GENERAL RELATIVITY,
PARTIAL DIFFERENTIAL
EQUATIONS, AND
DYNAMICAL SYSTEMS

ARTHUR E. FISCHER AND JERROLD E. MARSDEN

0. Introduction. In this paper we study two aspects of the Einstein equations of
evolution for an empty spacetime. In the first part (§§1-3) we give a simple direct
proof that the differentiability of the Cauchy data is maintained for short time.
In the second part (§§4-5) we sketch how, on a suitable configuration space,
Einstein’s equations can be considered as forced geodesics modified by terms which
reflect a moving coordinate system equipped with its own system of clocks. Both
of these topics will be presented in more detail elsewhere {15], [12).

Let Q be a bounded open domain in R?, let §,,(x).(x)e Q= R0 S u.v <3,
1 £i £ 3. be a Lorentz metric of signature (—, +, +, +), and let k:,,(x‘) bea
symmetric 2-covariant tensor field on Q. The first proofl that Cauchy data
(£,.0x, (',,.(x‘)) of Sobolev class (H*, H*"'), s 2 4, evolves for small time into a
Ricci zero (R,, = 0) spacetime g,,(t, x) which is also of class H* was given by
Choquet-Bruhat (3], (4), based on earlier work by herself [2], and Lichnerowicz
(21). Her method of proof is to normalize the Ricci tensor by using harmonic
coordinates so that the resulting system is a quasilinear strictly hyperbolic system
(no multiple characteristics). The result then follows by quoting a theorem of
Leray [20. p. 230] about quasilinear strictly hyperbolic systems, as modified by
Dionne (7. p. 82]. Leray's original version of the theorem loses a derivative (i.c.,
H* Cauchy data only has an H*~' evolution), but Dionne remedies this defect.

Our method of proof is based on a simple observation; namely, the Ricci tensor
in harmonic coordinates can be reduced to a quasilinear symmetric hyperbolic
first order system of the form

A%u)ou/ét = A'(u)ou/ox' + Blu).
where u and B(u) are 50 component column vectors, A%u) and A'(u) are symmetric,
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and A%u) is positive-definite. This observation is inspired by the well-known fact
that any single second order hyperbolic equation can be reduced to a first order
symmetric hyperbolic system.

Let g,4(t. x) be an H*.solution of R,, = 0 with given Cauchy data. Because of
the form invariance of the system R,, = 0, g, = (Ex*/OX*)(ExP/E%")g,, is also an
H*-solution of R,, = 0, if %(x*) is an H** '-coordinate transformation. By arrang-
ing so that X*(x*) is the identity in a neighborhood of the spacelike hypersurface
t = 0,g,, has the same Cauchy data as g,,. Hence solutions 10 the Cauchy problem
cannot be functionally unique. However, we prove a uniqueness theorem thai
says the evolution is unique up to the H**'-isometry class of the spacetime.
This result sharpens, by one degree of differentiability. the uniqueness theorem
stated in [3].

In (15] we shall show how our existence and uniqueness theorems can be ob-
tained intrinsically for arbitrary manifolds. not necessarily compact. in the class of
metrics for which the space-manifold is complete, and which satisfies sunable
asymptotic conditions.

In §§4-5 we consider in what sense Einstein's equations in 3-dimensional form
are a Lagrangian system of the classical form kinetic energy minus potential energy.
We show how on a suitable configuration space (the manifold & x .#). the
evolution equations are a degenerate dynamical system. Various terms in the
Einstein system are given a geometrical explanation. In particular. the central
role played by certain Lie derivative terms in the presence of a shift vector field
is shown to be analogous to the space-body transitions of hydrodynamics (see
Ebin-Marsden [9]) or the rigid body (see Marsden-Abraham [23)). These results
are a geometrical reinterpretation of the basic work of Arnowitt-Deser-Misner
(1]. DeWitt (6] and Wheeler [29).

We thank D. Ebin, H. Lewy, P. Lax, M. Protter, R. Sachs, and A. Taub for a
variety of helpful suggestions.

1. Existence of an H'-spacetime for (H*, H*~') Cauchy data. For empty space
relativity, one searches for a Lorentz metric g,.(1, x') whose Ricci curvature
R, is zero; ie., g,.(1. x') must satisfy the system

i T8 Cgn \_ 1 o, Pg 1o, gy 1, g,
R"'(""‘g"" ax"ax’ax’) 28 oxran T 38 Fxvor TR Fuiy

1 d%g ég,.

T O Bu 8

38 e t H“'(g“"' fx?
=0

where H,(g,.. g, /6x°) is a rational combination of g,, and g, ‘Cx* with
denominator detg,, # 0. Note that the contravariant tensor g** is a tational
combination of the g,,'s with denominator det g,, # 0.
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Let G,, = R,, - 1g,,R be the Einstein tensor, where R = g*R,, is the scalar
curvature. Then, as is well known, G contains only first order time derivatives of
Z,v- Thus G(0, x') can be computed from the Cauchy data g,,,(0, x') and dg,,.(0, ')/
alone, and therefore G2(0, x') = 0 is a necessary condition on the Cauchy data in
order that a spacetime g, (1, x) have the given Cauchy data and satisfy G, = 0,
which is equivalent to R, = 0.

The existence part of the Cauchy problem for the system R,, =0 is as follows:

Let (g,(x') k”,‘.(x")) be Cauchy data of class (HYQ), H*~'(Q)), s 2 4, such that
G2(x) = 0. Let Q, be a proper subdomain, T}, = Q. Findane > 0 and a spacetime
gl X'\ J1| < e(x') €Qy < Q such that '

(a) g At x')is H* jointly in (1, x') e (—¢.£) x Q.

(b) (2,0, x), 88,0, x')/3t) = (&,.(x'), K, (x"), and

(€) g..{t. x'} has zero Ricci curvature.

Thesystem R,, = Ois a quasilinear system of ten second order partial differential
equations for which the highest order terms involve mixing of the components of
the system. As it stands, there are no known theorems about partial differential
equations which can be applied to resolve the Cauchy problem. However, as was
first noted in 1922 by Lanczos 18] (and in fact in 1916 by Einstein himself for the
linearized equations [10)) the Ricci tensor simplifies considerably in harmonic
coordinates, i.e.. in a coordinate system (x*) for which the contracted Christoffel
symbols vanish, I'* = g*I'4, = 0. (For the existence of such a coordinate system
for an arbitrary Lorentz metric see Theorem 3.3.) In fact, an algebraic computation
shows that

I %, 1 are 1 ére
R w o, 9 1. 9
Ri= =38 o t 38 g + 38u 3 + Ha

so that in a coordinate system for which I = 0,
R‘" = R(:" = —}g“(azg,,/ax‘ 6x‘) + Hﬂ"

The operator — §g*%(0%/0x* x’) operates the same way on each component of the
system g, so that there is no mixing in the highest order derivatives. Thus the
normalized system R\ = 0 is considerably simpler than the full system. In fact,
the system R!\ = 0 has only simple characteristics so that R® = 0 is a strictly
hyperbolic system.

The importance of the use of harmonic coordinates and of the system R®=0is
based on the fact that it is sufficient to solve the Cauchy problem for RY = 0; this
remarkable fact discovered by Fourés-Bruhat [2] is based on the observation that
the condition I'*(x') = g*’(x)I'%(x) = 0 is propagated off the hypersurface t = 0 for
solutions g,, of R™™ = 0. This is established in the next lemma.

L.1. LemMa. Let (8,,(x'), k,,(x')) be of Sobolev class (H*, H*" ') on Qs > n + 2,
n = 3, and suppose that (§,,(x'), k,,(x")) satisfies
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(a) M x’) = 0,
(b) &o%x) = 0.
If g, (1. X\ |1] < & x€ Q. Qg a proper subdomain, f3, < Q. is un H'-volution of

(guv(o. Xx). aguv(oi X)/'(’” = (gﬂ\'(xé)‘ k""(xi”‘
RY = —4g*o%g, sox* éx®) + H,, = 0,

then T*(t, x') = O for |t| < e, x€ Q,,

PrROOF. The case s> {n + 2 is treated in [14]; here we assume s > in+ 3
Let g,.(t. x) satisfy (a) (b) and R® = 0. Then a straightforward computation
shows that (¢, x') = g*(r, x')T%(1, x') satisfies IT*(0, x')&t = 0. From G**,, = 0
(where |, means covariant derivative) and R} =0, I' is shown to satisfy the
system of linear equations

ar og, \ore
af By v av .
[ 4 ox® axP + Aa (guv'g "a—xT)a—xi =0
This linear system can be reduced to a linear first order symmetric hyperbolic
system for which a uniqueness and existence theorem holds. This is exactly analo-
gous to Theorems 1.2 and 3.1 below. But from the uniqueness for this system.
(0. x) = 0 and ar*(0, x')/at = 0 imply I'*(1, x') = 0. §

According to the lemma, an H*-solution of R = 0 with prescribed Cauchy
data is also a solution of R,, = 0 (since ™1, x) = 0 = R = R,,). provided tha
the Cauchy data satisfies (a) I'* = 0 and (b) G° = 0. As mentioned above (b} is a
necessary condition on the Cauchy data for a solution 8.t x) to satisfy R,, = 0.
If(a} is not satisfied, then a set of Cauchy data can be found whose evolution under
R\ = 0 leads to an H'-spacetime which by an H**‘.coordinate transformation
gives rise to a spacetime with the original Cauchy data (see Fischer-Marsden [14)).

From the theorem of Dionne concerning quasilinear strictly hyperbolic systems
(7] and Lemma 1.1, Choquet-Bruhat 3], (4) concludes that Cauchy data of class
(H*, H*~') has an H*-time evolution. We prove this result directly by reducing the
strictly hyperbolic system R* =0 to a quasilinear symmetric hyperbolic first
order system. Aside from the practical nature of putting the Einstein evolution
equations in this form (systems of this type are very well understood: the Cauchy
problem has a simple resolution in this form), there is the aesthetic value of bringing
relativity into a form which uniformly governs most other equations of mathe-
matical physics, such as Maxwell's equations, the Dirac equation, the Lundquist
equalions of magnetohydrodynamics, Euler’s equations for a compressible fluid.
and the equations describing the motion of elastic bodies.

1.2. THEOREM. Let ) be an apen bounded domain in R* with §dy a proper subdomain,
0o < Q, and let (§,,(x), k,.(x)), (x) € Q.0 £ wv S 31 Sig 3 beofSoboler class
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(H* H*"'),s 2 4. Suppose that [(x') = 0 and G2(x) = 0. Then there exists an
¢ > 0 and a unique Lorentz merric g,(t, x), |t} < ¢, (x") € Qq such that

(1) g,.(t, x*) is jointly of class H",

(2) RNt x') = 0,

(3) (8,00, x), 88, (0. x')/31) = (§,(x). ko (x)).
From Lemma 1.1, this g,,(t,x') also satisfies R,,(t, x") = 0. Moreover, g,.(t, x")
depends continuously on (§,,(x"), k,,(x")) in the (H*, H*~') 10pology. If (&,.(x"),
l:-u.(x")) is of class (C™, C®) on Q. then g, (1, x') Is C™ for all t for which the solution
exists.

Note. The case s = 4 is delicate and is treated in [14]). Here we assume s = 5.
In [14] we also give a complete discussion for the case of spatial asymptotic
conditions.

PrOOE. The system R\ = 0 is reduced to a first order system by introducing the
ten new unknowns k,, = dg,,/@ and the thirty new unknowns g,,, = dg,./0x
anl considering the quasilinear first order system of fifty equations:

Cg, /ot = k,,,

ok,
Q) £'/(0g,,./01) = s"-ﬁ-

ok, ok, g,
-goo a_: = 28°Ja—;" + gu_g:'—f—‘ - Zan(guv' guv.h kyv)‘

We are considering H,, as a polynomial in g,, ; and k,, and rational in g, with
denominator det g, # 0. At first, we extend our initial data to all of R3, say to
equal the Minkowski metric outside a compact set, and consider the system (Q)
on R>. Note that the Cauchy data need not satisfy the constraints G2 = 0 during
the transition.

The matrix g has inverse g, — (g;08x0/800) (.6~ £(gx — (&0810/200)) = &}) 5O
that the second set of thirty equations can be inverted to give

(1) g, /0t = Ok,./Ox"
For g,, of class C2, (1) implies

guv.l’ = aguv/ax‘-

so that the system (Q) is equivalent to R = 0.
Let
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be a fifty component column vector, where g, , is listed as
/Roo.l\

B

£o0.3

e

0'°=10 x 10 zero matrix, I'® = 10 x 10 identity matrix, and let A"(u) =
A%g,, g k) and Alg,..g,, . k,,) be the 50 x 50 matrices given by

,IO 0!0 OIO Ono Oltl
010 gllllo gnzllo gnllo olo
AO(g‘".ng.k”) = 0[0 8!2,10 gZZIIO gn,m 010
0!0 gIJIIO gJJIlO 833110 0o
0'° L o'° 0'° g0y

010 0!0 0|0 0!0 0l0

OIO 0!0 010 OIO gjx,m

Aj(g“,. g“”‘k‘") - 0!0 010 010 010 gIZIIO

OIO 0!0 0!0 0]0 gjlll()

OIO gU,IO gUIIO ngIIO 2gJOIIO

and let B(g,,. g,.... k,,) be the filty component column vector given by
kn-
B(g,.. Buv.is kyh) = 0%°

—2H,,,(8uvs Byv.i Ky)

where 00 is the thirty component zero column vector.

Note that A%u) and A%(u) are symmetric, and that A%u) is positive-definite il
9., has Lorentz signature. A direct verification shows that the first-order quasi-
linear symmetric hyperbolic system
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A%u)(Pu/dt) = Alu)du/éx’) + Blu)

is just the system (Q). From Theorem 2.1 and its generalizations proven below, we
conclude that for Cauchy data

£, (x')
f‘(x‘) = gnv.l(x')
ko (x"

of Sobolev class H*~ 1,5 — | > {n + 2, there exists an ¢ > 0 and a solution

B,(1, x')
ult, x'y =| g, x"

ko (1, x*)

of class H*~'. By Sobolev's lemma, u(t, x') is also of class C?, and so, by the second
set of equations of (Q) g,.; = dg,./dx". Since (g,,..K,.) = (89,./0x', 8g,./01) is
of class H*~', g,.(t. x') is in fact of class H’. The continuous dependence of the
solutions on the initial data follows from the general theory below.

To recover the result for the domain Q from the result for R", we can use the
standard domain of dependence arguments; see Courant-Hilbert [S].

Since Q is bounded, (g, &,,) of class C* implies that the solution is in the inter-
section of all the Sobolev spaces and hence is C*; again we are using a general
regularity result about symmetric hyperbolic systems.

From Lemma 1.1, the g,.(t. x") so found satisfy the field equations R, = 0.
For the case in which the Cauchy data does not satisfy [(x') = 0, see [14). §

Although g, (1, x) is a unique solution of R™ = 0, with prescribed Cauchy data.
it is not a unique solution of R,, = 0. We return to this point in §3.

2. First order quasilinear symmetric hyperbolic systems. The theory of linear
first order symmetric hyperbolic systems is due to Friedrichs [17] with some simpli-
fying modifications by Lax [19]. The essential ideas for handling quasilinear
equations appear in Schauder {25]. Frankl [16). and Petrovskii [24]. Friedrichs
[17. p. 352] mentions that these ideas can be used to prove the unique existence
of a solution for a quasilinear first order symmetric hyperbolic system, and it is
again mentioned in Courant-Hilbert {5, p. 675), but we have been unable to find
the details of a complete treatment in the literature. Here we shall outline the
methods for R” and present an intrinsic version for manifolds elsewhere [15). The
basic idea is to find energy type estimates, use the contraction mapping principle
to find an H* "~ '-solution, and then show that this H*~ '-solution is in fact H*.

2.1. THEOREM. Let H*R", R™) denote the H* maps from R" to R™, and let
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' < HYR", R™) be an open subset. Let 6 > 0, and for (1, x,u)e (—-6,8) x R" x #".
let A'1. x,u) be a symmetric m x m matrix, and let B(1, x, u) be an m-component
column vector. Suppose that A1, x, u). and Blt. x, u) are H*-functions of (1. x), and arv
rational functions of u with nonzero denominators. (More generally, one could use
Sobolet's “condition T* on compositions of H* functions (28).)

Given uge ¥',s > {n + 2, there isan : > 0,z < 8. and a unique u(t, x), 1] < «.
x€ R" which is H* in (1, x) and which satisfies

u(t, x) = ug(x),
oufor = A'r, x, u)ou/ox") + Bt x, u).

Moreover, the solution u(t, x) depends continuously on uqg in the H*-1opalogy. 1|
A'(t, x, u) and B(t, x, u) are functions of (1. X)in (), n24 :H'(— €, €) x R") and g @S in
(s> ns2+ 2H R, then ult, x) is in Vi> w2+ 2H (=6, ) x R?).

Note. For the above applications, we should replace du/dt by A%, x. upu, i
where A° is a symmetric positive-definite matrix. Here we consider the case
s> 4n + 2; the case s > n + 1 is obtained in [14]. Moreover, 2.1 can be gener-
alized to the case in which the coefficients and the Cauchy data satisfy asymptotic
conditions. This case is more delicate and is discussed following the proof of the
present theorem.

PrOOF. Let || ||, denote the H*-norm for functions u:R* — R™ in #*. Let E denote
the set of continuous curves w:[ - 8, §) — % such that w(0) = uy and [jlt) - u,, |
£ 1. -6 St £ 4. Thus E is a complete metric space, and we want 1o define a map
J:E— Eby

(] (}
Slo)1) = uy + J Al(s, x, uxs, x))éa;,f(w)(s.x)ds + J B(s. x. wAs. xW d>s
0 0

where the integration is done as a curve in H*~*. From the linear theory of first
order symmetric hyperbolic systems, it follows that for & sufficiently small therc is a
unique such mapping f:E — E. Indeed., for w € E, the unique solution of the lincar
system

u(0) = uq
ou/or = A'(t, x, w)(0u/dx") + Bt x, w)

is exactly f(w). Moreover, from the usual Leray estimates of the linear theory (sce
Courant-Hilbert [§, p. 671)), it is easy to show that for w € E and for u satisfying (1)
there is a constant # independent of , w, and u such that flutll, £ "1’ . Thus
S maps Eto E.

Let F denote the completion of E in the H*~ '-norm. We remark that F is. by the
Rellich-Garding theorem, a compact set, although we shall not need this fact.
Next we note that for & sufficiently small, f : E — E is a contraction in the H*~ '-
norm. i.e.. for w,.w, € E, there exists a k.0 < k < 1, such that

(N
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3y I flew,) - f‘wl)"l-l s k“wl - ‘”z"-- '
This follows from the estimates

"ﬂ"-’l) - f(u)z)ll.-: s I Al(s, X, wy(s, x»g% Slwy)(s. x)
0
— Als, x, wyfs, x))i,f (wa)s, x)| ds
ox -1

+ J. || B(s. x, flw,)s, x)) — Bs, x, f(ws)(s. x))|,-, ds
1]

and

‘ 7] )
A's. x, ‘”"ﬁ S(w,) — Al(s, x, w’)'é? Slw,)

=1

‘ 0
2) s “A'(:, X, wx)% (flw)) = flw,)]

0 é
+ 'A'(t. x.w,)b?f(w,) - Al(t, x, w,);; Slw,)

The first term in (2) is handled as in the proof of the energy estimates; the second
term is bounded by ¢, lw, — w,|,- ;|| f(w,)], (c\. ¢2. ¢5 are constants). Thus

_3YP., 1f(w,) = flwy)|,-y S €2 _$%P., [ f(wy) = flw,)]l,-,
+dc, -§EP<al|w‘ = @l

from which (1) foliows.

Thus f extends to a contraction on the complete metric space F so by the con-
traction mapping principle f has a unique fixed point, a solution in H*~! to the
quasilinear system we are studying. Since f depends continuously on u,, so does
the fixed point. We remark that the original argument of Schauder used compact-
ness of F and the Schauder fixedpoint theorem. P. Lax has pointed out that the
above contraction argument can be replaced by the extraction of a weakly con-
vergent sequence in L,, and using H'-boundedness, to deduce convergence in
H* k < s. This again yields a solution in H*~'.

Finally we show that the solution u(t, x) in H*~! is in fact in H®. The trick is to
look at the differential equation satisfied by the second spatial derivative of u, the
solution found in H*~!. Now

du/ét = A'(e, x, u)(du/dx') + B(1, x, u)

so if Du is the first differential of u,
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cu

i

¢ . cu
.—r(Du) = DAt x, u)‘:; + DyA"1. x,u) Du-
« R

3)

-
+ A'tt.x.u) ,‘\—, Du + DBI1. x. u)
E

where D,A' and D,A' are the partial derivatives with respect to the second and
third variables. respectively. If we consider (3) as a linear equation in the unknown
r = Du of the form

cr'ét = AWe/ex' )+ C-v + D

then we must treat D,A'(t, x, u)(@u/dx') as a coefficient. However, since u is only
H*', éu/éx' is only H'~2 However, il we diflerentiate again it is easy to see that
w = D2y satisfies

ow/ér = Aiewidx'y+ C-w+ D

where now 4', €, D are H* "~ *-functions (¢ Du/¢x' is, for example, taken 1o be parl
of D*u). The reason is just that second derivatives do not occur multiplied together
as the first ones did. Now if s > {n + 3, the coefficientsarein H',r=5- 2> 4n + 1.
so by the linear theory w which is initially in H*~? remains in H*~2. Hence u re-
mains in H*. (However one only needs s > {n + 2 here by using the fact that only
the lower order terms are affected and r > {n: see below.

This argument also shows that the map u,, — v, is continuous in //* and not
merely in H*"', Moreover, if the coefficients A'(t, x, u), and B(t, x, u) are smooth,
then the same argument shows that if we have a solution in H* whose initial
condition is in H**! then in fact the solution is in H**' (as long as it is defined
in H*). Hence smooth initial conditions remain smooth. [§

Now in our application, we are considering a system of the form

A%, x, u)(Bu/dt) = AL, x, u)(Pu/dx’) + Bt x. u).

This case may be handled as follows. We assume as above that A°, A‘ and B are
H*-functions. By using the technique above, we are led to consider first the linear
case. We proceed as in (5] to reduce to the case 4° = 1d, by writing A° = TT*
and letting v = T~ 'u. However, in the case that A° depends on 1. x in an H*
manner, this modifies the B term by replacing it by an H*~! term.

Without further conditions on the A'(r, x). Cauchy data u, of class H* nced
only have a time evolution u(t,x) of class H*~'. For example, if A'(t,x) = 0.
B(1,x) = B(x), then du/dt = B(x}u can be integrated explicitly 10 give
ult, x) = ¢'#*uy(x). For B(x) of class H*~ ', u{t, x) need only be of class H*~'.

The appropriate condition on the matrices A'(z, x) can be found from the follow-
ing standard lemma from perturbation theory [30].

2.2. LEMMA. Let F be a Banach space, D, « F adensedomain,and A:D, < F — F
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a linear operator which is a generator. Let B:F — F be a bounded operator. Then
A + B:D, c F — F is a generator whose domain is exactly D ,.

Thinking of F as H*~ '-functions, D , as H*-functions,and B: F — Fas multiplica-
tion by an H*~' matrix, we see that D, will be the domain of the closure of the
operator 4 = 4Yd/éx‘) from H* to H*~ . In concrete examples like 3.1 below, the
domain of this operator is not hard to work out. Thus in the symmetric hyperbolic
case, where we know that 4 is a generator, we know that solutions to the full system
with a B term which is H*~! will remain in D,, if they start out in that set.

The same remarks remain valid in the quasilinear case: that is, if 4' is H* and B
is H*~ ! then solutions which start out in D, will remain there. In both this and the
linear case, it is important to realize that the H* energy estimates fail, and so the
proof of Theorem 2.1 as given breaks down. This failure occurs because in esti-
mating derivalives of order s of the B term, one runs into H’ for r < 4n and the
requisite ring structure of H is no longer available. However, one can use the H*~ !-
estimates, and the regularity argument of Theorem 2.1 together with the linear
theory Lemma 2.2. In addition to applications of Lemma 2.2 to quasilinear systems,
in the next section we shall also need to consider the linear first order symmetric
hyperbolic systems A%, x)(u/o1) = A'(t, x)(u/dx") + B(t, x)- u where A%, x)and
A'(t, x) are of class H* in (1, x) but B(t, x) is only of class H*"!.

3. Uniqueness for the Einstein equations. In this section we show that any two
H*-spacetimes which are Ricci flat and which have the same Cauchy data are
related by an H** '-coordinate transformation. The key idea is to show that any
H’-spacetime when expressed in harmonic coordinates is also of class H*. This in
turn is based on an old result of Sobolev [28]: namely, that solutions to the wave
equation with (H* H*~') coefficients preserve (H**!, H*) Cauchy data. We can
give an easy proof of this result by using Lemma 2.2 and the well-known result that
any single second order hyperbolic equation can be reduced to a system of sym-
metric hyperbolic equations.

3.1. THEOREM. Let (q(x), ¥ o(x)) be of Soboler class (H***, H*) on R3. Then there
exists a unique Y(t, x) of class H** ! that satisfies

(Y10, x), 8Y(0, x)/3t) = (Yo(x). tolx)),
g1, x)(D*Y/dx* 8x") + bM{t, x)(Oy/dx*) + c{t, x)p = 0

where g*'(1, x) is a Lorentz metric of class H*, b*(t, x) a vector field of class H*~ !, and
ot. x) is of class H*~ !.

PROOF. As in the proof of Theorem 1.2, this single equation can be reduced to a
first order symmetric hyperbolic system

A%t x)(Bu/dt) = A't, x)(du/dx"y + B(t, x)- u
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where 4°(t, x) and A'(1, x) are of class H*, Bir. x)is of class H* "', and u is the §
component column vector

Y
u=1+,
Yo
In fact the A° and A" are exactly as in Theorem 1.2 with 0'® = 0 and /'® — | and

0 0 0 0 1
0 0 0 0 0
Bi.x)=] 0 0 0 0 0
0 0 0 0 0

dr.x)  be.x) bHLx)  BALx) bt x)

Regard 4 = A'¢/éx' as a densely defined operator on H*"' with domain H*.
A simple check using positive-definiteness of g, (ellipticity of the operator
g4¢?/exi 8x!)) shows that the conditions of Lernma 2.2 on the A’ are met with
thedomainof A = cl(4'?/éx')in H*~ ! being at least as largeas H' '@ H @ H* !
on the three blocks of u. Thus if ug is in D,, then

¥
u=\ v,
Yo

remains in D, which means that ¢ is H** ! in x and H* in 1. From the differential
equation itself we see that in fact ¢ is also H** ' in 1. ]

We remark that this proof “works" because we use the symmetric hyperbolic
system in u and thus the coefficients need only be of class H*, H*~!.

From Theorem 3.1, we can now prove that when one transforms an H*-space-
time to harmonic coordinates, it stays H*.

3.2. THEOREM. Let 8uwlt. x) be an H*-spacetime. Then there exists an H**'-
coordinate transformation %*(x*) such that

ox?
ox¥

is an H*-spacetime with [™(i, x) = g**T'y(i, %) = 0.

ox*
g% = a—i;,(f‘) (%4)g,5(x*(X*))

Proor. To find %*(x*) consider the wave equation
Ov = —g*(e*/ox* éxP) + g*Tes(@¥/éx*) = O,
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and let (1, x) be the unique solution of the wave equation with Cauchy data
0, x) = 0, 90, x)/at = 1, and let X(t,x) be the unique solution of the wave
equation with Cauchy data

0, x) = x', o%i(0, x)/ér = 0.

For g,, of class H*. I is of class H*~", so by Theorem 3.1, i(t, x) and X(t. x) are
H**'-functions and in fact by the inverse function theorem for H’-functions,
(11, x), X(t. x)) is an H**' diffeomorphism in a neighborhood of t = 0.
Since OJx“{t, x) = Ois an invariant equation,
- 2z ox*
¥4 = —gf - ald B = PP =
Lx B s * BT g =My =0

in the barred coordinate system, so X“ is a system of harmonic coordinates. &
As a simple consequence of Theorem 3.2 we have the following uniqueness
result for the Einstein equations:

3.3. THEOREM. Let g,.(1,x) and §,,(1, x) be two H*-spacetimes with zero Ricci
tensor and such that (g,,(0. x), 9g,,(0, x)/0t) = (§,,,(0, x), 92,,(0, x)/01). Then g,.(t, x)
and g,.(1, x) are related by an H** '-coordinate change in a neighborhood of 1 = 0.

Proor. From Theorem 3.2 there exist H**!-coordinate transformations
y{x*) and 3(x*) such that the transformed metrics (9x*/3y*)(9x*/dy")g,s and
(0x°/25)(0xP[87")g,p satisfy R = 0. Since the Cauchy data for g~ and g, are
equal the transformed metrics also have the same Cauchy data. By the uniqueness
part of Theorem 1.2, (0x*/dy*)(0x*/dy")g.s = (9x*/07")(3x*/87")g,. Since the
composition of H** '-coordinate changes is also H**!, £.s is related to g, by an
H**'-coordinate change in a neighborhood of t = 0. §

4. The Einstein system on the manifold .#. We now consider a dynamical
formulation of general relativity from the 3-dimensional point of view of Arnowitt,
Deser and Misner (1), DeWitt [6], and Wheeler [29]. All tensor fields, such as
g, k, X are referred to a fixed oriented smooth 3-dimensional manifold M.

Let

A4 = Riem(M) = manifold of all smooth Riemannian metrics (positive-

definite) on M;

S3(M) = the linear space of all smooth symmetric 2-covariant tensor fields on

M and
2 = DiffiM) = the group of smooth orientation-preserving diffeomorphisms
of M,

In the dynamical formulation of general relativity, one is concerned with the
evolution of initial Cauchy data (3, h)e 4 x S,(M) on some 3-dimensional
hypersurface M of a yet to be constructed Ricci-flat (vacuum) spacetime V,.
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Asonc s interested in finding the evolution g, of Riemannian metrics only up to the
isometry class {(n,”')*g,In,€ Z} of g, (here (5, *)* is the “push forward” of covariant
tensor fields). the evolution is determined only up to an arbitrary curve 7, € 7 wilh
o = the identity diffeomorphism. In other words, only the orbit class or geometry
of g, is determined (see DeWiut (6] and Fischer [11] for the structure of the orbit
space .#/<). Moreover, one is free to specify on M an arbitrary system of clock
rates.

These degeneracies are reflected in the evolution equations as follows:

THE EINSTEIN SYSTEM. Let (b.k)e .4 x S,(M) satisfy the constraints:

ok — gTrkn =0,  HTrk)— k-K) + 2Rig) = 0.

Let X, be an arbitrary time-dependent vector field on M (the shift vector peld) und
N, an arbitrary time-dependent scalar field on M (the lapse function) such that

N(m) >0,
Ni = |IXoll? >0 foralit.meR x M.

The problem is 1o find a curve (g, k,) e .4 x Sy(M) which satisfies the ecolutim
equations

@g,/at = lev = Lx.gn
ok/o1 = NS, (k) ~ 2N, Riclg,) + 2 Hess(N,) — L, k,.

and which has initial conditions (g,, ko) = (g. k).
Our notation is the following:
0k = divergence of k = (8k), = - k.
Trk = Trace k = g'k,, = k',
k-k = dot product for symmetric tensors = kik",
k x k = cross product for symmetric tensors = kke,
Se(k) =k x k ~ HTrk)k = k,k ~ Yam™k ok,
[X[]* = norm of X = g, X' X",
Ly.g, = {Lie derivative of g, with respect to the time-dependent vector field X,
= Xy + Xy, (; = covariant derivative with respect to the time-dependent
metric),
Lyk, = Lie derivative of k, = X'k, + kyX"; + kX',
Ric(g,) = (Ricci curvature tensor formed from g)=R,=T}, - ., +
r :jril - r:lr:p
R(g,) = scalar curvature = R},
Hess(N) = Hessian of N = double covariant derivative = Ny, .
In the case that we choose N, = 1 and X, = 0, the proper configuration space

for the Einstein system is the manifold .#. We equip .# with a metric . referred
to as the DeWitt metric, by setting for g € .4,
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G T M x T M = S,(M) x Si(M)— R,
G (h k)= J‘u (Trh)(Tr k) - h- k),
where u, = (det g)''? dx' A dx? A dx? is the usual volume element.

The following is a straightforward computation (see [12]):

4.1. PROPOSITION. The Lagrangian Ly(g, h) = { G,(h.h) is nondegenerate and
the associated Lagrangian vector field exists and is given by the second order system

og/ot = k,,
Ok,jot = k, x k, — Trkk, — $(Tr k) - k,- k,)g).

Foreach(g, kye .# x Sy(M) there exists a unique smooth curve (g, k,) e 4 x S.(M)
defined for short time with initial conditions (8o ko) = (2. k) and which satisfies (Z).

(2)

Now one adds a potential term to Lo set

L(g.k) = { %,(k. k) ~ 2‘[ Rz,
M

where R{g) is the scalar curvature of g. Adding this potential term adds a gradient
term to the equations of motion. For the potential V = 2fuNR(g)y, (Where N is a
positive scalar on M included for later use), a computation gives

—grad ¥V = - 2N(Ric(g) — 1R(g)g) + 2 Hess(N),

where the gradient has been computed with respect to the DeWitt metric. Using
the pointwise conservation law {(Tr k)? — k- &) + 2R(g) = 0 (see [12]), we have

4.2. PROPOSITION. (g, k)€ A x S,(M) is an integral curve of the second order
system determined by L = }g,(k, k) - 2[RI, iff

dg/or = k,,
dg/ét = S, (k) — 2 Ric(g,).

Eardley, Liang, and Sachs [8] have given conditions for which the velocity terms
S.(k) dominate the Ric(g) term (for example near a singular hypersurface) so that
the latter can with some justification be neglected. In this case the integral curves
can be given explicitly, and are the geodesics of .4 with respect to the metric &,

5. The evolution equations with a shift vector field and space-body transitions.
Now suppose we consider the equations with an arbitrary shift vector field X,.
We assert that there is a simple method for solving these equations if the solution
for X = 0is known.

5.1. PROPOSITION. Let g, . k, be a solution of the Einstein systemwithN = 1, X = 0.
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Then given X, we construct its flow n,. Then the solution of the Einstein system with
N = 1, shift X,, and the same initial conditions g, kg is given by

& =y l)‘gn kr =(n’ l).k:-
Proor. The extra terms involving the Lie derivatives are picked up as follows:
Ok /ot = (n, ')*(3k/B1) ~ Ly, 0 ")k,
= (1, ")%S, (k) — 2 Ricig,) — L,k
= §; (k) — 2 Riclg,) — Ly k,.
where we have used the fact that d(n,” ')*k/dt = — Ly (n, ')*k.

Proposition 5.1 shows that even though the evolution equations with a shift
involve extra terms which are nonlinear and involve derivatives, the more general
systemn can be solved merely by solving an ordinary differential equation: namely.
by finding the flow of X,.

In order to take into account the shift vector field X, we enlarge the configuration
space A to 4 x MA.Forne 2, it is easy 1o see that T, is the set of maps X - 4

where X is a vector field on M. The Lagrangian of the preceding section is trans-
ferred to & x .# by setting, for (7, gle & x .4,

L:T,2 x T 4 - R,
(Xonh)~ i9,(h + Lyg. h + Lyg) - 2[ Righy,.
M

We observe that for Ae R, 4 # 0, L(AX o n, 2h) = A2L(X oy, h) so that L is
quadratic in the velocities (X ¢ n, h). On T.4. of course, this is not true.

On T(2 x .4), L is, roughly speaking, degenerate in the direction of &. This
degeneracy has the effect of introducing some ambiguity into the equations of
motion, which is, however, precisely removed by the specification of a curve
n € Z. A direct computation proves the following:

5.2. PROPOSITION. For any smooth curve n, with generator the vector field
X, = (dn./dt) - n; ', a possible Lagrangian vector field for the degenerate Lagrangian
Lin.g: X < n.h) = L{g.h + Lyg) is given by the equations

0g./0t = k, — Ly g,,
ok /ot = S, (k) — 2Ric(g,) — Lyk,.
There is a natural action of the group & on & x .# given by
D7 x M ~D x . A
€. gl = e {iin™ "))
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This action leads to a natural symmetry and consequent conservation laws for
our system.

5.3. PROPOSITION. Let ®,:2 x M — D x 4 be as above with tangent action
TO,:T(Z x M)~ T(Z x H). ThenLo T®, = L for eachne 2P and 5k — g(Tr k)
® u, (@ = tensor product) is a constant of the motion.

We remark that the standard conservation theorems (cf. [22], [23]), used to
prove this proposition, have to be modified to take into account the degeneracy
of L. The infinite dimensionality of the symmetry group leads to a differential
rather than an integral identity; see [12] for details.

The Lie derivative terms that appear in 5.2 have a natural geometric interpreta-
tion related to changing from space to body coordinates in a manner similar to that
of the rigid body and hydrodynamics (c[. Marsden-Abraham [23] and Ebin-
Marsden (9]). More specifically we consider the manifold M to be the body, and
the flow n, of the shift vector field X, as being a rotation of M. We then make the
convention that an observer is in body coordinates if he is on the manifold, and is in
space coordinates if he is off the manifold.

Now let g, be a time-dependent metric field on M. We assume that the field is
rigidly attached to M as it moves so that we set g, = g,.q4,. An observer in body
coordinates then finds (Cgye4,/31) = kyoq, @s the “velocity™ of the metric. An observer
in space coordinates sees the metric ficld g4, as it is dragged past him by the mov-
ing manifold: he sees the metri¢ field g,,,.c = (1, ')*8uea, and computes

(1) agtpnn/a' = k!plct - Lxg.pm-

(2) Pk\plc'/al = S‘.p.r.”‘lpuc) - 2 Ric(glplcc) - kalpuc'
where k... = (1, ')*kyoq,. But (1) and (2) are just the evolution equations (with
N, = 1)

Finally, we remark that the Hessian term in the evolution equations can be
accounted for by introducing the general relativistic time translation group
F = C*(M:.R) and defining an extended Lagrangian on 7 x 2 x .#. The
pointwise conservation of the Hamiltonian is closely related to the invariance of
the Lagrangian under the action of the group of general relativistic time transla-
tions 9. Moreover, as with the shift vector field, there is associated with an arbitrary
lapse function and a solution of the evolution equations with N =1 and with
given Cauchy data, a proper time function r and an intrinsic shift vector field Y.
From the intcgration of Y, together with 1, we determine from the solution for
N = | the solution with the arbitrary lapse function and with the same Cauchy
data. See [12] for a detailed analysis of these topics.
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