cf. Example 1 of § 0.

2. If dim M Z 3, and g, is flat, then R(g) = O is not linearization stable about
&o; similarly if (M, go) is a standard n-sphere S», R(g) = p = constant > 0 is not
linearization stable about go; see 1.4.2 and 1.4.2, Remark S. Thus the. only case
that remains open is whether or not R(g) = p = constant > 0 is linearization
stable about a solution g,, where (M, go) is not a standard n-sphere, n = 3 or
where gq is Ricci-flat but not flat.

3. If dim M = 3, R(gy) = p = constant > 0, but p#(n—1)A where 2is a
nonzero eigenvalue of 4, then R(g) = p is linearization stable about go; this follows
from the proof of 1.2.1, since if f € ker DR(gy)*, Af = (pl(n — 1)) £, so if p/(n — 1)
# A, f = 0 and DR(g) is surjective. :

13. The space of flat Riemannian metrics. In the next section we shall study the
set of metrics with zero scalar curvature, /5 = {ge .4 : R(g) = 0}. This case is
singular in the sense that the scalar curvature map R(-) fails to be a submersion
at those g with Ric(g) = 0. Thus .#} may not be a manifold at these points. This
difficulty is investigated in [.5 and {18). '

For2e R, s> nf2 + 1, let &; = {g e .+ : Ric(g) = Ag} denote the set of Ein
stein metrics with “Einstein constant” A. Thus &% = {g € .:: Ric(g) =0} ix
the set of Ricci-flat metrics and is part of the singular set for R(-). From Theorem
1.2.2, .43\&5 is a smooth submanifold of ..

We let 5 denote the set of H+ flat riemannian metrics on M, and 57! the set
of flat riemannian connections. For e s#*~1and g€ 2*+! (= the group of H*+
diffcomorphisms of M), we let p*I"e #*~! denote the pullback of the connection
I'by ¢.

Let V be the covariant derivative associated with /" and in local coordinates x¢
on M, define the Christoffel symbols I, as usual by

0 _ 9
Vorss 5y = Li g
Let I be the Christoffel symbols of the pulled back connection J* = @"I in the
local coordinates % and let p be locally represented by xi(x7). Then pullback of the
connection just corresponds to the transformation rules of the Christoffel symbols,
il 0% oxt 0% L dx Ox o
%7 Pxc 9x7 oxt 9x7 9x*F 9xaoxt’
The following is a sort of regularity theorem for flat metrics and connections:

re -~

I.3.1. THEOREM. Let I'e 55—, s > nf2 + |. Then there exists a p € D'+ such
that *I' € 3¢ i.e., *I' is a C> flat (riemannian) connection. Similarly, if-gr € 41,
then there exists a p € 9**1 such that p*gr € F, the space of C™ flat riemannian
maetrics.

m
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We thank Alan Weinstein for pointing out the following proof. We first provc a
local version:

LeMMA. Let I'e 5¢5—1. Then the coordinate change to normal coordinates is of class
H3s+1_ (One could use C* spaces here as well’)

PROOF. Let I}, be the Christoffel symbols of /" in a coordinate system x/, and let
x/(x7) be the coordinate change to normal coordinates so that /', = 0. Thus from
the transformation rules for the Christoffel symbols,

2% _ O p,
M o o

and the Christoffel symbols /°;, are of class H*~1. Now we know by construction
of normal coordinates from the exponential map that % (x/) has the same differ-
entiability as the Christoffel symbols (see e.g. Lang [23, p. 96]); thus #(x) is of class
Hs-1 and dxifox? is of class H+~2. Thus from multiplication properties of Sobolev
spaces (I.1), the right-hand side of (1) is also of class H*—2. Thus %i(x*) is actually
of class H*, and from (1) again is actually of class H*+1, ]

Now we prove the first part of 1.3.1. Using the exponential map we get a new
differentiable structure on M in which the connection [” is smooth. Call this mani-
fold M,. The identity is a map of class H**! (by the lemma) so can be Hs*! approx-
imated by a C= diffeomorphism f : M — M,. Pulling back I"on M, by f gives a
C* flat connection on M which is H* close and H+*! diffeomorphic to the original
connection.

The case of a flat metric can be proved the same way or can be deduced from the
result for connections. [J

This argument shows that if g is of class H* and 7*g is of class H* and 7 is class
Hs—1(or just C?) then 7 is automatically H++!. This result can be used to advantage
in the uniqueness problem for the Einstein equations; see Fischer and Marsden
[15].

Although it is not known if there exist any complete nonflat Ricci-flat riemannian
manifolds, it is known (Fischer and Wolf [19], [20] ) that a compact manifold can-
not admit both flat and nonflat Ricci-flat riemannian metrics. This is established
next in the H* case; see [19], [20] for other necessary conditions for a Ricci-flat
metric to be flat. )

1.3.2. THEOREM. If M admits an H* flat riemannian meftric gre %%, s > nf2 + 1,
then every g € ¢ such that Ric(g) = 0 is flat.

PROOF. Let ¢ € 2**! be such that p*gr € &. Then by one of the Bieberbach
theorems [35, Theorem 3.3.1), there is a normal riemannian covering 7 : 7" — M
of M by a flat n-dimensional torus 77, and z is a C™ map.

Now suppose g € .#*, Ric(g) = 0. Then the pulled back metric z%¢ on T is of
class H* and Ric (z*g) = n*(Ric(g)) = 0. But a Ricci-flat metric on 7™ is flat [4];
indeed from Hodge’s Theorem (using H* metrics), there are » linearly independent
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harmonic vector fields and these are parallel since Ric #)=04dX=4X=0=
VX = 0). Hence n*g is flat. Since z is a local isometry, gis flat. [

Thus if &+ # @, then &g = F%, so that My — Ey= My— F* is a smooth
submanifold of ..

We now show that &+ also is a smooth submanifold of A¢; thus if & 3
D, M5 = (M — F*) U & is the disjoint union of submanifolds. In L.5, we shall
in fact show that .#3 — & is closed.

The space #* (if not empty) has an interesting structure itself.

For I'e 51, let It*' = {p € 9*+1 : g*I" = '} denote the Lie group of affine
transformations of I', and let 4= {ge &F* : ['(g) = I" }, the set of flat riemannian
metrics whose Levi-Civita connection is . Here we are letting I'(g) designate
the Levi-Civita connection of the metric g. Thus if g € .44, I'(g) is an H*-1 connec-
tion, and if p € 2*41, I'(p*g) = ¢*I'(g). Thus if p€ I3 and ge F3, I(p*g) =
9°I'(®) = ¢*I'=T so ¢*g € F}. Thus Ii* acts by pullback on &%, 4 : 3% x
Fr— ¥ and this action is continuous.

For ges, let L' = {pe D'+ : g% = g} denote the isometry group of g,
and let J:*! denote the connected component of the identity. Similarly, let 735}
and / ¥ denote the-affine group and connected component of the identity. Since
M is compact, by a result of Yano [34] (adapted to H* metrics), J+1 = ] ) so

in the above action 4, /3! is a common normal isotropy group for all g e .?’,’-ﬂm\
an

Thus 4 is not an effective action, so we let D be the discrete group I3/ 15+
A:D x F}— F} be the associated effective action by D.

Note that if ge #3, pe I3*, p ¢ I}, then p*g e #% as above but P'g#g.
Thus ¢°g and g are distinct isometric metrics in Zr. Thus &7 intersects the orbit
0, through g once for each coset in e,

For I'e 5*-1, the homogeneous space @++1/I3*! can be given the structure of
a C> manifold by using Theorem 1.3.1 and methods of Ebin 13}

1.3.3. THEOREM. Let T'e#*=',s > nf2 + 1. Then the space s+ of flat riemannian
H*~1 connections is homeomorphic 1o the homogeneous space P*+\[I3. Using the
above action A, the associated homogeneous fiber bundle is

T IF o -t Py

where the projection 7(g) = I'(g) is the Levi-Civita connection of g, and the fibers
&~ YI") = F}% are finite-dimensional manifolds. Thus & is the total space of aho-
mogeneous fiber bundle, and, moreover, &* is a smooth closed submanifold of 4*.

PROOF. Since all C* flat riemannian connections on acompact connected mani-
fold are affinely equivalent [35, Theorem 3.3.1), @ acts transitively on 2 so that
¥ = 9l for 'e #. From Theorem L3.1,if ', I € #7571, there exist ¢y, € 2*1
such that ot /', @2 I; € 5. Thus from the transitivity of 9 on 52, there exists ¢
€9 such that ¢*(pf IN) = p} I’; so that [} = (¢, o GopaV)' N, pro o prle Dy,
Thus 2°+1 acts transitively on s#+-1,

P

™
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Let ¥, be the linear holonomy group of I" at xe M, afinite group [35, Corollary
3.4.7). Then &3 is in one-to-one correspondence with the ¥, -invariant inner
products on T, M (this is proved as in [35, Theorem 3.4.5]). By exponentiation,
the ¥, -invariant inner products on 7T, M are diffeomorphic to the ¥, -invariant
symmetric bilinear forms on T, M, a finite-dimensional linear space so that &7
is a finite-dimensional manifold.

Let r : %% — 51 map each gtoits Levi-Civita connection I'(g) = n(g). Thus
for I'e -1, z~YI") = 53 Using the action 4: D x &} — F}on each fiber
F3=nYI"), x:5*— 51 can be given the structure of an associated homo-
geneous fiber bundle over the homogeneous space 3#°*—1 & @+1/I+1, where the
“twisting™ of the bundle is given by 4.

Using 1.3.1 as before we get a C™ structure for $*. The map injecting & to
A/ can be seen to be a smooth immersion with closed range so &+ is a closed C*
submanifold of .#+. See [18] for details. [0

REMARK. The set of isometry classes of flat riemannian metrics on M is in bijec-
tive correspondence with F3/Ps+1 = &4/ = F3/D. Although F7 isa finite-
dimensional manifold, unfortunately the quotient space %7/D is not a manifold, as
A:D x $%— F} does not act freely. In [36], Wolf describes the set #/D explici-
tly, as a double coset space. For example, if /" is a flat riemannian connection on

M=Ts Fr=0m\GL(m;R), Ir=T"-GL(n 2),
D =Ifjl, = GL(n, Z) and Fr/D = Om)\GL(n; R)/GL(n; Z).
Note that #p = O(n)\GL(n; R) is isomorphic to Pos(n; R), the space of inner
products on R”, since the linear holonomy group of T* is the identity.

We can actually compute explicitly the tangent spaces of &#* and F}. First
we remark that the splitting S% = $3® ay(2*+1), $; = ker J, forg € M+ is
valid for g € &* as was mentioned in L1. and the proof of 1.2.3. For by 1.3.1, let
peP*1 besuchthat g =p*ge &. Let

83 = kerd; @ az (Z51)

be the splitting of S3 with respect to g. This provides us with a splitting of S; with
respect to g as follows. Suppose 4 € S;. Then & = ¢*h € S5 = kerd; ® az (2°);
thus

¢*h=h=FK + Lxg where §y(h") =0.

Thus (p=Y)'k = h = (p)'F + (9" LxZ = h + Lipy.x g where k= (p-1)*(h)°
e 8% since by pulling back 34(k) = 0, (p1)* 5z () = 34p~)"(%") = 0. Note that
even though the pushed forward vector field (p), X is only H* (so Lysxg might be
H*7Y), Lo xg = (p~1)*Lx g is actually H>.

Now we compute the tangent spaces of &* and F7.

1.3.4. THEOREM. For g € &, s > (nf2) + 1, let I'(g) = I' denote the Levi-Civita
connection of g. Then T, ¥ ={heS;:Vh=0}=S3', the parallel symmetric
2-tensors, and T, % = {h:Vh = 0} = S3' @ a,(Z*+1), where k is the divergence
Jree piece of h.
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ProOF. To compute the tangent space of #3, we differentiate the condition
I'(g(2)) = I' for curves g(2) e F%. This yields

d
x e, =ore-n=o
where & = dg (0)/dAe 3. In local coordinates, this condition is
T + Koy~ by = 0.

Taking the trace of this condition with respect to ik yields d tr h = 0, and with
respect to ij yields 6h + 4dtrh = 0, and thus 6k = 0.

Taking another covariant derivative, contracting with 7, commuting covariant
derivatives (since g is flat), and using 6k = 0, gives

0 = Has + Ko — hp'%ic = K + Waraj — haViy = — hliy; = Jh

where dh = —~ ViV}h is the rough Laplacian. However on a compact manifold
4h = 0 implies that V4 = 0 (since 0 = §h-ak du, = [(VhR dyy=>Vh = 0).

To find the tangent space of T, % let g(2) € #* be a smooth curve through g
with tangent A, and so in particular Ric (g(d) =0. Differentiating and using the
variational equations for the Ricei tensor in [25] gives m\

~d — D Ric(a(d)- i
0= 3z Ricle@)],_ = D Ric(s()-h®)| _
= D Ric(g)-h = (4. h — 25*5h — Hess tr #)
where duh = 4h + Ry h*, + Ry i, — 2R/ he is the Lichnerowicz Laplacian

[25] acting on symmetric 2-tensors, and 3* is the adjoint of §.
Leth=Fh+ Lxg. Then

D Ric(g)-h = D Ric(g)-(h + Lxg)= DRic(g)-k + LxRic(g)
= D Ric(g)-h= 4 (dth — Hess tr ) = 0

since Ric(g) = 0 and hence LxRic(g) = 0. To see that D Ric(g)- Lxg = LyRic(g),
let §; be the flow of X and differentiate the identity Ric (¢3 g) = &1 Ric(g) to get

.d . » - H * R d - - 1 .
ax Ric(¢g) 1m0 D Ric(¢7 g) “d—i(sbl g) 1m0 D Ric(g)- Lxg
for the left-hand side and
791 Riclg) = Ly Ricfg)

for the right-hand side.

Taking the trace of 4.f — Hess tr h=0 gives dtrh=0 (since tr(d.h) =
dtr 5) so that tr = constant. Thus 4.k = 0 and since g is flat, 4.h = Jh and
hence Vi = 0. [
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It is interesting that a variation of the Ricci equations around a flat metric is
already enough to imply that VA = 0. This fact, discovered by Berger [2], is
essentially the first order version of 1.3.2; if #* # @, then & = &.

Note that & is an invariant subset under the action of 9**! (i.c., p*gre %),
whereas &% is not, since if ge F} p*geFi., That T, F* contains a(27)
whereas T, #5 does not is the infinitesimal version of this remark.

We also remark that since T, &% = S3*! < $3*1, &4 is, ina neighborhood of g,
orthogonal in the L, metric on .#* (see [13]) to the orbit @, through g. Nonetheless,
we have seen (after 1.3.2) that &} bends back to intersect @, at metrics ¢*g € @,
q)Gl‘;-*'l, ? ¢1;+l_

In 1.5 we will need the following result regarding the volume elements of flat
metrics:

1.3.5. THEOREM. Let g, § € F, s > nf2 + 1, and let dyg and dy; be the volume
elements of g and §, respectively. Then there exists a constant ¢ > 0 such that
dy, = cdys.

PrOOF. Let (U, ¢y) be a chart on M such that the Christoffel symbols of J' =
I'(g) = I'(g) are I}, = 0. Thus 9g;/ox* = Oand 9g;/x* = 0 on Uso that (giU);
= ¢y and (g1 U);; = &; are matrices of constants. In this coordinate chart du, [U
= (detc;)/2dx? A--- A dx* and dp U = (deté)2 dx! A--- A dx”, so that dp,| U
= cy(dust U), = where cy =(det &;)/2((det ¢;)V/2 is constant on U.

Now suppose (¥, ¢v) is another coordinate chart for which U N V # @.
Then dy,t V =cy(dugl V) and on the intersection U NV, dyTUN V =
cu(dugt UN V) = cy(duyt U N V), so that ¢y = cy. Thus there exists a global ¢ =
constant > 0 such that du, = cduz. [

1.4. Linearization-instability around Ricci-flat metrics. If g e .#* is Ricci-flat, then
the map R(-)— H*2 is singular at g in the sense that DR(g) : S5 - H*~2is not
surjective. The failure of DR(g) to be surjective suggests the equation R(g) =0is
linearization unstable in a neighborhood of a Ricci-flat solution for dim M = 3;
i.e. there will be first order deformations / € S; that will not be tangent to any
curve g(A) of exact solutions of R(g) = 0. In this section we analyze the structure
of the map R(-) at Ricci-flat (and flat) metrics, and work out the extra condition

that a first order deformation must satisfy in order that it be tangent to a curve of
exact solutions of R(g) = 0.

Our main computation is contained in the following: .

1.4.1. THEOREM. Let ge . #%, s > nf2 + |, Ric(g) = 0. Then for he T f* = S35,
_"mx(g).(h, Bdy, = — _;—j'(h-du;) dpsy — %I(dtrh)z dysg + j'(ah)zap,

where Ath = 4h — 2R#£P has is the Lichnerowicz Laplacian [25) for a Ricci-flat space.

Ifgedstrand h=h + Lyg, h € §3, X € 7++1 is the canonical decomposition of
h, then
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J B0 by dp = — - [tk dy ~ L [(arehypap,
+ 2[(4::6) -(d3X) dy.
Proor.
§72 2>t Wy = b ([DREg) 4 i) -1 — f(or@) kXD -1y
= D(f(dtch + 83h — h-Ric(g)) ) -4
- [@R@)-1) (D) -1y

= — D ([-Ric(g) day) -h - _[ (DR(z)-BYD(d,)-H)

since [(Atrh + 35k) dy, = 0 for all (g, k) by Stokes’ theorem. Since Ric(g) =0,

all contributions due to the metric terms in the pointwise contraction k-Ric(g)
= g% g h, Roq are zero and so we have

[0 R(e) - By = - [-(ORic(e)-Hydy, - fawn+aam) L wndy,

- %J'h{d,,h — 25* 3k — Hess tr k) dy,

- _;_I(Atrh + 36k) trhdy,

== -;—Ih.dljzdp, + f(ah)zap, + - fon-dichdy,
— 5 f@uhedy, - - [oh-dtchdy,
S R Jathrdy, + f@npay,
where we have used D{dyg)-h = ¥ (tr h) dp, and have integrated several times by
pa;‘qtzw suppose g€ .**1, Ric(g) =0, and 4 = h + Lyg. Then from the proof

of 1.3.4, D Ric(g)-h = DRic(g)-h = 4 (dLh — Hess tr k), and similiarly DR(g)-k
= DR(g)-k = Atrh. Thus from (1) above,

IDz R(g)-(h, K) dyy = — _lz—j""("'}' — Hesstrk) dy, — %I(Atr’!)(“/’)dﬂé
= - %I},.A,j,dp, + %I(‘”’ —dtrh)-d tch dg,

where we have used the fact that for Einstein spaces § o 4y = 4 o § (see [25]),
s; that 4.5 € $472, and so by orthogonality of $3572 and a@*+), fh- Aok dp, =
f -dih dgte.

Since h = h + Lyg, h = dLxg = AX + (d3X) = 245X + ddX*and tr h =
tr h — 25X. Thus GRY ~ dich = 4 ddX + 3dX* — dtr b and
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5 f(@y — dwehy-d o by =5 [@dox + saxs — dwhy-dichdp
= — 5 [ echy duy + 2 faox-dich dy,

since d dXb and dtr hare L, -orthogonal. []
The extra condition that a first order deformation of R(g) = 0 about a Ricri-

flat solution must satisfy for it to be tangent to a curve of exact solutions is now
easily computed.

1.4.2. THEOREM. Let g(A) € 4, A€ (—0,8),0 >0, s> nf2 + 1 be a C?2 curve
with (2(0), £'(0)) = (g, ). Suppose g € .4**\, and let h = h + Lxg be the canon-
ical decomposition of h. If R(g(3)) = 0 and Ric(g) = 0, then tr h = constant and

Ih'AL’l dpg =0.
Ifg € &, then Vh = 0.
Proor. Differentiating R(g(1)) = O twice and evaluating at 2 = 0 gives

) R(s(l))‘ = DR(g()-4 (l)l = DR(g)-h
—Atrh+56h Atr/x 0,

@ IR (g(z))l = DR(e@) (- @, A @), * DR(ga»( 72|,
= D?R(g)-(h,h) + DR(g)-g" (0) = 0.

Here we are identifying T.4* with .&* x S3, so dg(2)/dA € S} and d?g(R)/dA%e S;3-
Integrating (2) over M (using the volume clement dy,) gwes the extra condmon

©) [ D2Reg)-(h Wy sy = 0
since | DR(g)-g"(0) du, = [(4tr(g"(0)) + d6(g"(0))) dyg = O for all accelerations
2"(0).
From (1), tr & = constant, so that from 1.4.1, (3) becomes
= 5 {h- a0k dpy ~ - (@i dp + 2 [dtei-dox> dy,
@ = -5 fhthdy =0

If g is flat, 4, = 4, sothat 0 = (h-Ak dp, = [h-dk dyu, = § (VR dpe = Vh
=o. D

REMARKS. 1. At a regular point g€ . where DR(g) is surjective (so that
Ric (g) # 0), equation (2), when integrated over M , gives

f22R@)- . 1) dis, — [Ricte) 57O de =0,



242 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

an integrated condition on g”(0) in terms of h, which at regular points g does not
give an extra condition on A. It is only when Ric(g) = O that the term involving
£°(0) drops out leaving an integrated extra condition on A.

2. That we get one extra condition on » when Ric(g) = 0 corresponds to the fact
that ker (DR(g))*= {constant functions on M} is 1-dimensional, since as in §0,
Example 4, Remark 2, there is an extra condition for each dimension in
ker(DR(g))*. In the case at hand, the equation [DR(g)-g“(0) dug = 0 (which leads
to the extra condition on A) can be expressed as

I(DR(g)‘l)-g"(O) dug = 0 for all g”(0) iff 1 € ker (DR(g))*.

That the extra condition on 4 is an integrated condition corresponds to the fact
that (DR(g))* is an L,-adjoint; i.e. we do not get an extra condition on A until we
integrate (2) against an element of ker (DR(g))*; cf. Example 4, Remark 1.

3. If g € .4, Ric(g) = 0, but g is not of class H*+1, k may not have a canonical
decomposition. In this case, by using the first order condition DR(g)-h= Atr h
+ 36k = 0 and equation (1) in the proof of 1.4.1, the extra condition (3) can be
expressed as

J22 Re-(h. by ds, = — (D Ricte)-1) di,

—%Ih-(d,jv—.?ﬁ‘&h— Hesstrh)dy, =
—%Ih-d,,h du, + %j‘(ah)z dus,
+%I5h-dtrh dyty = 0.

]

4. Considering third and higher order derivatives of R(g(3)) = 0, Ric(g(0)) = 0,
does not lead to any extra condition on the first order deformations. For example,
differentiating

D?R(g(2)-(h(2), h(2) + DR(2(2)-g"(2) = 0
(where h(2) = g’(2)) and evaluating at 2 = O gives

&) DR(g)-(h, h, k) + 3D?R(g)-(h, g"(0)) + DR(g)-g"(0) = 0.
Integrating over M, the last term again drops out, leaving

(DR -G h by dy + 3 [ p2Re)-(h2°O) dpiy = 0

as the extra integrated “third order” condition on £"(0) (beyond that implied by
the second order pointwise condition of equation (2)) that has to be satisfied for
£7°(0) to be the acceleration of some curve of exact solutions of R(g) = 0. This of
course is the analog of the second order phenomenon. This situation repeats, and
in general there is an extra integrated condition on the nth order deformation that
comes from the (n + 1)st order equations. However, these higher order equations
do not provide any further conditions on the first order deformations in general.

™
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In special cases, however, it is possible that third order variations can lead to
extra conditions on first order deformations, as in § 0, Example 3.

5. We can also examine the linearization instability of the equation R(g) = P
= constant > 0 around a solution (S", g), a standard sphere in R**! of radius
ro = (n(n — 1)/p)V2. In this case, from Remark 2 of 1.2.1, ker (DR(gy))"* = {cigen-
functions of 4,,} so that if f e ker ( DR(go))*,

§7 DRG0 -£70) die = (DR -870) dity = 0

for all g"(0). Thus multiplying (2) by fand integrating over M gives foreach linearly
independent eigenfunction f of 4,, the extra condition

[ DR (800, 1) dy, = 0

on a first order deformation h. That this really is extra is shown in (18]

In the case that g, € #*, the integrated extra condition ]'fl-J k dug, = 0 can
be converted to the very strong pointwise condition V& = 0. This pointwise
condition signals an even greater type of instability, viz., that the flat solutions of
R(g) = 0 are isolated among all the solutions. This aspect of the map R(-) will be
examined in the next section.

In the flat space case, if the extra condition VA = 0 is satisfied, then we can
explicitly integrate up any deformation 4 = hy + Ly gr, Viy = 0. Indeed, let
gr' -k denote the 1-contravariant 1-covariant form of hy, let exp (gz! -hy) denote
the pointwise exponentiation of &r'hy, another tensor of type (), and let g(2)
=gr exp(Agr' - ly) denote the 2-contravariant form. In coordinates, gr exp(Ags!-Ay)
= (gr)a exp(4 g (y)y). Then g(R) is a C* curve in F Py defined for all 1e R,
such that (g(0), gO)=(gr h). Ifp, € 9, o = idyy, is the flow of the vector field
X,.then Z(A) = of (¢() € 5%, §(0) = gr, and 2'(0) = g} (g'A) + Lyxg(W))1co =
h| + Lxgp.

In the next section we shall see that &(A) e #*is quite necessary if g(2) e A5 and
£(0) is flat.

If #* = @, and if there exist nonflat Ricci-flat metrics go(so that dim M 2 4),
then we do not know if satisfaction of the extra condition ﬂx-AJa du, =0 is
sufficient to find a curve g(1) e A5 g(0) = go, g'(0) = h. However, because third
and higher order deformations of R(g) = 0 do not lead to any new conditions on
h, we suspect that if the second order condition on # is satisfied, then there is a
curve g() € 4§ which is tangent to A.

One of the difficulties here is that the structure of the set Sy={ge:
Ric(g) = 0}, if not empty, is unknown. In particular, we do not know if it is a mani-
fold. The formal tangent space of &g at g e 4** is, from the proof of 1.3.4, given
by ker(D Ric(g)) = {h € S3: 4.k = 0} = {harmonic tensors of 4;}. Thus if &
were a mauifold, any 4 such that 4, k = Ois tangent to a curve in &4. This would
partially answer the question of whether the extra condition of L.4.2 on a deforma-
tion A is sufficient to find a curve in ./ tangent to 4.
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We now give an example of the linearization instability of the equation R(g) = 0
on a flat 3-torus. Let A be the lattice generated by the standard basis {é} in R3,
. let T3 = R3/ A, and let g5 be the metric induced on T3from R3. Let S1 be the circle
with unit circumference, and let £ S1 —+ R be any smooth function, f # constant.
Set

0 f(x) 0
h=hy={fx) © 0
o o 0

Then 3k = 0 and tr & = 0 (taken with respect to gr), but Vi # 0. Thus this 4,
although a solution to the linearized equations DR(gr)-h=Adtr h + 33h =0, is
not tangent to any curve g(2) € .43, g(0) = gp, since VA # 0.

If f{x;) = constant, then the extra condition V4 = 0 is satisfied, and we can
integrate A up to a curve

coshdf sinhdf 0
8(Q) =grexp(Agr'-h) =|sinh2f «cosh2f 0

0 1] 1
of flat metrics on T3 with (g(0), £'(0)) = (gr, /). , ,«%\
ReMARKs. 1. The above expression for g(1) is also valid if f # constant, but the,

R(g(2)) need not be zero for A # 0.

2. On a flat 2-torus T?, 5k = 0 and tr h =constant imply VA =0 so that we
cannot construct our example. This corresponds to the fact that R(g) = 0 is lineari-
zation stable if dim M = 2.

LS. Isolated solutions of R(g) = 0. In the flat space case, the emergence of a
pointwise condition from the integrated extra condition signals that the flat
solutions of R(g) = 0 may be isolated solutions. In this section we show that this
expectation is correct. We then use this result to work out the structure of A in
the case that & #@.

That R(g) = Oimplies that g is flat if g is in a neighborhood of a flat metric is
somewhat surprising in view of the fact that the scalar curvature is a relatively weak
measure of the curvature.

Fix an H* volume element di: on M, and define

V:.t> R, gHIR(g)dp.
Note that ¥ is not the usual integrated scalar curvature (cf. IL.2), since in genecral
du # dy,. .

1.5.1. THEOREM. A metric g € .4t* is a critical point of ¥ if and only if Ric(g) =
0and dp = c dy, for some constant ¢ > 0. At a critical metric g, € 4*, the Hessian
A2 ¥ (g.): S3 x S3— R of ¥ is given by

ma\
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2T(g)- (hE) = --%-jh-a,,hcdp,, - —-%—I(dtrh)’cdy,, +I(6h)2cdp,,.
Proor. For g € .4, let pe H(M; R), p > 0 be such that du = p dp,. Then
d¥(g) - h = IDR(g)-hdy =I(Atrh+66h-h-Rio(g))pdpg
= | (e4p + Hess p — pRiclg)) - hdp, = 0

for all he S} iff

m 72(P) = gdp + Hessp — pRic(g) =0,  p>0.

From the proof of 1.2.1, (1) = R(g) = constant = 0. Contracting (}) gives
2 (n—Ddp=R@gp, p>0;

integrating (2) over M gives

0=(n— 1) | 4p due = Re®) [ p dpe

If R(g) = constant > 0, then [ p du, = 0, contradicting p > 0. Thus R(g) = 0, so
from (2), p = constant = ¢ > 0, so that du = ¢ du,. Since p = constant > 0,
from (1), Ric(g) = 0.

Now suppose g. is a critical metric of ¥, so Ric(g) = 0,du = cdu,, Thus

2U(g) - (hh) = I DR(g.) - (h, k) dp = ¢ j‘ D2R(g.) - (h, ) dp,.

The theorem now follows from 1.4.1. [J

RemMArks. 1. In the above it is important that we hold the volume element fixed
and then let du = c dpu, after we take the derivatives; see 1.5.2, Remark 2.

2. That du = ¢ dju,, at acritical point of ¥ allows us to compute dz ¥(g.) from
1.4.1. Otherwise, the computation of d2 ¥(g) - (h, k) = { D°R(g)-(h, k) du is
considerably more complicated than the computation of { D2R(g)-(h, h) dp,

(unless du = ¢ dpg), since | (4 tr h + 33h) du does not vanish for all (g, 4) as in
the proof of 1.4.1.

3. ¥ need not have any critical points; e.g. if du is chosen so as not to be the
volume element of any Ricci-flat metric.

To second order, Brill [S] shows that the flat solutions of R(g) = 0 are isolated,
and Kazdan and Warner [21, §5] show that near a flat metric to second order

there are no metrics with positive scalar curvature. The following extends these
results to a full neighborhood of the flat metrics.

1.5.2. THEOREM. Let gr € %, s > n[2 + 1. Then there exists a neighborhood
U,, © #* of grsuch that if g € U,, and R(g) = O, then g is also in &>.

PRrOOF. Let dy,, denote the volume element of gr, and let I" denote its Levi-
Civita connection. Let ¥: .* - R, ¥(g) = [R(g) dy,,

If gre F4, by 1.3.5, dug, = ¢ du,,, ¢ = constant > 0, so that &4 is a critical
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submanifold of & (but not the entire critical submanifold), and at a critical point
reFp

V@) - ) = ——f ORF cdy, ~ 4 (a0 B2 e, + | @h cdgy,

Let S;, be a slice at gp (see the remark preceding Theorem 1.3.4) and let ¥ 5=
@1 S;, Since gy is a critical point for ¥, gris also a critical point for ¥, and the
Hessian of ¥ is given by restricting the Hessian of #'; thus from L5.1., forhe
7;' “S:' = {h € ngalih = o}‘

Y s(gr) - (b B) = d*¥(gp) - (b, b) = —%j' (VhY dy,, — —;—I @tr hp dy,,

Thus a? ¥'s(g) is negative-definite on a complement to T..%;=t{he S;: Vh=0}
in T, S;,. Thus since %3 is critical there exists a neighborhood ¥ < 8 of g
such that¥s < Oon ¥, and if ¥s(g) = 0, then 8 € 1. Thus the critical submanifold
F 7 is isolated among the zeros of @s.

Let Up, = 21 (V) = {p* ge a: p €2, ge V} be the saturation of V., By
the slice theorem [13), U,, fills out a neighborhood of gr. Thus if g € U,, and
R(g) = 0, there exists a p € 2+ such that p*ge V = §;, and thus ¥s(p*g) < 0, since

s is negative on V. But R(p*g) = R(g) - ¢ 2 0 so that T(p*g) = [ R(p*s) dp, ™™

= [ R(g) ° p dyg, 2 0. Thus Us(pe) = Oso that p*z e FL and g € (™) &3
cFsisflat. O

ReMARKS. 1. For dim M = 2, we need not restrict to a neighborhood U,
Indeed, from the Gauss-Bonnet theorem, if #* % @, the Euler-Poincaré charac-
teristic yar = 0, so that for any metric g, fR(g)dy, = 0. Thus R(g) = 0 = R(g) =
0 = g is flat.

2. Usually one considers an integrated scalar curvature 9(g) = | R(g) du, with
volume element dy, induced from g rather than ¥ (8) = | R(g) du with fixed
volume element dy, as e.g. in [3). One then has (see I1.2.2) at a critical flat metric

® 0 kb= - [ hrdu, + 1 [ @i hp d,
rather than

@ @0 B = -5 [ Ghedy, - L f @ity g,

There is now an important sign change in the second term; see also 1I.2.2, Remark
2. Brill {S] uses (1), together with the condition tr & = constant implied by the first
order equations DR(g) - h = dtr b = 0 to deduce VA = 0 and hence his second
order result.

To extend this result to a full neighborhood of the flat metrics, one may not use
the first order condition tr & = constant. The indefinite sign in (I) now becomes
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a severe difficulty. We introduced the map ¥ with fixed volume element dy since
this difficulty is not present in (2).
Note that if the first order condition tr A = constant is used, i2¥(gp) - (h, h) =
a*B(g) - (h, k) = — § [ (VhY2 dps,,, 50 that the two treatments are then equivalent.
As a consequence of 1.5.1, we have the following structure theorem for M:

L53. THEOREM. Let s> n[2 + 1, dim M = 3, and if dim M Z 4, assume
F # D. Then My = (M) — F*) \) F* is the disjoint union of C= closed submani-
Jolds, and hence 4t} is itself a C* closed submanifold of 4t*; similarly, 4ty = (M,

— &) U & isa C= closed submanifold of 4 .

Notes. 1. If dim M = 2, «} = %+ is also a C* closed submanifold.

2. We are allowing the possibility that A5 — F* is empty, and if dim M = 3,
we are also allowing the possibility that 5 is empty.

3. 4 is a manifold since we are allowing different components of a manifold to
be modelled on different Hilbert spaces.

Proor. If dim M = 3, Ric(g) = 0= gisflat. If dim M 2= 4and &* # @, then
from 1.3.2 #* = &3 Thus in either case

My = (3~ ) 8 = (3 - F)U &
. which from 1.2.2 and 1.3.2 is the disjoint union of C* submanifolds, #* closed.

Let g, — g be a convergent sequence in My — F°. Then g € 4}, and if ge &3,
there exists a neighborhood U, .« such that gel, R(g) =0=ge%> But
then for n sufficiently large, g, € Ue R(gs) = 0 = g, € #* contradicting g, € A
~ F.Thus g € A — F+, aclosed set. [

REMARKs. 1. Therg are various topological conditions on M, dim M 2 4, that
imply a Ricci-flat metric is flat; see [19], [20]. If we adopt any of these conditions,
then we can drop the & # (3 assumption. Of course, if it turns out that Ricci-
flat implies flat, then this assumption can be dropped.

2. If dim M 2 4, #* = @, then .4 is still the union Mo = (M3 — &) U
€5 with .43 — &} a submanifold (1.2.2). But we do not know if &5 if nonempty,
is a submanifold.

3. if gQR), Ae(—5,5),6 > 0, is a continuous curve in A, g(0) € 74, then g()
€ %7, an interesting consequence of 1.5.3.

If g(2) were a C* function of 4, 1 < k < oo, then we could conclude from the
method of 1.4.2 that all k derivatives of g()at 1 = O are parallel, V(g®(0)) = 0.
Thus if g(2) is analytic, g(1) = n=o (A°/n))g(0), and V(g(0)) =0 for all
n, so that g(2) € %, a conclusion from 1.4.2 alone.

4. Finally we remark that although A is a manifold (under the hypothesis &+
# @), the equation R(g) = 0 is not linearization stable at a flat solution, as we
have seen from the example in 1.4. Here the difficulty can be traced to the fact
that .#] is a union of closed manifolds of different “dimensionalities”, &* being
essentially finite-dimensional modulo the orbit directions; cf. Example | in §0.
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IL. APPLICATION TO GENERAL RELATIVITY

IL1. The general set-up and main idea. We now turn our attention to the Einstein
empty-space field equations of general relativity. We apply the techniques used in
the previous sections to prove that solutions to these equations are linearization
stable if certain conditions are met; in certain exceptional cases, however, the solu-
tions are not linearization stable. ’

Let Wg be a smooth Lorentz metric (signature — 4+ + +) on a 4-manifold ¥,
The Einstein empty-space field equations are that the Ricci tensor of @g vanish:

) Ric(Wg) = 0,

An infinitesimal deformation about a solution Wg is then a solution Wk € S, of
the linearized equations
2 D Ric(Wg) - Wh =0,

where D Ric(‘0g) is the derivative of the map Ric(-) at g,

Assume that (V, @g) has a compact connected orientable spacelike hypersurface
M so that dim M = 3. Let g denote the induced riemannian metric on M and k
the second fundamental form of M. Our conditions for linearization stability
are as follows (see Note on p. 263):

Cx:ifk=0,gisnotﬂat; ' ﬁ
Ca:ifog=0andek=0,thenX=0; '
Ce : tr k = constant on M.

(The meaning of the subscripts 5 and & will become clear.)

Our main result (I1.5.1) is that if a solution (¥, ® g) of (1) has a compact spacelike
hypersurface M whose induced metric g and second fundamental form & satisfy
conditions C, Cs, and C,, then every solution @ of the linearized equations is
tangent at @g to a curve Wg(2) of exact solutions of (1); i.e., there exist a tubular
neighborhood V' of M and a curve “Wg(A) of exact solutions of (1) on ¥’ such that
(“g(0), Wg'(0)) = (Wg, WK) on ¥’; see also [16], [17], [39] and [40].

This conclusion asserts the linearization stability on a small piece of spacetime
V' surrounding the Cauchy surface M. By standard arguments [12), ¥’ can be
extended to a maximal common development of the spacetimes @g(2), A small,
which approximates the maximal development of @g(0).

The case where V admits a noncompact spacelike hypersurface M is rather dif-
ferent. Here asymptotit conditions are necessary. For example, k = 0 and g the
usual flat metric on R3 is not excluded. Thus the usual Minkowski metric on R¢is
linearization stable in a tubular neighborhood of the hypersurface M = R>. This
result was obtained independently using other methods by Choquet-Bruhat and
Deser [10), [11]. The treatment of the general noncompact case is in spirit similar,
although there are certain technical difficulties associated with elliptic operators
on noncompact manifolds which enter the problem in the nonflat case, We will
present the noncompact case elsewhere. For the remainder of Part II, M will be
compact.
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1t is convenient to introduce the supplementary variables (g, x) instead of (g, k),
where z = 7' @ p;€ S ® i, is a 2-covariant symmetric tensor denmsity, z' =
((tr k) g — k) € S? is the tensor part of z (k* means the contravariant form of
the tensor k € S;) and we write 4, interchangeably with dg,. In local coordinates

7= a7 = ((tr k) g7 — ki) (det g;)V2.

As is easy to see, k =0< 7 =0, tr k = constant <> tr =’ = constant, and
Lxg =0, Lyk = 0<> Lxg =0, Lxn = 0. Thus, in the conditions Cy, Cs, and
Cir, k can be replaced by z. Note that the divergence of X enters in the Lie deriva-
tive of a teusor density:

Lxr = (Lxz) @ pg + 7' ® Lxpy = (Lxz") ® pz + 7' ® (div X)p,,
where div X = —4§X. In local coordinates,
Ly = X* ntyy — ni* X7 | ~ TR Xy + X4V,

As is well known every spacelike hypersurface in a Ricci-flat Lorentz manifold
((1], (14]) satisfies the constraint equations

© H(g )= {Jtra'P — =" - 7' + R(g)} pz = 0,
o(gm) =8 = 0.
In local coordinates,

#(g, w) = (det g;)~V2{}(gas 7Y — % 7} + (det g;)/2 R(g)
and

. 08, m) =g = —7%; =0

(so that §; now maps S? — Z ® u,).
" We shall refer to (g, ) = 0 as the Hamiltonian constraint and g =0 asthe
divergence constraint.

Conversely, by means of existence of solutions to the evolution equations (see,
e.g., (15]), every solution (g, 7) to the constraint equations (C) generates a Ricci-
flat spacetime in a tubular neighborhood of M. This spacetime is unique up to
diffeomorphism of the neighborhood.

For the compact hypersurface M, we let .« denote the H* riemannian metrics
on M; throughout, s > nf2 + 1. For g€ 4, we have, as in Part I, T,.4* = 2
and we let :

Ty M = S} ® y,, the space of H* 2-covariant symmetric tensor densities,
and

T*4* = |) Teae, the “cotangent” bundle of ..
g="
Note that here we take the dual in the L, inner product but use only the closed
subspace of such elements continuous in the H topology, so the dual of S3isS?®
Hg; see also [14, p. 552).
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The solutions (g, 7) of the constraint equations may then be regarded as a
certain subset ¢ of T™.4°. We will, according to our general method, show that in
a neighborhood of points (g, #) that satisfy conditions C, C; and Cy, € is a
smooth submanifold of 7*.¢* and that if (4, w)e Ten (T*4%) = S5 x (S? ® )
is tangent to &, i.e., if (h, w) is a solution to the linearized constraint equations,
then there existad > 0 and a smooth curve (&), z(M)) e ¥, =3 < A < &, which
is tangent to (A, o) at (g, 7).

Now suppose @4 is a solution to the linearized equations, D Ric(@Wg) - Wh =
0. Then “k induces a solution (A, w) to the linearized constraint equations about
a solution (g, ) to the constraint equations. If (g, =) satisfies conditions Cor,
Cs, and C,, then there exists a curve (g(2), 7(2)) of solutions to the full constraint
equations. By using the existence theory for the Einstein equations this curve of
solutions to the constraint equations generates a curve @g(2) of Ricci-flat Lorentz
metrics (on a tubular neighborhood ¥’ of M). After possible adjustment by a curve
$(2): V' — V' of diffeomorphisms of ¥’, Wg(2) will be tangent to “h (Wg(2) will
be an H* spacetime and will be 2 differentiable in H*~1); see also the end of §0.

IL.2. Solutions to the Hamiltonian constraint equation. For s > nf2 + 1, we con-
sider 5: T*.4* ~ A2, (g, ) = (g, 7) as a map from T*.#* to As-2, the H*-2
3-forms on M. For g € .#*, -2 is isomorphic to H*~%M; R) ® p.(by identifying
A€ A2 with fu,, fe H=-%M; R)). ,

Let €% = #Y0) = {(g,n) e T*.tr*: #(g, 7) = 0}, the solution set to the
Hamiltonian constraint. Note that the set #* x {0} is a subset of € %, and that sinct )
dim M = 3, & = & (without the assumption that & # @). Thus, from 1.3.3,
F* x {0} is a smooth submanifold of T*.# (but is possibly empty). We will show
that & x {0} is the singular set on which Dx#(g, ) fails to be surjective. Thus

Cr=(Ce— 7 x {0}) U (F* x {0})
is the disjoint union of submanifolds. Thus €2 is somewhat similar to the structure
of .#3 (when %+ # (); however, because of the kinetic terms involving the variable
7, #* x {0} is not an isolated set of solutions of #(g, ©) = 0(11.2.5); consequently,
Cx — F* x {0} need not be closed, and €% itself nced not be a manifold.
To prove our result, the basic argument of 1.2.1 only has to be modified to take
into account the kinetic terms:

IL2.1. THEOREM. Let (g, 7) € €5, (g, w) ¢ F* x {0}. Then in a neighborhood of
(g, =), €% is a smooth submanifold of T*.4*, and X#(g, @) = 0 is linearization stable
at (g, ©).

ProoF. We show that
D#(g, 7): T (T") = S3 X (S} @ pt) —» Toh 2~ 2% H2 @ p,

£l

’

is surjective for(g, x) € €5 — &+ x {0}, i.c., that 3¢ is a submersion at those(g, )
that satisfy condition C.
By a straightforward computation, for (4, w) € 83 x (2@ up),
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r@n(h, ) = DH(g, 7)-(h, @)
= {Atrh + 83k — h-Ric(g) + }tr h R(g)
+ 2(Mte )’ — @' x @) h— Y(Mtr P — o -mYtr h} pg
+ 2(r)r o — 7' -0),

where 7’ x #’ = 2’ 7/ is the “product” of symmetric tensors.

Caution. D3#(g, ©)-(h, w) = Dp?(g, )-h + D, (g, ¥)-, so that one must
take the derivative of 5 with respect to z (which is best dcre by using the coor-
dinate expression involving (det g;)~\/2 and not ', although ths final expression is
in terms of 7).

The Lradjoint, 78.0: H* @ gz — S372 x (82 @ p,) is then given by

740N ) = (g4N + Hess N — N Ric(g) + 3 NR(g)g
+ {23c =) — @ x 2P — H({trz) — (-7},
2(4(tr z)g* — mN).
Since the symbol g¢, Fl.0): R~ (T*M Onn TEM) x (T:M Qum T:M) is given
by 0e(rho) = (0eG), 0) where 73 = (DR(g))*, for 7x # 0, 0e(7G.0) is injective
by the first factor alone. Thus we must show that 780 is injective. Thus, let
760 (Npgg) = 0, so that :
gAN + Hess N — NYRic(g) + § NR(g)g
® + QY — 7 x 2P — AP — TN = 0;

®) 2(3(tr z)g* — )N = 0.

Taking the trace of (b) gives(tr z)N = 0, and so again from (b), Nz = 0. Since
. #(g,7) = 0and Nz = 0, NR(g) = 0. Thus (a) simplifies to

© " gAN + HessN — NRic(g) =0,

.
which; as in the proof of 1.2.1, implies that N = O unless Ric(g) = 0 <> g is flat for
dim M = 3. If g s flat, taking the trace of (¢) gives AN = C so that N is a constant.
Thus from Nz=0,N=0unlwszr=O.Thus,ifgisﬂatandn-;éo,lv=0,so
that 7%, is injective and 7. is surjective. (]

Thus 2 is singular (in the sense that D#°(g, ) is not surjective) on the set #* x
{0}, and on this set ker 7. = {constant functions on A7}. Thus we expect the
equation J#(g, ) = 0 to be lincarization unstable ina neighborhood of a solution
(gr, 0)e F* x {0}. To find the extra condition implied ty this instability, we
introduce the integrated Hamiltonian density (= the Hami!topian)

TR (G- [#e0=[ ey -7 + RE) dur
the total kinetic energy, :
KT w—R (g5~ I(}(tr 2y — o -z') dug,
and the integrated scalar curvature
O: 4* > R, gHIR(g)dllg-
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Thus H(g, x) = K(g, 7) + ®(g), and P serves as a potential for the Hamiltonian;
see [14] for the geometrical consequences of this interpretation. First we consider
the map @ (see also [3]).

I1.2.2. THEOREM. Let dim M 2 3. Then a metric g € .4* is a critical point of D if
and only if Ric(g) = 0. At a critical point g € 4%, the Hessian of D is

1
PO G h) = ~5 [ -Buhedpy + [ -3y dpy 4+ [ah-dte by
+yfdich-ahdy, + Ffaun-auna,

If g 4+ s0 that he S} can be decomposed ash = b + Lxg (where h € 82 is
the divergence free part of b), then

&2 9(g)-(hy, k) = —'%I’h'dl.&z dug +~%—Idtrhl-du’lzdpg.
If gre & (so that h € S3 has a decompositionh = § + Lyg) then 4tk = Ah, and
&2 0gr)-Ch 1) = ~5{ (VA¥ g+ (a tr B d

Jor a flat riemannian metric gr.

Proor. First we find the critical points of @. We compute the derivative of @ o~

40(g)-h = D) h =  DR(e)-hdpe + [ RIDA1)-
m =j'(4trh+aah—h.Rie(g))dp, +j'R(g)whdp,
= - [ (Ricte) ~ 4 gR(g)-hdgy
since [ (4tr h + 33h) dpz, = O for all (g, ) by Stokes’ theorem. Thus dd(g)-h = 0
for all ke S5 <> Ric(g) — 3 gR(g) = 0. Since dim M 2 3, by considering the trace

of this we see that it is equivalent to Ric(g) = 0.
From (1), the second derivative of @ is

0(e)-Ch, 1) = [ DR(g)-h, ) dpsy
‘ +2 [ (OR)-HY () B) + [ Rig) D) -4, .

At a critical point g, Ric(g) = 0, R(g) = 0, and DR(g)-h = Atr h + 33h, and so
from 1.4.1, (2) becomes

@

0(5) - (b, ) = ~5{ h-duh dp, —%j(dtrh)z dsy + [ @hY d,
+ ZI(Atrh + 33k) (3 tr h)dp,

= —3fn-andg, +3f @i hedy, + f onpay, + fawn-snay,
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If ge.4**, Ri(g) = 0,and h = h + Lyg, then DR(g)-h = DR(g)-h = 4trh,
and so

(8-t 1) = — 5 [ - aih dpe ~ 5 f e hp g,
+2 [ duch-doxdy, + [ e h) tehdp
:h-d,}l dpy —-;—I(dtr,t)zdp,
dirh-(2dsX + dtx hydp,
| b-tih dpy +5 [ @ichpdp,

sincetrh = trh — 25X sothatdtrh = dtrk + 24d3X. [

REMARKSs. 1. The change to a positive sign of the 4 [(d tr A dp, term in d20(g)-
(h, b) = d*(JR(g) dpz)-(h, h) as compared with {D?R(g)-(h, k) dpy comes about
because of the term 2 [(DR(g)- h)(D(duy)- k) involving the derivative of the volume
element. Because of this sign change, a flat metric gr is a saddle point for 42¢(gg)
(even within a slice), whereas {D2 R(g)-(h, k) du, < 0 on aslice at gr. Thus because
of this sign change, the behavior of the integrated scalar curvature #(g) = {R(g)dy,
is somewhat different from the pointwise scalar curvature R(g) at g5.

2. That d?0(g)-(h, k) = d?0(g)-(h, k) depends only on the divergence free part of |,
A follows from the invariance of @ by 92, so that d%(g)-(Lxg, Lxg) =0, and by
orthogonality of & and Lyg, so that d0(g)-(k, Lxg) = 0.

We can now easily compute the critical points and the Hessian of the Hamil-
tonian H: T*.4* — R. From now on, dim M = 3.

IL2.3. THEOREM. A pair (g, ) € T*.4* is a critical point of H: T* .4* - R, (g, %)
+ [5¢(g, n) if and only if (g, 1) € F* x {0}.
At a critical point (g, 0), the Hessian of H is

H(gs,0)-((h @), (b, ) =5 | V2 dpy +5 [ @tehpdp,

+2 _" Gr P — o'-0) dp,.
Proor. From the computation in the proof of 11.2.1,

+
N ot ey 03] =

I

dH(g, x)-(h, ) = [ D# (g, 7)-(h,0)

= — f(Ricte) ~ 1 gR(@)-h dpsy + 2 [(30te w2’ —  x w)-hdp,
——;—I(i(tr 7P — ' -a'frh du,+2 I(ﬂtr z)trw—xn'-w)=0
for all (h, w)€ S x (52 ® p,). Thus

@@ — (Ric(g) - $gR(g)) +2((tra") a’ — 2’ x ') — $ (J(r ') — =’-7')g=0,
(b) raYg— =" = 0.
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Contracting (b) gives tr z’ = 0, and thus from (b) again, z’ = 0 (and so = = 0).
Thus, from (a), Ric(g) — 4 gR(g) = 0 = Ric(g) = 0= g is flat.
In the computation for

d2H(g, 7)-(h, k) = ﬁ(j R(g) dp,)-(h. k)
+ ([0 P - #-2) dpg) (o), 1,00,

the terms due to the kinetic part of H are straightforward to compute; since x = 0
and the kinetic part is quadratic in x,

(g, 0)- (b, o), ) = &*(f(4r v — ' -w) dig)- (@), (h, )
= 2!(}(&0)’)3 — o' ') dy,.
The expression for d¥([R(g) dps,)-(h, ) is given by 11.2.2. O]

Note that the critical points of H are exactly the set where o is singular; i.e.
where D¥(g, x) is not surjective. This “coincidence” follows from the fact that

dH(g, 2)- (s 0) = [ D#(g,7)-h ) = [ (D#(e ))-Gh ) = 0
for all (4, w) € Tpqy (T*4¢%) iff 1 € ker (Do (g, :r)!' iff Do#(g, =) is not surjective.

Around (gr, 0)e #* x {0}, the equation #(g, 7) = O is linearization unstable. <

The extra condition that a first order deformation (h, w) must satisfy for it to be
tangent to a curve (g(4), z(2)) of exact solutions of 5#(g, ) = 0 is given by the
following:

I1.2.4. TreoreM. Let (g(3), n(A))e €3 < T*.4*, 2e(—3,8),6 > 0, be a C?

curve with (g(0), 7(0)) = (gr, 0)e 5 x {0}, (£'(0), #'(0)) = (h, w). Then (h, w)
must satisfy tr k = constant and

—-;—j Vhy dy,, + 2."0(tr of — o) dpy, =0

where h is the divergence free part of h.
Proor. Differentiating 5#°(g(1), 7(2)) = 0 twice and evaluating at = 0, we have

' %(x(l). n(l))L:o = Ds#(g(2), =(A)-(g’(R), ' W))la=0
) - = Ds#(gr, 0)-(h, w) = (dtr b + 35h) dp,
=(dteh)ydy, =0
and

T . 27| = D), 20)-(F D, # Q). (D, Do

@ + DA (g(2), 7()-(27(R), ="(A))a=o0
= D2t(gr, 0)-((h, w), (h, ®))
+ Ds#(gr, 0)-(g"(0), z"(0)) = 0.

P
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Integrating (2) over M gives
@ dHgr 0)-((h ), () = | Do#(er, 0)-(h 0, () = 0
since (gr, 0) is a critical point of H, so that
dH(gr, 0)-(g"(0), z"(0) = | D#(gr, 0)-(2"(®), n"(0)) = 0.

From the first order condition (1), tr % = constant, so that from 1L.2.3, the
second order condition (3) becomes

- %.’. (Vhy dy, +2 j (tro'? — o' w)du, =0. O

REMARKs. 1. The first order condition (1) does not give any restrictions on w.
However in the next section we shall see that the first order deformation (h, w).of
the §;w = O constraint around = = 0 implies that o = 0.

2. As an example of a nonintegrable deformation, let (73, g5) and 4 be as in the
example of 1.4. Then if w =0, (4, 0) satisfies the linearized Hamiltonian constraint
but not the second order condition, which for @ = 0 reduces to V% = 0. Thus
(A, 0) cannot be tangent to any curve (g(1), z(1)) € G-

Even though g is flat, the integrated extra condition on a first order deforma-
tion (A, w) cannot be converted to a pointwise condition as in 1.4.2 or the above
remark since the kinetic term ((3(tr o' — ' - ') dy, is not negative-definite,
even if the condition dw = 0 is imposed. Not being able to convert to a pointwise
extra condition signals that although there is linearization instability of s#(g, 7) =
0 at (gr, 0) € #x {0}, these solutions are not isolated solutions. In fact, if we
ignore the 7 = 0 constraint, we can construct solutions algebraically to »¢(g, ) =
0,-(g, =) ¢ #* x {0}, which are arbitrarily close to a solution (gz, 0) € F* x {0}.

This construction proceeds as follows: let ATe S2 be any traceless tensor,
tr AT = 0,and let z, = (AT + ((2/3)AT- AT)V2gg) i, ; here the trace and point-
wise contraction ““-> are with respect to gr. Then

H(gr, w) = (R(gr) + % (tr 7P — - 7)) g, = O.

Thus for e small, z, can be made arbitrarily close to 0.

In this construction, dz. # 0, and this situation cannot be remedied by choosing
AT to be transverse (i.e. 647 = 0) as well as traceless, since ¢ = ((2/3)AT-AT)\2
need not be constant, so that = = (A7 + ¢gr) y,, need not be divergence free.

However, by being more subtle, we can still construct solutions to X#(g, ®) =0,
o;m = 0,(g, 7) ¢ #* x {0}, which are arbitrarily close to the manifold of solutions

& x {0}.

I1.2.5. THEOREM. Let (gr, 0)€ #* x {0}. Then in every neighborhood U3, q, <
T*4: of (gr,0), there exists a (g, ©) € Ulg, a, such that (g, ©) ¢ F* x {0}, #(g, 7)
= 0,0,z =0, and tr & = cpy,, ¢ = constant # 0.



256 ARTHUR E. FISCHER AND JERROLD E, MARSDEN

Proor. We use a stability argument based on the Lichnerowicz [24] and Choquet-
Bruhat [7], [8], [9] conformal method of constructing solutions to the constraint
equations.

For gye .4, let ATTe 872 be such that 3, A7T =0 and tr ATT =0, Let M =
ATT. ATT (““.™ s with respect to g) and let ¢ = constant. Then from (8], [9] (see
also [33] for the case ¢ = constant # 0), if M # 0 (<> ATT£0), ¢ # 0, there
exists a unique ¢ € H*(M; R), ¢ > 0, that satisfies the Lichnerowicz equation

© 84 = — R(g) ¢ + M $~7 — }c2 4%
Moreover, if g = ¢* go,
= (=4 ATT + (c/3) $288) tg, = (60 ATT + (c[3) %) g

(where the last equality follows from g* = ¢~4 g8 and y, = ¢ ), then H#(g, 7) =
0,5z = 0, and tr x = cp,.
The stability theorem of [9], adapted to the case that ¢ # 0, proves that solutions
to (L) are stable with respect to g, M, and 2, if M # 0, and ¢ # 0;i.e. if we let
Y:T'\* > H(M; R), (g, z)r~¢
be defined for those (g, ) € T*.4 such that  is of the form = (477 + (¢/3)2)y,,

ATT £ 0, ¢ # 0,and let ¢ = Y(g, n) € H(M; R), ¢ > 0, be defined as the unique
solution of (L), then Y is a continuous map. ,

From the uniqueness theorem for (L), if “

—RE+M-}c2=0, M#0,c#0,

then ¢ = 1 is the unique solution of (L). But then from stability of solutions to
(L), it follows that if — R(g) + M — (1/6) c (M # 0, c % 0) is H*2 close to
0 € H*-2(M; R), then the unique solution $>00f (L) is H*close to 1 € H* (M; R);
ie. if Ui c H*(M; R) is a neighborhood of 1, there exists a neighborhood
U 2 € H*-2(M; R) of O such that if — R(g) + M —(1/6) e U2, M #0,c #0,
then the unique solution ¢ > 0 of (L) is in U?.

Now let

Uty = (8, 2) e Uy, o if 7 = (47T + (c/3)g) ugand g€ Ui, ¢ > 0,
then (¢4, (§=* ATT + (c/3) $2 &%) ) € U%, 0},
and
Tignor = {(8: W) € Ulp: i 7 = (AT + (c/3) 8) s
i then — R(g) + M — } c2e Uj™2},

so that Uf, ) = U,y and Ui, 4 = Ui, are both neighborhoods of gz, 0).

Now let (g0, m) € Ui, o N ﬁ;g,.o) with 7o of the form 7o = (477 + (c/3) g}) p,.
AT #0,c#0,and let ¢ > 0 be the unique solution of (L) with coefficients
(80, M, c). From the construction of Ulen and U2, ¢ e U3, so from the con-
struction of Uig,e, if 8 = ¢* g0, 7 = (p4 ATT + (c/3) $* ) e (2, 7)€ U, o,
and #(g, 7) = 0,3;w =0, tr v = Pigy-7r = CPP pg, = Cpg c# 0, and (g, 7) ¢ .
F* x {0}.0
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Thus the set #* x {0} is not isolated among the solutions of (g, ) = 0 and
dg7 = 0. In fact, in {6], Brill-Deser show by example that a flat 3-torus and = =
0 is not an isolated solution of the constraint equations.

As shall be apparent from 11.3.2, the divergence constraint also does not have
any isolated solutions. Thus because (g, =) = 0 is linearization stable at all
(g, ©) ¢ F x {0}, we can conclude:

There are no isolated solutions of the empty-space constraint equations of general
relativity.

This result also holds for all physically reasonable stress-energy tensors.

Interestingly, if we look for solutions to the constraint equations that also satisfy
the condition tr = = 0, then ¢ x {0} is an isolated manifold of solutions to
the Hamiltonian constraint (and hence to both constraint equations).

11.2.6. THEOREM. Let (gr, 0) € &* x {0}. Then there exists a neighborhood U g, o,
< T*.4* of (gr, 0) such that if (g, =) € Uy, (g, ) = 0, and tr T = O, then
(g, m) e &+ x {0}.

PROOF. From 1.5.2 there exists a neighborhood U, < ¢ such that if g € U,,,
R(g) 2 0, then ge &+ Let Uy, q = T*U, < T*.4*. Then if (g, 7) € Ug, 0,
#(g, ) =0,trx = 0,then R(g) = n’-n’ = 0, and since g€ U,, g € F*, so R(g)
= 0,and hencez = 0. O

REMARKS. 1. In particular, the solutions #* x {0} are isolated among the time-
symmetric (x = 0) solutions to the Hamiltonian constraint.

2. The variation of the tr x = 0 condition is

Ditrn)-(hhaw)=h-w 4+ trow=0.

Thus if z = 0, a deformation of tr # = 0 must satisfy tr @ = 0. Using this con-
dition, the second order condition of 11.2.4 reduces to the pointwise condition VA
= 0 and w = 0. This is the basis of the “second order” version of I1.2.6, proven
in [5).

Although I1.2.6 proves isolation in a full neigiborhood of %+ x {0}, in light
of 11. 2.5, the isolation of this set is more a consequence of the tr # = 0 condition
than of the constraint equations.

I1.3. The divergence constraint. Now let : T*.4* — -1 x ¥, (g,7) = de 7w =
—n'l\;, where ¥ is the set of H* volume elements on M. Let

€;=010) = {(g, n) e T*.4r*: (g, =) = 0}
denote the set of solutions to the divergence constraint.

11.3.1. THEOREM. Let (g, %) € €5 satisfy condition Cs: if Lxg = Oand Lxyz = 0,

then X = 0. Then in a neighborhood of (g, x), ¢} is a smooth submanifold of T*./°,
and 3,z = O is linearization stable at (g, 7).

PROOF. Di(g, 7): S; x (S? ® y) = 2*~! @ p, is computed to give
ﬁ(x.-) N (h’ (0) = Da(gv 7‘) : (h: w) = dw + % £ fyg’ ~ ﬂ.'l“hi"m
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with Lradjoint B 2* @ e = S37' x (SZ., ® 14;) given by
Blea(Xzg) = (— $ (Lxz + X ® 3z + 6z ® X)*, (LY )

((Lxm)' means the tensor part of Lxx). Thus, since z = 0, BGo(Xu) =0=>
Lxz =0and Lxg = 0= X = 0, so Ble.n is injective. Also, Ble.) has injective
symbol (which it inherits from the second factor alone), so that 8., = Di(g, 7)
is surjective and ¢{-, -) is a submersion at (g.7). O

For (g, R) e T s let I, = {p e 2+1; 9°g = g}, the isometry group of g, and
I = {p € 2**': ¢*z = 7}, the symmetry group of = (here p* 7 = ((p~1), 7') ®
(9*45) is the pulltack of the contravariant tensor density ). Z, is a compact Lie
group; I, is clesed in 5! but may be infinite-dimensional (eg.ifx =0, 1, =
DN Letlg =L NI, a compact Lie group, and let Fe.x) denote its Lie
algebra. Then ker £, = F(pm) = {Xedt1: Lyg = 0and Ly = 0}.

If we consider th> action 4: 259 x s - s hfted to the cotangent bundle,

A2 T > T, (9, (2, 7)) — (p*g, Pt )

then the isotropy greun of this action at a point (g, 7) € T*.4 is /(). Thus the

map d(g, x) is singular (i.c., fails to have surjective derivative) precisely where the

action 4’ has isotropy greup /i, . which is nondiscrete. At these (g, z), 2**1 does

not act frecly so that th: quotient space T* 4[5+ js singular (i.c., is not a mani-

fOld). .

Note that if (g, )2 %3, pulling hack oz = 0 by pe 9+ gives 9*(0;7) =,
Opee(p*n) = 0 50 that (¢*g, p*x) € 5. Thus € is invariant under A’ so that we have

restricted action

B: 271 x ;- ¢

Let €5 / 2**1 denote the quotient space of €3 by this restricted action. Because the
singular points (g, 7) of ¥} (as a manifold) correspond to singularities in the action
B, and at these points (g, ), ker ff,,) = 5 @.x)» We conjecture that modulo the
presence of discrete isotropy groups, €3/ 21 is a smooth submanifold as a subset
of the quotient space 7™.4/*/ 9**1, the singular points of &; precisely “cancelling
out” the singularities in the quotient space €3] 2°+1 due to the presence of nondis-
crete isotropy. This possibility was pointed out to us by D. Ebin; cf. Marsden and
Fischer [28).

At thosc points (g, 7) € €} for which Da(g, z) is not surjective, there are extra
second order conditions that must be satisfied for a deformation (%, w)to be tangent
toacurve in ¢3.

I11.3.2. THEOREM. Let (g, ) € €3, X € Z*H, X # O such that Lxg =0andLxr =
0. Let (g(R), n(2)) € €3, A€(—c, ), ¢ > O, be a C2 curve with (2(0), x(0)) = (g, %),
and(g’'(0), '(0)) == (h, w). Then (h, w) satisfies

Di(g, ) - (hw) = 6w + ¥ im by li — o by, =0
and
j' h-Lya=0.
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Proor. Differentiating d(g(1), 7(2)) = O twice and evaluating at 2 = 0 gives

(e, 7)), = Dalg 7) - th ) = 0,

and

T G, x|, = D3(e, 7) - (1, ), (h, )
+ Di(g, m) - (2"(0), z"(0)) = O
Thus, if ker 8. # 0, then for each X € ker 8{.x),

f X (00663 - ((hd tho ) + [ X - B - (" 7" O))
=[x @5, m) - (U0, 0 ) + [ B X0 - (&7, 57O
=[x v - (b o), () = 0.
A rather lengthy computation gives
D2 6(8’, 7‘) ' ((h! w)o (h’ m))
= 20" (3 i — Kiym) — 27" B2 (% himia — Hatim)s
which, together with Dd(g, ) - (h, w) = 0, gives

[ x- o, (o) o) = = [ Lxw - h=0.

Thus, ]'wa - h = 0 is the necessary second order condition for each X € ker 8¢~
that must be satisfied for (4, » ) to be tangent toacurvein ;. O

Thus at points (g, z) of linearization instability of the equation d;z = 0, there is
an extra condition generated by each X € ker (Dd(g, m))* = {Xe 2*: Lxg = 0 and
Lyr = 0}, so that the number of linearly independent extra conditions is cqual
to dim ker (Dd(g, #))*. For the Hamiltonian constraint there was one extra second
order condition, corresponding to the fact that dim ker (Do#(gr, 0))* = 1.

I1.4. The constraint manifold 2. We now consider the constraint set €* = €% (N
%3. To show that %* is a submanifold of 7*.#*, we need additional restrictions in
order to ensure that the intersection is transversal. At this point it is necessary to
assume that tr 7 = constant. (See Note on p. 263.)

[1.4.1. THEOREM. Let (g, 7) € €* = €% [\ ¥} satisfy the following conditions:

Cw:ifn =0, gisnot flat;
C;: Lxg— OQandLyr =0= X = 0
Cy : tr ' = constant.
Then, in a neighborhood of (g, &), ©* is a C* submanifold of T*.4/>.
PROOF. Let ¥ = (07, 8): T*.4° — A+=2 x (T*~' @ ¥™*), (g, 7) = (#(g. %), (g, 7))
Then

Dw(gv 7'-') * (h’ w) = (D.#’(g, 7;) * (h’ w)v Da(g9 7‘) * (h: (l)))
= (T(I.x) : (hv o), B(g.:r) '(hv 0)))
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and the L-adjoint of DY (g, ) is
(D (g, m))* - (Nt X ® tg) = 1 (Nug) + Blea(Xug).
Thus suppose (D¥ (g, = (N, X ® 1) = 0. Then
8AN + Hess N — N Ric(g) + 1 NR(g)e

(a) +2(3ra) 7’ — 7' x =) — (I (tr Y-z - n')g}N
- %(an+X®67t+57r®X)'5=0;

(b) 23trm) g — 7) N + §(Lxg) g = 0.

Taking the trace of (a) and using #(g, z7) = Oand 6z = 0 gives

(© 2N ~ 4 (X -dtra’' — ' - Lyg — 0X)(tr z')) = 0,

and from the trace of (b),

(d) 0X =Ntz

From (b),

(e) Lxg =4(z — } (tr )g)N,

and, subsituting (d) and (e) into (c) gives

) 2AN + 2z - 2" =3 (tr )N - 3 X - dtr 2’ = 0.

Since P(z'\z)=z' - 7' - Y (tr ') = (@' = 3(r2g) - (' — (tr 7')g), the
coefficient of ¥ is positive-definite. Thus, if tr 7' = constant,

24N + 2P(z’,x') N = 0,

so that N = O unless 7’ = 0. If N = 0, from (@) Lxz = 0 and from (b) Lyg = 0
so X =0.

Ifz' = 0, then AN = 00 N is constant and so from (a), N(Ric(g) — 4 gR(g))
= 0= N = 0, since Ric(g) # 0 in the case that 7’ = 0. Then, again, X = 0.
Thus, in either case, (DY (g, 7))* is injective.

The symbol g¢ (D¥ (g,7)*) is given by

06 (5 ¥) = (-8 el + £ @85~ 4 (= mHE Yy~ 2P & Vi + 1 YY),
WY@ & + & ® N (0).

Thus if g¢, (s, Y) = 0, &, # 0, from the second factor ¥ = 0 and so from the first
factor s = 0. Thus g¢, is injective, DY’ (8, =) is surjective, and ¥ is a submersion at
(ex). O :

It would be nice if the tr 7 = constant condition could be dropped and we con-
Jecture that it can. However, because of the coupling of equations (a) and (b) with-
out the tr z° = const condition, it is possible that these cquations have nonzero
solutions (¥, X) even at those (g, =) that satisfy conditions C,» and C;.

IL.5. Integrating deformations of Ricci-flat spacetimes. As explained previously,
we can use [1.4.1 to prove the following result. We consider only the C* case here.

IL5.1. THEOREM. Let Wg be a smooth Lorentz metric on a 4-manifold V satisfying

i»
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Einstein's empty-space field equations Ric(‘9g) = 0, and let ‘“Wh be a solution to the
linearized equation

D Ric(WWg) - Wh =0
about the solution Wg.

{Assume that V has a compact connected oriented spacelike hypersurface M with
induced riemannian metric g and second fundamental form k that satisfy conditions
Cx, Cs, and C,. Then there exist a tubular neighborhood V' of M, a3 > 0, and a
smooth curve Wg(2), — & < A < J, of exact solutions to Einstein’s equations defined
on V' tangent to Wh at Wg, ie, Wg(0) = Wg, We'(0) = Wh, and Ric(Wg(2)) = 0
in a tubular neighborhood of M.

Proor. Let (g, =) be the variables on M induced by @Wg. A deformation Wh of
Ric(“@g) = 0 induces a deformation (4, w) of the linearized constraint cquations,
Ds#(g, 7) - (h, w) =0, Di(g, z) - (h, w) = 0. Since (g, n) satisfies conditions
Cx, C;, and C,, by I1. 4.1, € is a smooth submanifold with tangent space T@= @
= ker (Do#(g, ), Dé(g, x)). Since (h, w) is tangent to &, we can find a curve
(£(2), =(2)) € ¥ tangent to (h, w). By the evolution theory, this curve of solutions to
the constraint equations gives us a curve Wg(2) of spacetimes defined in a tubular
neighborhood ¥’ of M. By a transformation of coordinates, @g(2) can be made
tangent to Wh. See [16] for details. O

Thus a solution of the linearized Einstein empty-space field equations actually
approximates to first order a curve of exact solutions to the nonlinear equations in a
tubular neighborhood of any compact spacelike hypersurface that satisfies condi-
tions Ce, Cj,and Cy. Because these conditions are so weak, presumably most space-
times which have compact spacelike hypersurfaces have a hypersurface M satisfying
these conditions, and thus is linearization stable in a tubular neighborhood of M.
Moreover, by using standard arguments and by considering the maximal deve-
lopment (see [12]) of the Cauchy data of the curve of spacetimes @Wg(2), there will
be a maximal common development (which approximates the maximal develop-
ment of @g(0)) for which the spacetime is linearization stable.
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