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1. Introduction

The goal of these lectures® was to present some applications of global
analysis to physical problems, specifically to hydrodynamics and general
relativity.

Parts I and II form a unit. Only a small amount of material from Part I
is needed in Part IlI—an acquaintance with the rudiments of the diffeo-
morphism groups. The sort of global analysis used in hydrodynamics is
developed in Part I. The machinery needed in relativity—infinite dimen-
sional Hamiltonian systems—is developed as it is used. This organization
should make it possible for one to read Part III separately if desired.

Because of inevitable time restrictions, it was necessary to make some
selection with regard to the topics and their depth of discussion. There was
an effort made to include topics and points of view that would be of
interest to geometers and global analysts. Nevertheless, we hope the
overall perspective presented gives a reasonably correct picture of some
questions of interest to specialists in theoretical hydrodynamics and
general relativity.

As far as prerequisites go, we assume the following: A knowledge of the
general facts about manifolds, differential forms and Riemannian geom-
etry. For example Lang [1] and Bishop—Crittenden [1] contain more than
enough background. No special knowledge of fluid mechanics is needed.
In this regard we have included a certain amount of introductory material
in § 2 below. One can supplement this by consulting standard texts; see
for instance Feynman [1] and Landau-Lifschitz [1]. For general rela-
tivity we assume, in addition to the geometry above, some familiarity with
the basic ideas of relativity; see for instance Taylor—Wheeler {1]. (This is
mainly to motivate several points in the discussion.)

Much of the material on hydrodynamics is taken from Ebin-Marsden
[1]. However, our exposition here is more informal and gets at several
points from a different direction. The exposition regarding turbulence is
largely influenced by Ruelle-Takens [1]. The material on relativity is
mostly taken from Fischer-Marsden [1].

We wish to thank the many people at the congress who offered encourage-
ment and suggestions, some of which are incorporated into these notes.
In this regard, special thanks are due to E. Calabi, H. Cohen, J. Eells, D.
Graff, F. Quinn, D. Norman, and R. Vanstone. We especially thank
Murray Cantor and Dave Lerner for their enthusiasm and excellent notes
of the lectures. The notes proved to be most useful during the preparation

4 The lectures were delivered by J. Marsden.
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of the final draft. We should especially like to thank David Ruelle for
many useful remarks and references on turbulence and stability, T. Lam
for several related comments and S. T. Chin for assistance in proof
reading. Some helpful points have also been made by A. Chorin, G.
Duff, H. Hartman, T. Kato, R. Sachs, C. Simon, S. Smale, and A. Taub.
Finally the organizers of the congress, especially Ray Vanstone, deserve
much of the credit for the success of the seminar.

2. Basic ideas in hydrodynamics

Throughout, let M be a fixed compact, oriented, Riemannian, n-
manifold, possibly with a C” boundary. Intuitively, M is the space in
which the fluid moves. For example, M might be the unit ball in [R3. As an
aside, for the general theory there seems to be no particular advantage to
assuming M is open in R”. This is because the spaces of mappings of M
to M that we will shortly discuss are still very nonlinear.

2.1 Some notation

A diffeomorphism on M is a C* bijective map #%:M — M such that 5t
is also C™.

We let & = {orientation preserving diffeomorphisms on M}.

If the Riemannian structure is given locally by g,;: M — R, then the
volume element p on M is the n-form which, in a (positively oriented)
coordinate chart, is given by

U= \/det(gi,-) dx* A ... Adx”

or, intrinsically, u(vy,...,v,) = \/ det(v,, v,) for v,,...,v, oriented
tangent vectors. We say a diffeomorphism # is volume preserving if
n*u = u. Here n*u is the pull back of u under % or, if you prefer, it is
transformed by 7. (See Lang [1].) The condition n*u = p means that the
Jacobian of 7 is one. ,

By the change of variables formula, it follows that a diffecomorphism 7
is volume preserving if and only if for every measurable set 4 < M,
#(A) = u(n(4)). Here we also use p to stand for the measure defined by u
(cf. Abraham [2], § 12).

Set @, = {n € 2| n is volume preserving}.

For technical reasons it will be convenient to enlarge &, &, to slightly
larger spaces. Namely let 2° (resp. Z;,) be the completion of &, (tesp. Z,)
under the Sobolev H* topology; this will be discussed in detail later. The
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point is that 2 is modeled on a Hilbert space while &, is merely locally
Fréchet. We also remark that for technical questions involving partial

differential equations, one must use Sobolev spaces rather than C* spaces

in order for the analysis to work.

2.2 Perfect fluids and Geodesics on &,

At least in the beginning, we will be discussing perfect fluids; i.e.,
nonviscous, homogeneous and incompressible. We also ignore external
forces for simplicity.

Consider, then, our manifold M whose points are supposed to represent
the fluid particles at # = 0. Let us look at the fluid moving in M (Figure
2.1). As ¢ increases, call n,(m) the curve followed by the ﬂuidq particle

M

vi{m)

FIGURE 2.1

which is initially at m € M. For fixed ¢, each 7, will be a diffeomorphism of
M. In fact, since the fluid is incompressible, we have 1, € Z,. The function
t > 1, is thus a curve in &, (they are easily seen to be orientation pre-
serving since they are connected to 7, the identity function on M). Note
that if M has a fixed boundary the flow will be parallel to M.

We will make &, into an infinite dimensional (Hilbert) “Riemannian™.

manifold. The metric on &, will correspond to the total kinetic energy of
the fluid

1
Energy = f ol du
. M
where v is the velocity field of the fluid:

odnim) = L)

(see Figure 2.1). Note that v, is a time dependent vector field on M.
With this metric, the curve ¢ - 7, will turn out to be a geodesic on Z,,.
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Also this metric is right invariant; 2, being a group under composition,
In general the equations of motion for a geodesic are given by

i, dx? dx”

s+ e = =
dt dt dt
where the ', are the Christoffel symbols. However, below we will use the
equivalent notion of a spray (see Lang [1] for a review of this concept).
This is the more natural way of dealing with geodesics in the infinite

dimensional case. The spray of a metric is just a coordinate independent
way of handling the Christoffel symbols.

2.3 The Euler equations

The motions of a perfect fluid are given by the Euler equations which
are as follows

0

a—U: + V,,v, = —grad p;
Euler equations
( d s) dive, =0

v, is tangent to oM.

In this, V,v, is the covariant derivation and its ith component is given ina
coordinate chart by

: ovt PR
(Vo) = gv: 67 + gﬁ It

and p, = p(t) is some (unknown) real valued function on M called the
pressure.

In the case of Euclidean space, each I'; = 0 and then we get, using
vector analysis notation

Vo=(@- g)v

Note. We shall always use a subscripted variable to denote that the
variable is held fixed, as in v,. It will never denote differentiation.

The physical derivation of these equations is quite simple in R". We
use Newton’s Law F = ma. We can ignore the mass because of homo-
geneity (i.e., constant mass density) and we are assuming there are no
external forces, so the only forces result from the internal pressure. We
wish to deal with conservative force fields and therefore one assumes these
internal forces arise as the gradient of a real valued function, the pressure.
So we have

acceleration = —grad p,.

(The negative sign is a convention of Physics.)
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To compute the acceleration, consider Figure 2.2.

v(t, x(t)

T v{t+at,x (t+ah)
x(t)

FIGURE 2.2

Clearly the acceleration is given by

o= lim"v(t + At, x(t + AD) — v(t, x(1)
At—=0 At

ot Tox*ot ot Tox'
Here we have just used the chain rule. This gives us the correct equation
for dv/0t. Now div v = 0 is the same as assuming 7, is volume preserving,
and v parallel to &M just corresponds to particles not moving across dM.

In subsequent lectures we will prove that #, is a geodesic on 2, iff v,
satisfies the Euler equations. Thus the two problems (finding geodesics on
9, and solving the Euler equations) are equivalent.

There are two standard coordinate systems used in classical fluid
mechanics. In the first, one describes the fluid as ““seen’’ from one of the
particles of the fluid. The observer follows the fluid. This is Lagrangian
coordinates. The other system describes the fluid from the viewpoint of a
fixed observer, This is termed Eulerian coordinates. Working on Zj,
corresponds to using Lagrangian coordinates. When one is just working
with the equations in v,, then one is working in Eulerian coordinates. Note
the Euler equations are written out in Eulerian coordinates. For further
information on this, and the derivation of the equations, see Serrin [1].

2.4 Stability and geodesics

The idea of studying geodesics in &, in order to do hydrodynamics is
due to V. Arnold (see Arnold [1]), although the basic idea seems to go back
to P. Ehrenfest’s thesis in 1904. (This interesting historical fact was pointed
out by D. Ruelle.)

One of the problems Arnold studied was the stability of solutions under
small changes of initial data (this perhaps has applications to weather
prediction). See Arnold [1] or Chernoff-Marsden [1]. The basic idea is
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group theoretical. This can alternatively be studied by using the equation of
geodesic deviation, which involves the sectional curvature. (Actually this
has certain other technical advantages over the Lie group approach.)
If geodesics are diverging, (sectional curvature <0) small changes in

initial data will evolve to large changes after a certain time (Figure 2.3).

If the sectional curvature is >0, nearby geodesics will remain nearby and
we have stability. V. Arnold [1] computes the curvature of &, in case M
is a flat 2-torus. The general case seems harder to get hold of explicitly.
Later on in Part IT we shall study some questions of stability in greater
depth.

SECTIONAL
CURVATURE <O

SECTIONAL
CURVATURE > O

FIGURE 2.3

2.5 Evolution equations in hydrodynamics

On our manifold M as above, let [= be the linear space of C* divergence
free vector fields on M and which are parallel to 9M. If X is any C” vector
field on M (not necessarily parallel to 0M/) then as we shall explain later,
X has a unique decomposition X = Y + grad p where Y is divergence
free and parallel to M. Define a linear map P from Z'(M) = vector fields
on M to [E by setting P(X) = Y. P is called the projection onto the
divergence free part. Define T:[E — E by T(v) = —P(V,v). Note that

—P(Vp)= —~(Vo — gradp) = —V,v + grad p

and therefore we can rewrite the Buler equation (modulo a trivial sign
convention on p) as a differential equation on the linear space [ :

vp 1S given.
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This looks like an initial value problem from the theory of ordinary
differential equations. There are various approaches that might work to
prove existence of solutions and to study their properties:

1. If T is locally Lipschitz and [E is Banach then one can apply the
Picard method (see Lang [1]). This generally fails for partial differential
equations. If [= consists of C” vector fields then [E is not Banach and it is
well known that this method fails for such Frechet spaces (for instance let
E = C* maps of [0, 1] to R which vanish to all orders at 0, 1 and let
T = 0/0x; the solution of 9f/0t = Tfisf(¢t, x) = fy(x + £) which generally
leaves & for ¢ # 0). On the other hand if [E consists of C* (or H?) vector
fields, then T does not map E into [E since it involves derivations. In
other words, one cannot use the techniques of ordinary differential equations
Jor partial differential equations like the Euler equations. .

2. If T were linear and densely defined, we could apply classical results
of Hille and Yosida (see Yosida [1] ch. IX for instance). Of course in our
case T is not linear.

3. If T were Quasi-Linear (i.e., linear in the top derivatives), there
would be applicable theorems (see for instance Courant-Hilbert [1],
Fischer-Marsden [2] and Chernoff-Marsden [1], chapter VII). If it were
not for the projection P, we could use this theory. Hence, this is appro-
priate for the compressible case. The difficulty with P is that it is a nonlocal
operator. That is, knowing X in a neighborhood of a point does not tell
us P(X) near that point.

4. A generalization of 2 to certain types of nonlinear situations has
been developed by, amongst many others, Browder, Komura, and Kato
(cf. Browder [1]). Unfortunately this does not apply to the Euler equations
(for those who know the terms, the semigroup defined by the Euler
equations is not globally quasi-contractive).

5. The oldest nonlinear existence theory, the Cauchy-Kowalewski
theorem (cf. Courant-Hilbert [1]) is not appropriate; not merely
because of the nonlocal nature of P, but because it fails to deal with
Hadamard’s basic criterion of being well posed—the solutions should
vary continuously with the initial data. ’

Because of a surprising fact, we can use the Picard method on &;. The
fact is that the spray on &; is C* and everywhere defined. Hence one can
use the Picard method to get existence and uniqueness of geodesics on 25,
for a short time, and as mentioned above this is equivalent to finding
solutions to the Euler equations.

This should be surprising in view of our remarks (1)~(5) concerning the
Euler equations. Indeed, the Picard method generally will fail when
applied to the operator T. Thus there is a rea/ technical difference between
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working on the linear space [£ and on the nonlinear space &,. This
seemingly strange phenonenon was discovered by D. Ebin and J. Marsden
[1]. However, it seems to have been known by some previous authors for
special cases (although this is, to a large extent, buried in their proofs).
In the case of the Euler equations with no pressure term, this phenomenon
appears to have been common knowledge; it was first pointed out to us
by T. Kato. '

We would now like to try to give the essence of this idea. The key thing
is that in Lagrangian coordinates, the equations change their character
completely. Let us ignore the pressure term and consider

ov ©
-y + @ V=0
on [R3, We let %, be the flow of v and look at the new variables 7;, X =
v, o 1, instead of v itself. Now

0X _ov v, o

PPN D iy

d v,
=51:o7]t+2(5€v—:-vt) ony =0

since v satisfies (90/9f) + (v V)v = 0. Thus the velocity is constant in
Lagrangian coordinates. Hence 7,(x) = x + tvy4(x) (since v, = X) and so
v, = X o 77", an explicit solution (assuming #;" exists).

The point of this is that in Lagrangian coordinates the derivative part
(v V)v cancelled out. A similar thing happens on manifolds. Now a
crucial point is that this property is not destroyed when a pressure term is
added. This aspect is explained on p. 190. This cancellation of the term
(v - V)v is the basic fact which accounts for the smoothness of the spray
in Lagrangian coordinates and consequently why the Picard method
works on &5 and not in E. ‘

It still seems necessary to introduce Z;, because 7, will satisfy (97,/0t) =
X, and the appropriate function space for 5 is &;. That is, it does not
seem possible to completely carry out the above basic program without
introducing nonlinear manifolds of mappings. The fact that these non-
linear function spaces had not been developed until the 1960’s perhaps
explains why this program has not been carried out earlier.

2.6 The global existence problem

This is an outstanding problem in global analysis and fluid mechanics.
It has been open since the early 1930’s when J. Leray considered such
questions seriously.
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PROBLEM. Let M be a (compact) 3-mang'fold. Then is 9, geodesically
complete ? (That is, do geodesics exist for all time ?) '

The following simple lemma bears on the problem (the lemma is stand-
ard and is proven later).

LemMmA. Let G be a finite dimensional Lie group with a rzght invariant
metric. Then G is geodesically complete.

The lemma also holds if G is a “Hilbert group-manifold,” but un-
fortunately, it does not apply to our problem because the topology of our
metric (recall it gives the L2 norm) does not coincide with the topology on
2, (as we shall see s =0, which corresponds to L?, is not allowed).

The problem is thus equivalent to showing that the solutions to the
Euler equations exist, and remain smooth, for all time. As we shall see
later, this has bearing on rival theories of turbulence. We shall discuss this
problem in detail later, including when viscosity is added. For now we
just mention that in case dim M = 2 the problem was answered affirm-
atively by Leray [3] (in case some viscosity is present) and by Wolibner
[1] in 1933 for the Euler equatlons slicker proofs have been given by
Judovich [2] and Kato [1].

If the P were not there, and correspondingly the requirement div v = 0
dropped, the result is definitely false—this is the phenomenon of shock
waves in compressible flow. (For example the solution of (0u/df) +
#(0u/0x) = 0 in one dimension is u(t, x) = uy(y) where x = y + tuy(y).
One can see as soon as x — y becomes non-invertible, that derivatives of
u blow up; we shall discuss this compressible case in more detail later).

Many people have tried to settle the problem for dim M = 3, but with
little success. We feel that it is one of the most important open problems
in hydrodynamics and global analysis. It is probably one of the most
difficult as well.

3. Motivation for general felativity

We now shall briefly indicate the sort of thing we will be doing in
relativity. A more detailed outline is given in Part III. In relativity, one is
interested in Lorentz manifolds (4-manifolds with a symmetric two tensor
or “metric’’ of signature (4, 4+, 4+, —)), whose Ricci curvature Ric is
zero. The equations Ric = 0 are the Einstein field equations for an empty
space.

In actually solvmg for the metric g in question, proving existence
theorems, and studying properties of solutions, one generally converts the
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problem to an initial value problem with g prescribed at# = 0 asa Rieman-
nian metric on a given fixed three manifold M. One regards the 3 metric
as then evolving in the space .# of all metrics on M; ./# is an open cone
in the linear space of all symmetric two tensors. The motion turns out to be
Hamiltonian, specifically geodesic motion in the presence of a potential.
These ideas go back to Arnowitt, Deser and Misner [1] and to De Witt [1]

To reconstruct the full coordinate transformations of spacetime, one
introduces the “lapse’” and “shift” functions of Wheeler [1]. One of our
aims will be to describe these objects and to their effect on the above
dynamical picture.

It turns out that the diffeomorphism group £ of our 3 manifold M
plays an important role. One can think of & as the totality of (“active’’)
coordinate transformations of space. Furthermore, we know from the
general theory of Hamiltonian systems, that associated with any in-
variance group, there are conserved quantities. It turns out that & is an
invariance group, and we shall work out these conservation laws; for
those who know the jargon, it is the conservation of é= = 0.

The existence theory in general relativity is of quite a different nature
than that in hydrodynamics. In this case the quasi-linear theory applies.
We shall briefly sketch this out later. Moreover, the constraints are of a
rather different type, although they are somewhat analogous to the
pressure in fluid mechanics.

General relativity has a very particular feature not shared by other
classical field theories like electromagnetism (Maxwells equations). This
feature is that the energy is pointwise constant in time—as opposed to the
conservation of the total, or integrated, energy which one normally
expects. Misner [1] has argued this on physical grounds. We shall present
a general theorem which establishes the necessity of this condition in any
“relativistic’” theory (“external’’ fields are not allowed). This pointwise
conservation of energy #, expressed in terms of the reconstructed four
geometry follows directly from the equations Ric = 0. Similarly for
dm = 0. The necessity of these extra equations comes about because
Ric = 0 represents 10 equations; there are 6 evolution equations and 4
constraint equations: # = 0, o= = 0.

The approach here follows that of Fischer-Marsden [1].

I. SOME TOOLS FROM GLOBAL ANALYSIS

In this part we shall develop appropriate tools that will be needed later.
For the most part we shall just sketch out the ideas of proofs, although
complete proofs are given in some cases. :
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In section one we study Hodge theory. This is motivated by the need for
the projection operator P introduced above. In fact the Hodge theory can
be regarded as a generalization of the classical result that every vector
field ¥ on IR3 can be uniquely decomposed as follows:

Y=V W+ Vp
into a divergence free and gradient part.

In section two we study manifolds of maps. This generalizes the classical
functions spaces, such as L%(R") or C*(IR"™), to maps between manifolds.
In general these spaces of maps are not linear spaces, but if the domain is
a compact manifold, the sets of maps may be made into infinite dimension
manifolds modeled on Hilbert or Banach spaces.

As we pointed out in § 2 above, for hydrodynamics, using these non-
linear spaces seems to have a real technical advantage, as-well as an
aesthetic one. This is true even when the underlying manifold is flat, say
an open region in R3,

Other applications of manifold of maps include:

(a) The Smale-Palais treatment of Calculus of Variations and infinite
dimensional Morse theory as explained in Professor Klingenberg’s
lectures; ;

(b) Moser’s proof of structural stability of Anosov diffeomorphisms
(see Mather [1] and Robbin [3]);

(c) New proofs that a C* vector field has a C* flow, Robbin [1]; and
proofs of the Frobenius theorem, Penot [4].

In section three we shall introduce the Hopf bifurcation and centre
manifold theory. Basically a bifurcation indicates that some sudden
qualitative change takes place, usually at some critical value of a parameter.
Ruelle and Takens [1] have shown how the center manifold theory can be
used in a very elegant manner to study bifurcation problems. These ideas
bear on the ideas of stability and turbulence in hydrodynamics and we shall
be going into that in some detail in § 3 of Part II.

1. Hodge theory

1.1 Sobolev spaces

Let Q = IR™ be an open bounded set with C® boundary. Let Q be the
closure of Q. Define C* (L2, R™) to be the set of functions from Q into R?
that can be extended to a C* function on some open set in R™ containing
Q. Let CP(Q, R™) = {f € C*(Q, R™)| the support of f is contained in
a compact subset of Q}.

To describe the Sobolev spaces in an elementary fashion, we temporarily

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 147

introduce some more notation. An » multi-index is an ordered set of n
non-negative integers. If k = (ky, ..., k,) is an n multi-index, then put
kel =ki + ks + ... + k,. If ue C*(Q, R™), define D*u by the formula

D'y = (0™lujoxk . ., Oxln)
and D°(u) = u. For u € C*(Q, R™) (or C(Q, R")), define

lult =[S _|ptucorax
P =lk|Ss

Now H*(Q, R™) (resp. H3(Q, R™)) is defined to be the completion of
C*(Q, R™) (resp. C3°(Q2, R™)) under the || ||, norm. These H* spaces are
called the Sobolev spaces. Note that HY(Q, R™) = HYQ, R™) =
Ly(Q, R™ > H(Q, R™); but for s = 1, Hy(Q, R™) % H¥(Q, R™) as we
shall see below.

There is another equivalent, and perhaps better, definition of the
Sobolev norm. Let d*u be the kth total derivative of # so that
d*u:Q — L¥(R", R™) where L*(IR", R™) denotes the k-linear maps on
R* x R* x ... x R®— R™ with the standard norm. Then if we set

k times

g =) 3 ld*u(x)|® dx
==

=k=$s

Q

the | |, and || |, norms are equivalent. This is a simple exercise.
Also note that H%(Q, R") and H(Q, R") are Hilbert spaces with the
inner product

{(u, v) =f°£lzl D*¥u(x) - D*u(x) dx.
J%= k|Ss

1.1.1 SoBoLEV THEOREM

(@) Lets > (n/2) + k. Then H(Q, R™) = C¥Q, IR™) and the inclusion
map is continuous (in fact is compact) when C*(Q, R™) has the standard
C* topology, (the sup of the derivatives of order < k).

() If s > (n/2) then H(Q, R™) is a ring under pointwise multiplication
of components. (This is often called the Schauder ring.)

© If s> % and fe H(Q, R™) then f | 0Q € H*172,

(d) (Calderon Extension Theorem) If f€ H¥(Q, R™) then f has an ex-
tension f € HY(R», [Rm),

Regarding (c), see Palais [1] for a discussion of continuous Sobolev
chains; i.e., the definition of H® for s not an integer; basically one can



148 JERROLD E. MARSDEN et al.

use the Fourier transform. (d) means that f can be extended across o€
in an H*® way.

Differentiability properties at the boundary presents some technical
problems but are very important in hydrodynamics. Thus it is important
to distinguish H from H°.

The proof of Theorem 1.1.1 can be found in Nirenberg [1] and Palais
[1]; see also Sobolev [1]. ,

For most of hydrodynamics we will need s > (#/2) + 1. One of the
outstanding problems in the field is determining to what extend we can
relax this condition on s. For many problems, one would like to allow
corners and discontinuities in such things as the density of the fluid or the

velocity field.

1.2 H* Spaces of sections

Let M be a compact manifold, possibly with boundary. Also, let £ be a
finite dimensional vector bundle over M. For example E may be the
tangent bundle, or a tensor bundle over M. Let w: E — M be the canonical
projection. The following fact is useful.

1.2.1 PROPOSITION. Suppose for each x € M, we have 7' (x) > R™.
Then there is a finite open cover {U,} of M such that each U, is a chart of M
and 7 (U)) == U; x R™ for each i.

Such a cover is called trivializing. (See Lang [1]). Recall that a section
of Eis a map h: M — E such that = o k = idy;. For example, a vector field
is a section of the tangent bundle and a differential one-form is a section of
the cotangent bundle. Informally, we define, for s = 0, H*(E) to be the
set of sections of E whose derivatives up to order s are in L,.

This makes sense since in view of the proposition, a section of E can
locally be thought of as a map from R” to R™ where 7 is the dimension
of M. Similarly, we can put a Hilbert structure on H°(E) by using a
trivializing cover. However, since this Hilbert space structure depends on
the choice of charts, the norm on H*(E) is not canonical, so we call H*(E)
a Hilbertible Space (i.e., it is a space on which some complete inner
product exists).

One has to check that the definition of H*(E) is independent of the
trivialization and this can be done by virtue of compactness of M.

Of course the Sobolev theorems have analogues for H°(E). In particular
if s = 1it makes sense to restrict a section h € H*(E) to OM. This is by part
(c) of Theorem 1.1.1. Of course if s > (#/2), & will be continuous and so
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this will be clear. For s = 0, we have L,(E) and restriction to 0M does not
make sense.

One defines H3(E) in a similar way. For s > }, when we restrict
h € Hy(E) to M, h will vanish, as will its derivatives to order s — 1.

Much of the theory goes over for M noncompact, but we must specify
a metric on M and a connection on E; further M must be complete and
obey some curvature restriction such as sectional curvature bounded
above; cf. Cantor [2] and Fischer-Marsden [2, H].

1.3 Some operations on differential forms

Now, let M be a compact oriented Riemannian n-manifold without
boundary.

I.,et A” be the vector bundle over M whose fiber at x € M consists of
k-linear skew-symmetric maps from 7,M, the tangent space to M at
x € M, to R. For each X5 @y A forms a graded algebra with the wedge
pro.duc_t. Then H*(A¥) is a space of H® differential k-forms. The exterior
derivative d then is an operator: :

d: H(AF) — H(AF),

It drops one degree of differentiability because d differentiates once; i.e.,
is a first order operator. Recall that if «, § are k and / forms respectively,
then d(« A f) = do A f + (—1)*a A dB; cf. Abraham [2].

The star operator *: H*(A¥) — H*(A™) is given on A* at x e M by

#() = £dx, A ... Adx,, *(dx A...Adx,) = +1
and

x(dxy AL Adxy) = ddx, AL .. Adx,

where the “+’ is taken if the dx; A. . A dx, is positively oriented and
*“—?" otherwise, xq, ..., x, form a coordinate system orthogonal at x,
and * is extended linearly as an operator A* — A™*. Now if « € H*(AF)
then clearly s« € H°(A™*), so = can be taken as an operator from H*(A¥)
to H*(A™ ),

The space A carries, at each point x € M, an inner product. It is the
u'sual business: the metric converts covariant tensors to contravariant ones
(i.e., it raises or lowers indices) and then one contracts. If «,, B; are one
forms, we have (g A... Aay, B A... A By = det[{a;, B,)]. It is not
hard to check that if u is the volume form on M then

(o, Bt = ot A 28 = B A #a.

Note that the inner product may be defined by the above formula. See
Flanders [1] for more details on these matters.

6
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Define the operator &: H*H1(A*) — H*(A*1) by 6 = (—1)"*+D+1 ydy,
There is an inner product on H°(A¥) (and hence on H*(A%)) given by

(@, ) = |{«, B) dp.
!

1.3.1 PROPOSITION. For o € H¥(A¥) and 8 € H?(AFH)
(do, f) = («, 6p).
Proor. Note that d(o A ) = do A xf + (—1)Fa A dxf

=do A= — a A %60,
since ## = (— 1)),
Since M = @, by Stokes Theorem, we get

0 = | d(a A %f)
!

=JJ1;docA*/3—JocA*éﬂ

M
= (o, ) — (2, 68). W

Rephrasing 1.3.1, one says that d and ¢ are adjoints in the (,) inner product.

The & operator corresponds to the classical divergence operator. This
iseasily seen. Let X be a vector field on M. Then because of the Riemannian
structure X corresponds to a 1-form X, where X(v) = (X, v).

1.3.2 ProposItION. div(X) = —§(X).

PrOOF AND DiscussioN. Let Ly u be the Lie derivative of g with respect
to X. Then by definition, div(X)u = Lxu (see Abraham [2]). We have the
general formula ‘

Lxp = dix(p) + ixd(p)
whereiyx(u) = X _|u € H*(A™1), the interior product is defined in general as
follows: If € H*(A¥) and vy, . . . , v,y € TM, then ix (P vy, . . . , Vpy) =
kB(X, v1,...,0,1). Now d(u) =0 since y is an n-form, so Lyu =
d(ixp) = d(»X) (one easily checks that ixu = +X). Hence
div(X) = div(X)*u = *(div(X)u) = +d+X = —6%X,

since for k = 1, (—1)"*i41l = —], g
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The Laplace de Rham operator is defined by A = 6d + dé. Note that
A:HY(A®) — H™2(A¥). If £ is a real valued function on R*, it is easy to
check, using the above expressions for d, 8, that A(f) = —V2(f) where
VEf = div(gradf) is the usual Laplacian. Note Jf = 0 on functions.

1.3.3 PROPOSITION. Let o € H*(A¥), then A = 0 iff
do=0 and da=0.

PROOF. It is obvious that if du = 0 and S« = 0 then Aa = 0. To show
the converse, assume Ax = 0. Then 0 = (Aa, o)) = (8 + 6d)x, @) =
(da, 0ar) + (de, de), so the result follows. R

A form « for which A« = 0 is called harmonic.

1.4 The Hodge theorem (for 9M = o)

1.4.1 Let w» € H*(A¥). Then there is o € H*F1(A*Y), B € H*(A*Y) and
y € C*(A¥) such that w =du + 08 + v and A(y) = 0. Here C*(A¥)
denotes the C* sections of A*. Furthermore da, 88, and y are mutually L,
orthogonal and so are uniquely determined.

142 If A% = {y e C*(A¥) | Ay = 0}, then
HY (A" = d(H*P(AY) © SH*H(AMY) @ A%,

Note that 1.4.2 is just a rewriting of 1.4.1. The fact that the Harmonic
forms S are all C*, follows from regularity theorems on the Laplacian.
This fact is also called Weyl’s lemma or, its generalization, Friedrich’s
theorem. (See Yosida [1].)

The Hodge theorem goes back to V. W. D. Hodge [1], in the 1930’s.
Substantial contributions have been made by many authors, leading up to
the present theorem. See for example Wey! [1], and Morrey-Eells [1].

We can easily check that the spaces in 1.4.2 are orthogonal. For example

(de, 8p) = (dda., f) = 0

since 4 is the adjoint of d and d2 = 0.

The basic idea in 1.4.1 can be abstracted as follows. We consider a
linear operator T on a Hilbert space E with T2 = 0. In our case T = d
and [ is the L, forms. (We ignore the fact that T is only densely defined,
etc.) Let T* be the adjoint of T Let &% = {x € E | Tx = 0and T*x = 0}.
We assert ‘

E = Range T @ Range T* @
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which, apart from technical points on differentiability and so on is the
essential content of 1.4.1, 1.4.2.
To see this, note, as before that the ranges of T and T* are orthogonal
because
(Tx, T*y) = (T%x, y) = 0.

Let % be the orthogonal complement of Range T @ Range T*. Certamly
H <% Butifxe ¥,

Ty, x)=0 forall y=-T*x=0.

Similarly Tx = 0, so € = 5# and hence € = 5.

The complete proof of the theorem may be found in Morrey [1]. For
more elementary expositions, also consult Flanders [1] and Warner [1].

An interesting consequence of this theorem is that 5% is-isomorphic
to the kth de Rham cohomology class (the closed k-forms mod the exact
ones). This is clear since over M, each closed form w may be written v =
do. + y. (One can check that the 68 term drops out when w is closed;
indeed we get 0 = d 8f so (d 68, p) = 0 or (68, 65) = 0 or 45 = 0.)

Now let (%)L be the L, orthogonal complement to S£* in H(A¥).
Define the Green’s Operator G: H*(A¥) — (%) by letting G(«) equal the
unique solution w of Aw = « — H(«) in (#*)L, where H(x) is the har-
monic part of «. The following is easy to check.

1.4.3 PROPOSITION. G commutes with d, 8, and A.
Note that if « € H*(A*) then « = d 6G(a) + 0 dG(2) + H(2).

ReEMARKS. 1. The Hodge theorem fails for the C* topologies. This is
due to the fact that Af e C* does not imply that f e C*+2,

2. The Hodge theorem is very awkward and sometimes false for non-
positive definite metrics. See Avez [1].

3. One can obtain a weighted Hodge decomposition, using a density
function together with the measure. This is important for inhomogeneous
fluid flow (see Ebin-Marsden [2]).

For us, one of the important consequences of the theorem is the
following.

1.4.4 COROLLARY. Let X be a H* vector field on M, s = 0. Then there is
aunique divergence free H* vector field Y and a gradient field grad p such that
X =Y+ grad p.

Setting P(X) = Y, P is a bounded linear operator in L, and in H*.
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PRrOOF. In terms of the corresponding one form X, we write X =
(do + 08 + y)andsetde = dp, Y = 68 + y.Since 66 = 0,07 =0. m

The above theorem is a generalization of a classical theorem of Helm-
holtz, for which one can give a direct argument.

1.4.5 THEOREM. Let V be a vector field on R3. Then V = —Vg +
V X w where ¢ is a scalar function and  is a vector field.

SKETCH OF THE PROOF. It is well known that in the sense of distributions,
Vi(1/lx — x'|) = —4m d(x — x') from which we get

V(x')
477_[ |x — x I

What we have done here is found the Green’s operator in [R3 (that this is
so can be seen easily and is found in any elementary book on differential
equations; see for instance Duff and Naylor [1]). Using this and the
identity corresponding to A = d + dJ:

—VP=V(V: )=V x(Vx)
we get
A [ _ V&)

47 ) |x — X'|
|-R3

- ([ )

+V x fo——V@l—dx'. -
rRa477-|x—x'|

Since R” is topologically trivial, there are no harmonic forms in L,.
In this theorem, the integrals are singular and so the smoothness of the
summands is not obvious.

V(x) = dx

1.5 Hodge theory for manifolds with boundary

This theory was worked out by Kodaira [1], Duff-Spencer [1], and
Morrey [1]. (See Morrey [2], Chapter 7.) Differentiability across the
boundary is very delicate, but important. The best possible results in this
regard were worked out by Morrey.

Also note that d and 4 may not be adjoints in this case, because boundary
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terms arise when we integrate by parts. Hence we must impose certain
boundary conditions.

Let o« € H*(A®). Then « is parallel or tangent to 0M if the normal part,
no = i*(+a) = 0 where i:0M — M is the inclusion map. Analogously «
is perpendicular to OM if to. = i*(«) = 0. '

Let X be a vector field on M. Using the metric, we know when X is
tangent or perpendicular to dM. X corresponds to the one-form X anfi
also to the n — 1 form ixp (u is, as usual, the volume form). Then X is
tangent to 9M if and only if X is tangent to 0M iff ixu is normal to 0M.
Similarly X is normal to 9 iff X' is normal to 90 iff i g is tangent to 9M.
Set

HY(A®) = {o € H(A") | « is tangent to M}

Hi(A*) = {o € HY(A®) | ais perpendicular to 9M}
and

H(A) = {o € H(AF) | du = 0, dae = 0}.
The condition that do = 0 and d« = 0 is now stronger than Aa = 0.
Following Kodaira [1], one calls elements of #*, harmonic fields.

1.5.1 TaeE HODGE THEOREM
HY(A) = d(HPP(AY) @ d(HH(AM) + #7°(A%)
One can easily check from the formula '

(da, ) = (o, 68) +foc A xf

oM
that the summands in this decomposition are orthogonal.

There are two other decompositions that are not derivable directly from
L.5.1.

1.5.2 THEOREM

(a) H(AY) = dHY (A7) @ D;
where
= {¢ € Hi(A®) | 6o = 0}
and dually
(b) Hs( Alc) — 6(Hs+1( Ak+1)) + Cs
where C% are the closed forms normal to 0M. Again one can easzly check
orthogonality.

We can apply this to get a general Helmholtz theorem.
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1.5.3 COROLLARY. Let X be an H® vector field on M. Then X = Y +
grad p where div(Y) = 0 and Y is H* and tangent to OM.

Proo¥. Identify X with X and take its hodge decomposition: 1.5.2(a).
= dp + o

Again using the metric we identify dp with grad p and « with ¥. By
remarks above and 1.3.2, Yis tangent to 0M and div(¥Y) =0. =

Again we let P denote the projection onto the divergence free part. In
this corollary, X does not have to be parallel to dM. The decomposition
will automatically “straighten it out™ to be parallel to the boundary.

2. Manifolds of maps and diffeomorphism groups

2.1 History

The basic idea was first laid down by Eells [1]in 1958. He constructed a
smooth manifold out of the continuous maps between two manifolds. In
1961, Smale and Abraham worked out the more general case of C*
mappings. Their notes are pretty much unavailable, but the 1966 survey
article by Eells [2] is a good reference. The H® case is found in a 1967
article by Elliasson [1]. This is also found in Palais [4] where it is done in
the more general context of fiber bundles.

Making the manifold out of the C* diffeomorphism group on a compact
manifold without boundary was done 1ndependently by Abraham (see
Eells [2]) and Leslie [1] around 1966. The H* case is found in a paper by
Ebin [1] and one by Omori [1] around. 1968. Ebin also showed that the
volume preserving diffeomorphisms form a manifold. Finally Ebin-
Marsden [1] worked out the manifold structure for the H* diffeomorphisms,
the symplectic and volume preserving. diffeomorphisms for a compact
manifold with smooth boundary.

Other papers on manifolds of maps include those of Saber [1], Leslie
[2, 3], Omori [2], Gordon [1], Penot [2, 3], and Graff [1]. Some further
references are given below.

2.2 Local structure

Let M and N be compact manifolds and assume N is without boundary.
Let n be the dimension of M, and / the dimension of N. Say fe H*(M, N)
if for any m € M and any chart (U, ¢) containing m and any chart (V, )
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at f(m) in N, the map v o fo ¢g7: (U) — Rl is in H*(p(V), RY), This can
be shown to be a well defined notion, independent of charts for s > (1/2).
The basic fact one needs is that by the Sobolev Theorem we have
H*(M, N) = C%M, N). Things are not as nice, however, for 5 < (1/2).
It is possible for a map to have a (derivative) singularity which is L,
integrable in one coordinate system on N and not be integrable in another.
So for s < (n/2), H(M, N) cannot be defined invariantly. Hence, from
now on we assume s > (n/2).

In order to find charts in H*(M, N) we first need to determine the
appropriate modeling space. Let fe H*(M, N). The modeling space,
should it exist, must be isomorphic to T,H*(M, N), whatever that is. So a
way to begin is to find a plausible candidate for T,H*(M, N). If P is any
manifold and p € P then T, P can be constructed by considering any smooth
curve ¢ in P such that ¢(0) = p; then ¢'(0) € TP (Figure 2.1).

FiGure 2.1

With this in mind, let us consider a curve ¢;: (—1, 1) - H*(M, N) such
that c,(0) = f. Now if m € M, then the function ¢ > c(f)(m) is a curve in N
(i.e., for each t € (—1, 1), ¢,(¢) € H*(M, N) and therefore ¢,(): M — N.)
Now ¢c,(0)(rm) = f(m), so the derivative of this curve at 0, (d/dt)c,(1)(m) |t=(,
is an element of T}, N. So the map m > (d/df)c(£)(m) |;—, maps M to TN
and covers f, i.e., if w,: TN — N is the canonical projection, this diagram
commutes:

T~

e5 T ’ d
y l TGO = 260

M—;———-—)N

=0

where

exom =& com)|
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Making the identification
d

— CH1

(0

¢#(0) is a good candidate as the tangent to ¢, at f.
With the above motivation, let us define

T,H(M, N) = {X € H(M, TN)| 7y X = f}.

Note this is a linear space, for if ¥, and X, are in T,H*(M, N), we can
define aV; + X; (a € R) as the map m — aV,(m) + X,(m) where V,(m)
and X,(m) are in Ty, N. It is this space which we use as a model for

o =2 e

0

- H*(M, N) near f.

To show this we need the map expy: 7, N — N for p € N. Recall that if
v, € T,N there is a unique geodesic ¢, through p whose tangent vector at
P is v,. Then exp,(v,) = ¢, (1). In general exp, is a diffeomorphism from
some neighborhood of 0 in T,,N onto a neighborhood p in N. However,
since NV is compact and without boundary, it is geodesicly complete and
hence exp, is defined on all of T;,N. This map can be extended to a map
exp: TN — N such that if v, € TN then exp(v,) = exp,(v,). With this map

we define the map exp,: T,H*(M, N) — H*(M, N)
XisexpoX.

We assert that exp, maps the linear space T,H*(M, N) onto a neighbor-
hood of fin H*(M, N) taking 0 to fand hence is a candidate for a chart in
H*(M, N). It should be remarked that in spite of the use of the map exp,
the structure is independent of the metric on N. The assertion is easy to
check in case things are C* or C¥, by using standard properties of exp;
Milnor [1].

For the H’ case and to show that the change of charts is well defined
(i.e., maps into the right spaces) and is smooth, one needs the following
lemma.

2.2.1 (LocAr) w-LEMMA (LEFT COMPOSITION OF MAPS). Let U be a
bounded open set in R?, and h:R" — R™ be C®. Then w,: H(U, R") —
H:(U, R™) defined by w,(f) = h o fis a C* map.

This conclusion is not true if 4 is merely an H° or C* map. The problem
can be seen in this way. If M and N are manifolds and g: M — Nis C!
then for pe M and v, € T,M, we have T,g:T,M — T,,,N, which is
determined in this manner: Let c:(—1,1) e M be a curve such that
¢(0) = p and ¢'(0) = v,. Then T,g(v,) = (d/d)g(c(t) It=0- Applying this
procedure to w,, and using the chain.rule, we find for X € T,H*(U, R™)
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that the tangent of w,, is the map T,w,:X > Th - X. But since 7% is only
H*1, Tho X is, at best, in H*2(U, R™) and Tw, does not map into the
tangent space of H*(U, R™) at w,(f).

This necessity of differentiating % is a crucial difference between com-
position on the left and composition on the right.

The exact proof of 2.2.1 may be found in Ebin [1] and the other
references above. In fact, the result essentially goes back to Sobolev [1]
p.- 223. See also Marcus-Mizel [1], and Brezis [1].

Using 2.2.1, it is now routine to check that exp, yields smooth charts on
H*(M, N). For other methods of obtaining charts, see Palais [4], Penot
I3] and Krikorian [1].

2.3 Groups of diffeomorphisms

These objects have a very interesting yet complicated structure. For this
section we let M be a compact manifold without boundary. Let 2°(M) =
{f€ H*(M, M) | fis one-one, orientation preserving and f—! € H*(M, M)}.
The fact that 2°(M) is a manifold is a trivial consequence of the fact that
H*(M, M) is a manifold and the following proposition;

2.3.1 PROPOSITION. If s > (n/2) + 1, then 2*(M) is open in H*(M, M).

Proor. Since s> (nf2) + 1, we have a continuous inclusion
H(M, M) < CY(M, M) (by the Sobolev Theorem 1.1.1(a)). So it is
sufficient to show that if a map g on M is C? close to a diffeomorphism,
then g is a diffcomorphism. To show this, note that G:f inf ;s Jf(x) is
a continuous real valued map on C'(M, M), where Jf (x) is the Jacobian of
fif*u = (J)u. Also, since M is compact, if f€ D*(M), then G(f) # 0.
By continuity of G, there is a neighborhood U of fin C'(M, M) such that
if g € Uthen G(g) # 0. By the inverse function theorem U consists of local
diffeomorphisms. It is easy to show that if g € U then g is an onto map.
This is because g(M) is open in M, as g is a local diffeomorphism and
since g is continuous and M is compact, then g(M) is closed. Hence if M
is connected g(M) = M. (If M is not connected, one need just remark
that g maps into each component of M since fdoes and g is uniformly close
to 1) It remains to show there is a neighborhood of f containing only 1-1
functions. (It is not true that a local diffeomorphism on a compact set is a
diffeomorphism. Consider the map which wraps S* around itself twice.)
It is an easy exercise in point set topology to show that if M is connected
then any local diffeomorphism on A/ is a covering map; that is, is globally
k to 1 for some integer k. Also, the function that assigns to a local diffeo-
morphism f the number of elements in f~1(x) for any x € M is continuous
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in the C* topology onto the integers. In particular there is a neighborhood
of a diffeomorphism containing only diffeomorphisms. m

Because of the differentiability condition in the above proposition, we
will henceforth assume s > (n/2) + 1.

It is unknown whether, in general, the composition of two H*® maps is
again H°. In all known proofs one needs that one of the maps is a diffeo-
morphism or is C°. Hence composition in &* presents no problem. The
main composition properties are stated in the following.

2.3.2 THEOREM

(a) Z° is a group under composition.

(b) (x-Lemma) If 7 € ° the map R,:D°* —>D°, [+ Lo nisa C° map
(in fact R, is clearly “‘formally linear’ and continuous).

(©) (w-Lemma-Global) If n € &°. Then L,:{ > n o { is C°. (This map is
definitely not smooth, in fact it is not even a locally Lipschitz map.)

(c)' More generally, the map

DX DD
(77’ Z) =N Z
is CL.
(d) &° is a topological group.

REMARK. (d) follows from the other parts of the theorem because of
the following lemma of Montgomery [1]:

2.3.3 LemMa. Let G be a group that is also a topological space. Assume
further that G is a separable, metrizable, Baire space and multiplication in
G is separately continuous. Then G is a topological group.

We shall not prove (a), (b), (c)’, here since we have already given the
basic ideas involved. The proof may be found in Ebin [1]. Another useful
fact proved by Ebin is that if # is an H® map with a C* inverse, then the
inverse is H°. This is analogous to what one has in the C* inverse function
theorem (Lang [2]). '

2.4 ¢ as a ““Lie group”

2* is not precisely a Lie group, (since a left multiplication is continuous,
but not smooth) but it shares some important Lie group properties. If we
were to work with 2 = 2%, we would have Lie group, but not a Banach
manifold.
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In general if G is a Lie group and e € G is the unit element, then the Lie
Algebra ¢ of G may be identified with T,G. Hence, T,2°(M) = Z*(M) =
H3(TM) = H* vector fields on M (recall members of T,2°(M) cover the
identity map on M) serve as the Lie algebra for &°. Since right multipli-
cation is smooth, we can talk about right invariant vector fields on Z*.
By the w-lemma, if X € Z*t, the map Xip—>Xonisa C map from Z*
to T%* (I Z 0); in particular X o % € T,%° and so it is a vector field on
2°. In fact X is a right invariant C* vector field on Z° (i.e., (R,) * X =
X, on for €2 and X, = X({) € I,2*). Conversely if X is a right in-
variant C? vector field, then X(e) € Z*+%. In fact the right invariant C
vector fields are isomorphic to 2+ by evaluation at e, and in particular
T,%* is isomorphic to the C° right invariant vector fields.

For /= 1, there is a natural Lie bracket operation on the C? right
invariant vector fields on 2*. This defines the bracket operation on the
corresponding members of T,2°(M). We now establish that the Lie algebra
structure of £° is the usual Lie algebra structure on the vector fields.

2.4.1 THEOREM. Let I = 1 and for X, Y € H*"W(TM), let X and ¥ be the
corresponding right invariant vector fields on Z°. Then [X, Y], = [X, Y],
the usual Lie bracket of vector fields on M.

Proo¥. Recall that locally [X, Y] = DX+ Y — DY - X (where DX is
the derivative of X; cf. Lang [1]). However, as shown above, for 5 € 27,
X(n) = Xonand ¥(n) = Yo, so in particular since TV - X = TY - X
we get [X, V],= (DX ¥~ DYV -X), = DX(e)- ¥(e) — DY(e)X(e) =
DX-Y—DY-X. &

Note since DX « Y € H**"1(TM), we really cannot put this bracket on
T,2° = &* and none of the Z*t(TM) are Lie algebras since they are not
closed under the bracket operation; one would have to pass to & = 2.

For any Lie group G, there is a standard exp map from _# onto a
neighborhood of the identity ein G. If X € _#, there is a unique one param-
eter smooth subgroup cin G (i.e., c(t + 5) = c(?) - ¢(s) and ¢(0) = e) such
that ¢'(0) = X. In this case X is the infinitesimal generator of c; c is the
solution of ¢'(f) = X(c(r)) where X is the right invariant vector field
equaling X at e. Define exp(X) = ¢(1).

If G has a Riemannian structure, then there is another exp: ¢ — G
defined (as above) by following geodesics instead of subgroups. If the
metric is bi-invariant (i.e., if g = (g;;) is the Riemannian metric, then for
a €@, (R)*(g) = (L)*(g) = () then it is easy to show the two exp maps
coincide. A compact group always has a bi-invariant metric. (cf. Milnor
[1] for further information.)
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In the case of &°, we will construct a metric that is right invariant, but
not left invariant, and so the two exp maps will in general be different.
It seems unlikely that &°(M) has any bi-invariant metrics. (Any bi-
invariant B:Z X Z — R would have to satisfy B([X, Y], X) = 0 for all
X, YeZ (M) as is easy to see.)

Let X € T,%2°% Then X € H¥(TM) = Z*° and therefore has a flow F,
(Fy(m) is the integral curve of X starting at m). This is a one parameter
group since F,,, = F, o F,. Since M is compact, F, is defined on all of M/
forall te R.

Let us argue that we should have

expX =F

where exp is the (right) exponential map on &. Indeed we need to show F;
is an integral curve of X defined above. But

4

0 Fy(m) = X(F(m))

or

d%Ft=XoF,=X(F,). |
Hence F, is an integral curve in 2° of X. This justifies us in saying
exp X = F.

Actually it is not obvious that F, € &*; i.e., the flow of an H* vector
field is H° (This, of course, is well-known in the C* case Lang [1].)
However we do have this theorem:

2.4.2 TueoreMm. If X is in Z*(M) = T,(2?) and its flow is F,, and if
s> (n[2) + 2, then F, is a C* curve in Z°(M).

Interestingly, the classical proof for the C* case from ordinary differ-
ential equations does not seem to work. The following proof, taken from
Ebin-Marsden [1] was inspired by Robbin [1]. This theorem is true for
s> (n/2) + 1 as has been shown by H. Brezis in an unpublished
communication, and by Fischer and Marsden [2].

2.4.3 LeMMA. Let X be an H, vector field, s > (n[2) + 2 and, F, the
flow of X. Then F, € 2°7* for short |t| < € and t — F,is a C* curve in Z°1.

PROOF. Since X is C, it has a C flow F, defined forall ¢ € R. Consider
the Hilbert manifold £2*-'(M) and its tangent bundle, elements of
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H*=(M, TM) which cover some 5 € Z*. Thus as X is H*,
wx: Dt - TP
N> Xon
is a C! map by the omega lemma. Thus wx has a unique integral curve
F,e 21 with F, = identity, and t— F,e H*Y(M, M) is C, [f] < e

Thus as s > (/2) + 2, F, is a C* diffeomorphism, and dF,/dt = X o F,,
so F,isthe flowof X. W

We shall also need the fact that F; e 2°! depends continuously on
X € H*(TM). Indeed, the vector field wx depends continuously on X, so
integral curves do as well, for |f| < e.

Note. If one knew that C° vector fields on Z* had integral curves, we
would have F, € Z* in the above. However this is not the case; but we
still get our result by the following procedure.

2.4.4 LeMMA. Under the hypotheses of 2.4.3, Fy: M — M is an H* map
for small t (so F, € 2° for |t] < €), and t — F;is C* as a map from R to Z°.

Proor. Since X and F, are of class C, we have (d/dt)DF, = (DX - F,)
DF,. Consider this as an equation

%w0=3,mo

in a space of H*' maps with u(0) = identity. Here B, = DX o F, is a

continuous linear operator on H*' and H*-% Thus there is a unique
solution in H*1, But DF, is a solution in H*2 Hence DF, is in fact in
H*so F,is H® and the lemma follows. ®&

PROOF OF 2.4.2 Let F, be the flow of X, so F, is a C* map defined for all
t € R. We want to show F, € 2 for all € R. By the argument in 2.4.4,
F,e9¢ if ¢t is small. For general ¢ write, for each integer n > 0,

Fy=(Fyn)" = FypoFypo ..o Fyp
For n large, Fy;, € 2°, and since &° is a group, F, € Z°. W

For an alternative proof, see Fischer-Marsden [2]. It has been remarked
by Brezis [1] that these arguments also apply to the spaces W?:*. They
also hold for the Holder spaces C**%,

So via this theorem and the remark that F, = id, we have a sort of Lie
group exponential map from T,2°(M) into a neighborhood of identity,
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X — F;. It is natural to ask why not use this exp map to directly define
charts on 2°(M). We cannot do this because it is a fact that exp does not
map onto any neighborhood of the identity in 2°(M). This is equivalent
to saying that there are diffeomorphisms near e not embeddable in a flow.
In other words for any neighborhood U of e in &%, there is 5 € U such
that there is no flow F; with F; = #. In fact 5 will not, in general, have a
square root. Explicit examples have been given by several people such as
Eells and Smale. One is written down in Omori [1] and in Friefeld [1].

A consequence of this is that the exp map on 7,2° is not C, for if it
were, it would be locally onto by the inverse function theorem.

2.5 Volume preserving diffeomorphisms

For now let M be a compact Riemannijan manifold without boundary.
(The boundary case is done below.) Let u be the volume form given by the
metric on M. Recall from the introduction that Z;, = {fe 2* [ [*(y) = p}.
We shall show that &3, is a smooth submanifold of 2°.

Recall that if f:P— Q is a smooth map between manifolds, f is a
submersion on a set A < P if T,f:T P — T;,Q is a surjection, for each
x € A. We shall need these lemmas:

2.5.1 LeMMA. Let P, Q be Hilbert manifolds and f:P — Q a C* map,
then for g € Q, f~X(g) is a C* submanifold of P, if f is a submersion on
=1(g).

This is simply a corollary of the Implicit function theorem (see Lang
[1]). In the Banach case, one also assumes ker T, f has a closed comple-
ment.

2.5.2 LeMMA. Let A be an n-form on M such that {34 = 0. Then A is
exact; A = do for ann — 1 form a.

This is a special case of de Rham’s theorem, stating that a closed form
is exact if all its periods vanish. For the proof, see for example Warner
[1]. A discussion is also found in Flanders [1].

For 0M = ¢, the following theorem is due to Ebin [1].

2.5.3 THEOREM. Let s > (n/2) + 1. Then 2}, is a closed C* submanifold
of 2. ’

ReMARK. This seems to be false for C* diffeomorphisms since it depends
on the Hodge theorem.



164 JERROLD E. MARSDEN et al.

ProoF. Let 4 be the volume form on M. Now by the Hodge theorem,
1], = u + d(HT (A" ™)) is a closed affine subspace of H*(A™), being the
translate of the closed subspace d(H**'(A"1)) by u. Define the map

P: (M) — [ul,

7= n*u.
Now n*u € [u], since

JI(M — W) =ﬂf[u —]fwn*u =0.

Hence 4 — n*u = do by Lemma 2. By the w-Lemma, one can easily see
that v is a C* map. Now Z5(M) = y~(u), so by Lemma 1, if p is a
submersion then 2% (M) is a C* submanifold of Z*+1(M).

We shall show this at e € 2°(M) (e is the identity map). It turns out that
Tp(X) = Lxu where X € T,2*"(M). Indeed let 7, be a curve tangent to
X, such as its flow. Then T,p(X) = (d/df)n}u |,—o which is well known to
be the Lie derivative (Abraham [2].) Using the standard formula Lypu =
dixp -+ ixdy for the Lie derivative and the fact that du = 0, we get

Tp(X) = Lxp = digp.
Hence to show T,y is a surjection, we only need show that
{ixp:X € T, 2*1} = HH(A™Y).

But ixu = *X and * is a bijection between n — 1 forms and 1-forms.
Hence T,y is onto. Similarly T,y is onto. ®

However this last step in the proof only holds if u is a (nowhere zero)
n-form or a closed nondegenerate 2-form. This remark allows us to show
that the diffeomorphisms that preserve a symplectic form form a sub-
manifold of the diffeomorphism group using the same sort of argument.

It is well known that a vector field generates volume preserving diffeo-
morphisms if and only if it is divergent free (see Abraham [2]). In our
context this means T,Z5(M) = {X € 2°(M)| 6X = 0}. This is clearly a
subspace of T,2°(M) and in fact T,9;(M) is closed under the bracket
operation, in the same sense as T,2°(M) (see above).

2.6 Manifolds with boundary

Suppose M is a compact, oriented, Riemannian Manifold with smooth
boundary. Let M be the double of M, i.e., ¥ is two copies of M with the
boundaries identified, with the obvious differential structure. Now 7 is a
compact, oriented, Riemannian manifold without boundary and M has a
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natural imbedding in /7. We have the manifold structure of H*(M, #7) by
our above work. Cleatly 2*(M) = H*(M, M) and in fact:

2.6.1 THEOREM. Z°(M) is a C* submanifold of H(M, M).

SKETCH OF PROOF. Briefly, we put a metric on M such that oM < M
is totally geodesic. Then let E:TH*(M, M)— H(M, M) be the expo-
nential map associated with this metric.

Let 7 € (M) = H*(M, M) and choose an exponential chart E:U <
T,H(M, M) — H*M, M) about 7. Also we should have

T,2°(M) = {X € H'(M, TM) | X covers 5 and
X(x) € T,y OM for all x € OM}
which is a closed subspace of
H M, TM) = TH*(M, ).

Since 0M is totally geodesic, E takes U N T,%2°(M) onto a neighborhood
of 1 in Z°(M). See Ebin-Marsden [1] for details. ®

By inspecting the above argument we see 7,%2°(M) = {H® vector fields
on M that are tangent to dM}. Formally, this is a Lie algebra in the same
sense as we had when A/ had no boundary.

2.6.2 THEOREM. If u is the volume on M and Z;(M) is the set of volume
preserving diffeomorphisms, then 2,(M) < 2°(M) is a smooth submanifold.

This is proven as in the case that A/ has no boundary. This proof works
here because we have the Hodge theorems for manifolds with boundary.

The rest of the material from the no boundary case (such as the o and
w-lemmas) carries over to the case when M has a boundary. For the non-
compact case, see Cantor [1, 2].

2.7 Topology of the diffeomorphism group

For topological theorems we can work in Z(M) = Z°(M). Indeed it
follows from very general results of Cerf [1] and Palais [3] that the topology
of 2° and & are the same; one uses the fact that the injection of 2 into
2° is dense. The first theorem in this field was proven by Smale [1]in 1959.
He showed that Z(S?) is contractable to SO(3); here S is the 2-sphere,
and SO(3) is the special orthogonal group on R3, which we can regard as
the (identity component of the) isometry group of S2 This theorem was
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extended to all compact 2 manifolds by Earle and Eells [1] and to the
boundary case by Earle and Schatz [1].

It is fairly simple to show that 2(SY) is contractable to SO(2). The
following argument is based on a suggestion of J. Eells.

First fix s € S*. Let 6:[0, 1] — S* be a parameterization of S* such that
6(0) = 6(1) = s. Now let f be a diffeomorphism that leaves s fixed. Then
the map

h(t, x):10, 1] X $* — S*

6672 (x) + (1 — DO (f (X)) xX#ESs
&)

X=s
is an homotopy from f to idg.

Suppose g: ST — ST maps s to g(s) 5 s; then there is a rotationr: $* — §*
that carries g(s) to s and therefore r o g(s) = s. Hence, by the above
argument r o g is homotopic to the identity. Therefore g is homotopic to
r~1, which is, naturally, also a rotation. m

For dimension 3 the situation is much more complicated and little is
known. The work of Cerf [2] seems indicative of the complexity. Antonelli
et al. [1] have shown that if A/ has high dimension Z(M) will not have
the homotopy type of a finite cell complex. Various people have also been
working towards showing Z(M) is a simple group. cf. Herman [1],
Epstein [1] and Herman-Sergeraert [1].

Another important result in this field is that of Omori [1]. He proved
that for any compact Riemannian manifold without boundary Z(M) is
contractable to Z,(M), the set of volume preserving diffeomorphisms. In
fact if ¥" = {» € C*(A") | » is nondegenerate, positively oriented and
Jarv = [y 1} (C°(A™) are the C* n-forms) then D(M) is diffeomorphic
to 9, x ¥". This implies (M) is contractable to 2, (M) since ¥~ is
contractable to u. (In fact ¥” is convex.) The proof that (M) ~ & (M) X
¥” uses an important result of Moser [1].

2.7.1 THEOREM [MOSER]. If on a compact manifold M, there are 2 volume
elements p and v such that {3 v = |3y u, then there is map f € D(M) such
that f*(») = p.

We formulate the results more precisely following the proof of Ebin-
Marsden [1].

2.7.2 THEOREM. Let M be compact without boundary with a smooth
volume element u. Let

YV = [v eC(AM | v > 0,11[1’ =££,u].
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Then 2 is diffeomorphic to D, X ¥ . In particular (since ¥~ is convex),
2, is a deformation retract of 9.

For the proof, we begin by proving Moser’s result.

2.7.3 LeMMA. There is a map 3% —2°, s > (n[2) + 1 such that
VD=V, vy, () = n*(u) satisfies p, o y = identity. Further, y:¥" —
D is a C* map.

ProOOF. For ve¥’,, let », =t + (1 — f)u, so that », ¥ Since
§ u =, we can write, as before, u — » = do. Define X, by ixp, = a
so that X, € H*(TM). Let n, be the flow of X, so 5, € 2°. Define y(¥) = 77"
We want to show that %%(»,) = u by showing d/di(n§(»;)) = 0. Indeed,
we have, from the basic fact about Lie derivatives (Abraham [2], p. 52):

dt
=7, (dixp. — (u — )
=nfde—p+9)=0 ®m
Note that y is canonically defined, given the Riemannian metric on M.

d d
< aro0) =t (Lx,vt +2 )

PRrOOF OF 2.7.2. Define ®:9, x ¥ — D by ®({,v) = {ox(»). Then
O () = (o G*)(W) ™, n*(w)) as is easily checked. ®

This can be generalized to the boundary case as well.

The basic technique in 2.7.3 has found considerable applications recently.
See for example Weinstein {1] and Palais [5].

It is also possible to study other groups of diffeomorphisms. (See also
Leslie [3].) For example, let M be a compact manifold and let G be a
compact group. Let ®:G x M — M be a group action, and let @,(m) =
®(g, m). Set

DeM) = {n e Z(M) | 1 oDy =D, o7}
This is a subgroup of Z*(M), a C* submanifold and has “Lie algebra”
T, 2%M) = {V € T, 2°(M) | V commutes with all
infinitesimal generators of ®}.

Of course, we can also take 25 (M) = D, (M) N Dy (M). Since this
intersection is not in general transversal, it is not obvious that 9, 4(M)isa
submanifold. It is true, but requires some argument (see Ebin-Marsden
[2]). The group 25, 4(M) is important in the study of flows with various
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symmetries (e.g., a flow in R? that is symmetric with respect to a given
axis). Also, in general we find that dim(Z 4(M)) and codim(Z 4(M)) are
both infinite so Frobenius methods do not work (Leslie [2] and Omori
[1, 3] have shown that if £ is a Lie subalgebra of T,% with finite dimension
or codimension, then ,# comes from a smooth subgroup of 2).

3. Bifurcation and the centre manifold theorem

3.1 Hopf bifurcation

This theorem was invented by Hopf [1] in 1942 apparently with fluid
mechanics in mind. See also Hopf [2]. Just recently, David Ruelle and
Floris Takens [1] published a paper in which this theorem was used in a
discussion of turbulence and stability. Later in Part II, § 3 we shall con-
sider such questions in detail.

In order to understand Hopf’s theorem, let us review some standard
material in ordinary differential equations. For a complete discussion of
this material, see Coddington-Levinson [1] and Abraham-Robbin [1]. Let
X:R*— R" be a linear map. Then regarding X as a vector field
on R”, its flow is given by F,(a) = X (g), where a € R™ and &% =
Swo (#"X™[n!); in this expression X° = I and multiplication is as matrices.
Let 4y, ..., 4, be the (possibly complex) eigenvalues of X. Since X has
only real entries when considered as a matrix, the 4, appear in conjugate

pairs. Clearly e, .., " are the eigenvalues of F,.

Now suppose that for all i, we have Re(4,) < 0. Then as ¢ increases

|e*¥| is decreasing and hence the orbit of a point @ € R™ i.e., the curve

t+ F,(a), is approaching zero. (This is clear if X is diagonalizable; for

the general case one uses the Jordan canonical form.) Since F, is linear,
for each ¢ we have F,(0) = 0. In this situation, we say 0 is an atfracting or
stable fixed point.

Re Aj <O

Ficure 3.1

Now if all Re(4,) > 0, it is clear that each |e'| is increasing with 7,
and so the orbit of a point under the flow is away from 0. Here, we say 0
is a repelling or unstable fixed point.
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. Re Aj >0

FIGURE 3.2

For the nonlinear case, we linearize and apply the above results as
follows. Let X be a vector field on some manifold M. Suppose there is a
point m, € M such that X(r,) = 0. Then F;, the flow of X leaves i, fixed;
Fy(mg) = m,. It makes sense to consider DX(my):T, M~ T, M. If
Vis .« » ¥, 18 A coordinate system for M at m,, the coordinate matrix
expression for DX{(my) is just DX(my) = (0X?/0y’)(m,). Now, DX(m,) can
be treated as a linear map on R” and the same analysis as above applies.
Hence mj is an attracting or repelling fixed point (or neither) for the flow
of X depending on the sign of the real part of the eigenvalues of (0X%/
0y7)(my). However if m, is attracting (when the real parts of the eigenvalues

are <0), it is only nearby points which — m, as ¢ — co.

To begin our study of the Hopf theorem, let us consider some physical
examples of the general phenomenon of bifurcation. The idea in each case
is that the system depends on some real parameter, and the system under-
goes a sudden qualitative change as the parameter crosses some critical
point. (For research in a slightly different direction and for more examples,
consult the papers in Antman-Keller [1] and Zarantonello [1].)

ExamrLE 1. Consider a rigid rod with force F applied equally at both
ends (Figure 3.3). If the force F is small, we observe no change in the rod

= e——————e <= F smdll
— 4:\ <= F large
FIGURE 3.3

(except a small compression perhaps). However as the force increases,
eventually it will reach a point where the rod suddenly bends.

ExampLzE 2. (Couette Flow). Suppose we have a viscous fluid between
two concentric cylinders (Figure 3.4). Suppose further we forcibly rotate
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@ FLUID

the cylinders in opposite directions at some constant angular velocity p
(which is our parameter). For p near 0, we get a steady horizontal laminar
flow in the fluid. However as p reaches some critical point, the fluid
breaks up into what are called Taylor cells and the fluid moves radially in
cells from the inner cylinder to the outer one and vice versa; Figure 3.5.
(Note, that the directions of flow are such that flow is continuous.) We
shall discuss this flow at greater length later.
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FIGURE 3.5

In both of the above examples, we have a situation described by differ-
ential equations and at some critical point of the parameter, the given
solution becomes unstable and the system shifts to a “stable’’ solution.
This sharp division of solutions is the sort of bifurcation we shall en-
counter in Hopf’s theorem.

For simplicity, let us consider the case where the underlying space is
simply R2 Let X, be a vector field on [R? depending smoothly on some
real parameter . Actually it is convenient to put X, in R? by considering

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 171

m
e X]J.
~W -
RZ
FiGure 3.6

the map X:(x, ¥, ) — (X,(x,),0). This way we can graph the flow
F}of X, and keep track of the parameter . The flow G, of Xis G,(x, y, u) =
(F{(x, ), p). Similarly, we consider X, acting on the plane y = const as
in Figure 3.6.

Now suppose X, (0, 0) = (0, 0) for each u; more generally one could
consider a curve (x,, y,) of critical points of X,. We can apply the analysis
we developed for vector fields, i.e., for each u, we look at the eigenvalues
of DX,(0, 0) say A(u) and A(u). (They are complex conjugate.) Note that
the eigenvalues depend on g and by our earlier analysis of flows, we know
the qualitative behaviour of the flow depends on the sign of Re(A(x)) and

Re(A(u)) (which are equal in case A(y) itself is not real). So if we know how
A() depends on p then we can hope to extract some information about
the flow near (0, 0) as u increases. We make these hypotheses:

Suppose Re(A(u)) < 0 for u < 0 and Re(A(0)) = 0 and Re(A(u))
is increasing as p increases across 0 (Figure 3.7). Also assume that

Alu)
N ¢ X
X ) X
U<o =0 =0
Ficure 3.7
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A(w) is not real and that for u = 0, (0, 0) is an attracting fixed
point for X
(perhaps with a weaker or slower attraction than when Re(A(¢)) < 0).

Now for g < 0, we know from the above that the flow is “stable,” i.e.,
points near (0, 0) are carried towards (0, 0) by the flow, as is the case for

<0 U=0 U>0

FiGure 3.8

u = 0 (only slower) by assumption. The surprising case is the behavior
for u > 0. \

3.1.1 Taeorem (E. HoPF). In the situation described above, there is a
stable periodic orbit for X, when 0 < u < ¢ for some € > 0. (Stable here
means points near the periodic orbit will remain near and eventually be
carried closer to the orbit by the flow.)

So as in the examples we get a qualitative change in the stable solutions

as u crosses 0, from an attracting fixed point at (0, 0) to a periodic solution
away from (0, 0). (Figures 3.9, 3.10)

®=0

FIGURE 3.9

This theorem does generalize to R™ where we can get tori forming as
the stable solutions (instead of closed orbits) as further bifurcations take
place; see Ruelle-Takens [1] for details.

The proof of the theorem occurs in many places besides Hopf [1]. See,
for instance Andronov and Chaikin [1], or Bruslinskaya [3]. We have
followed Ruelle-Takens [1], correcting a minor error in their 6.1.
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Hopf’s theorem is closely related to a linear model used in physics known
as the “Turing model.”” As D. Ruelle, S. Smale, and P. Hartman have
remarked, these sort of phenomena may be basic for understanding a
large variety of qualitative changes which occur in nature, including
biological and chemical systems. See for instance Turing [1], Selkov [1].
We have examined here only one of many types of possible bifurcations.
There are many others which occur in Thom’s theory of morphogenesis
(see articles in Chillingworth [1] and Abraham [4] for more details and
bibliography). Meyer [1] is representative of the Hamiltonian case.

3.2 The centre manifold theorem

This is an important existence theorem which perhaps has been under-
rated as to its importance. We will first consider the case of flows. Let
[E,, E,, and [E, be Banach spaces and X;: E; — [E, be vector fields such
that for each 7, X;(0) = 0. Suppose:

if 4 is in the spectrum of DX;(0), Re(1) < —0 <0
if A is in the spectrum of DX,(0), Re(d) =0
if A is in the spectrum of DX;(0), Re(Z) > d > 0
where 6 > 0. For example, let E; = E, = [E; = R with E, the x-axis,

[E, the y-axis and [E; the z-axis. We get the picture as shown in Figure 3.11
for the linearized fields (i.e., the fields DX;(0)).
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FIiGcure 3.11

3.2.1 THEOREM. In the above situation there is an invariant submanifold
Cof (X1, X, Xp)in[E; X E, x E, as shown in figure 3.12. (Here invariant

means that if the flow of (X1, X,, Xy) has initial conditions in C, it remains in
C for all time.)

Ther_e similarly are stable and unstable manifolds for the vector field,
the points of which converge to 0 as  — o and  — — oo respectively.

Es
A
UNSTABLE

STABLE
Ep

C=CENTRE
MANIFOLD

FIGURE 3.12

The proof of the theorem for the case of Euclidean space may be found in
Appendix C by A. Kelley of Abraham-Robbin [1]. Some discussion is also
found in Abraham [2}, and Hartman [1]. As far as we know, the general
proof has not appeared, but is forthcoming in Hirsch-Pugh-Shub [2].

There is a similar theorem for a map ¥ (not vector fields)on £; x [E, X
[E ;. Here, as above, we assume V;(0) = 0 or 0 is a fixed point for ¥ and
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assume that
if ¢! is in the spectrum of DV;(0): £, — [E; then Re(1) < —6 < 0
if ¢* is in the spectrum of DV,(0): E, — [E, then Re(1) =0
if ¢* is in the spectrum of DV,(0): E; — [E, then Re(2) > 6 >0,

then there are, as above, appropriate invariant submanifolds for the map
V. Again the reference is Hirsch-Pugh-Shub [2]. Note that the map V
need not be a diffeomorphism (that the theorem is valid for general maps
was pointed out by C. Pugh, who we thank for discussions on this point).
The difference between the map and the vector field theorems is made
clearer if one remembers that if ¥ = F, where F, is the flow of X, then the
aforementioned conditions on ¥ and X are equivalent to each other, since
the spectra are related by exponentiating, as was explained previously.

3.3 Bifurcation theorem for maps

An application of the centre manifold theory is the following basic
bifurcation theorem. We follow a formulation in Ruelle-Takens [1].
Theorems of this type have been discovered by many different authors
in various contexts.

3.3.1 THEOREM. Let IH be a Hilbert space (or manifold)and ®,:H — H
a map defined for each y € R such that the map (u, x) > @,(x) is a C*
map, k = 1, from R x H to IH, and for all pe€ R, ®,(0) = 0. Define
L, = D®,(0) and suppose the spectrum of L, lies inside the unit circle for
u < 0. Assume further there is a real, simple, isolated eigenvalue 2(u) of L,
such that A(0) = 1, (dA/du)(0) > 0, and L§ has the eigenvalue 1, then there
is a C*1 curve I of fixed points of ®:(x, u)+— (®,(x), u) near (0,0)€
H x R. The curve is tangent to IH at (0,0) in IH x R (Figure 3.14).
These points and the points (0, p) are the only fixed points of ® in a neighbor-
hood of (0,0). Moreover these new fixed points are stable ( figure 3.15).

1Z] =1 ¢ C C
%’ @ AW ® o\ AW
SPECTRUM U<0 =0 u=0
OF Ly, .

FiGure 3.13
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POINTS /
H l H
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FiGure 3.14 FiGure 3.15

Before sketching the proof of 3.3.1, we give an example which is
instructive here (kindly pointed out by Professor Calabi). Consider a
circular track free to rotate about a vertical axis and a ball in the track.
Suppose we rotate the ring around this vertical axis with angular velocity
u. Then if p is small there is just one stable rest solution, namely at the
bottom. As u increases past a critical value, there appear two additional
stable rest solutions on either side of the solution at the bottom which has
now become unstable (Figure 3.16). If the stable solution is a height 4,
from the bottom, observe that &, increases with pu.

1 SMALL

UNSTABLE
FiGure 3.16
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FiGure 3.17

In this example we can let iH = a portion of the loop parametrized by
the distance s from the bottom, and ®,(s) = the position of the ball after
1 second if starting at s. Let 0 = “bottom of the circle,”” so ®,(0) = 0.
We then have the picture shown in Figure 3.17. Here the points on /
correspond to the fixed point of ®, when the ball is at height 4,.

The idea involved in the proof of the result 3.3.1 is the following. We
pick an eigenvector z for (L,, 0) in IH x {0} with eigenvalue one. Thus
we get a two dimensional centre manifold as shown in Figure 3.18. Choose
coordinates «, w on C determined by: u is the coordinate as above, and
o is obtained by projection on the eigenvector z(u) for L,. Write ®(a, u) =

(f(a, ), ), @, peR so that £(0, x) =0, (3f]8x)(0, u) = A(w). Set

/

e
/

l\
\ 1
\

-——

FiGure 3.18
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g(«, p) = [f(«, w/a] — 1 which is C*-1, The fixed points are zeros of g.
But (dg/9u)(0, 0) = (dA/du)(0) > 0 so we get a curve of zeros of g in C
by the implicit function theorem. m|

Let us see briefly how one can recover the Hopf theorem from this
result. Indeed, let &,:R — R be the Poincaré map determined by the
flow as shown in Figure 3.19.

INTEGRAL CURVE
s ) =G’u(§,y)
K Y,
FiGure 3.19

Then the appearance of two stable fixed points for &, as u increases
(as the theorem gives us) corresponds exactly to an appearance for X, of a
stable closed orbit. This is also geometrically clear from Figure 3.19.

For systems with symmetries, such as Couette flow, it is important to
take these symmetries into account when dealing with these bifurcation
theorems. See Ruelle [4].

II. APPLICATION TO HYDRODYNAMICS

We now shall apply the machinery of part I to some problems in fluid
flow. The first section is devoted to showing that a curve 7, €% is a
geodesic if and only if the corresponding velocity field satisfies the Euler
equation (see the introductory §2). The method we use is differential
geometric as opposed to Arnold’s original method which was group
theoretical (cf. Arnold [1], and Chernoff-Marsden [1]). We shall then
explain the existence theorem and why we gain a technical advantage by
working on &;; i.e., in Lagrangian coordinates (see remarks in the intro-
ductory § 2). We also shall prove a number of miscellaneous properties
of the Euler flow.
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In the second section we outline what is known concerning the existence
of solutions for all time. We give a sufficient condition for the Euler flow
and a weaker condition for the Navier—Stokes flow which essentially goes
back to Leray [3]. A fairly complete proof of Leray’s theorem is included.

Finally in the last section we discuss the interrelationship between the
concepts of turbulence, bifurcation and stability. Here one studies changes
which occur as the viscosity ¥ — 0 or equivalently the Reynolds number
A — 0. We study both the analytical aspects of the limit » — 0, which in
the boundary case is related to boundary layer theory, and the qualitative
aspects using the bifurcation theory developed in Part II, § 3.

1. Geodesics on 2, and the Euler equations

1.1 The metric on 2,

It follows from the section on manifolds of maps that the tangent space
to 2, (M) at a point 4 € Z;, is given by T,9;(M) = {X € H*(M, TM) | X
covers 7, 6(X o 1) = 0, and Xis parallel to dM}. Note thatif X e T, %7,(M)
then X o 97! is a vector field on M. If we are working on 2° then the
divergence condition d(X o) =0 is dropped, so 7,2° consists of
H° sections parallel to oM which cover #.

Let M be a compact Riemannian manifold m € M and let (, ),, be the
inner product on T,,M. Now we put a metric on 2°(M) as follows: Let
ne€Z* (M) and X, Y e T,2°(M). Then X(m) and Y(m) are in T, M.
Now define:

(X, Y), = f (X(m), V() dii(m).
M

This is a symmetric bilinear form on each tangent space T,%° of Z°(M).
By restriction it also defines a symmetric bilinear form on each tangent
space of &5,

The norm induced by this inner product is clearly an L? norm and
hence the topology it induces is weaker than the H*® topology on each
T,2°(M). Thus, we call (,) a weak metric. For manifolds of maps it is
important to allow weak metrics although most definitions of Riemannian
manifolds exclude this (as in Lang [1]). Also, it should be mentioned that
for physical reasons this is the appropriate metric for hydrodynamics,
since for X € T,2°(M), }(X, X) represents the total kinetic energy of a
fluid in state % and velocity field v = X o ! (see below). So finding
geodesics is formally the same as finding a flow satisfying a least energy
condition.
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This metric (,), just constructed is smooth in this sense: If BT1,2,, T,2,)
is the vector bundle of bilinear maps over the tangent spaces of Z*(M)
(ie.,if g, € B(T, 2}, T,2;) then g,: T,2,(M) x T,%,(M)— Ris bilinear),
then the map n — (, ), is a section of this bundle, and to say the metric
is smooth is to say this section is smooth. (Here each fiber of B(T,Z,,
T,Z:) has the standard topology put on bilinear maps on banach spaces,
and one constructs the bundle as in Lang [1], Ch. III, §4.)

Note. It is not always true that a weak metric yields goedesics. For
example, suppose 9M # . Then on 2°(M), this weak metric would
yield geodesics which would try to cross the boundary of M. We shall see

this in more detail below.

1.2 The spray on Z,(M) .
In coordinates, one finds geodesics by solving the equation

£ = —3 #HTH)
ik

where the ['%;(x) are the Christoffel symbols. This is awkward in infinite
dimensions as the geodesic equation would involve infinite sums. So,
instead, we use the equivalent but more easily handled notion of a spray.
To do this, recall there is a canonical manifold structure on the tangent
bundle of a manifold. Specifically let Q be a C* n-manifold, let (U, ¢) be
achartatm, ¥V = ¢~1(U),V < R7,and xy = ¢~ (m). Now ®:U x R* —
TQ defined by the expression @ = (¢, D¢(x)) is a chart on TQ since
Dop(x):R" — T,,0 ~ R® is an isomorphism. It is easy to check that the
collection of such maps form an atlas, and this determines a C* manifold
structure on 7'Q.

Define T2Q = T(TQ) to be the tangent bundle of the manifold 7Q.
Informally the spray associated to a metric on Q is a vector field Z:T7Q —
T2Q such that the integral curves of Z are the curves in TQ that are the
tangent curves to geodesics. (For a precise definition see Lang [1])
This makes sense since integral curves of Z lie in TQ. The spray can also
be defined in terms of Hamiltonian systems, as in Prof. Klingengburg’s
lectures; see also Abraham [2], and Part III, §1 below.

Now we will define a spray for the metric on Z°(M), and give plausible
arguments that jt is the correct choice. For a more rigorous treatment, see
Ebin-Marsden [1]. For the rest of this paragraph suppose that OM = &.
The following result is essentially contained in Eliasson [1].

1.2.1 THEOREM. Let Z be the spray of the metric on M. Then the spray of
(,) on 2°(M) is given by
Z2:T9* — TXD*); X > Z o X.
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Note. As with 7%, it is not hard to see that Tx(T%®) consists of H*
maps Y: M — T2M which cover X;ie., m © ¥ = X, where 7. T?M — TM
is the projection. The spray Z satisfies 7; © Z = identity, since Z is a vector
field. Thus Z(X) € TxT2* so Z is indeed a vector field on 7",

The idea behind the proof of 1.2.1 is to realize that we can explicitly
write down what should be the geodesics on £°(3/). From the construction

of charts on Z°(M), there is the map exp:TZ*(M)—2°(M) where

exp(X) = exp o X and exp:TM — M is the Riemannian exponential map
on M. First we assert that for X € T,9°(M), the geodesic on Z°(M)
through e in the direction X is given by # > exp(¢X). What this geodesic
looks like is seen by considering any m € M. Then ¢ exp(tX)(m) =
exp(zX,,) is the geodesic starting at m in the direction X,,. So E)@(tX)
represents all of the geodesics on A/ in the direction of the vector field X
evaluated at m € M. As in the picture, as ¢ increases it is likely that some
pair of geodesics will intersect. Say this happens at ¢ = #,. Then exp(7,X)
is not a diffeomorphism. Hence even if M is a simple manifold (like the
flat 2-torus), Z°(M) is not geodesicly complete. We shall come back to this
point later.

FIGURrE 1.1

If we can show ¢ — exp X is a geodesic on &°, then the formula for Z
in 1.2.1 follows at once, since for each m € M, v(?) = (d/dt)exp(tX(m))
satisfies (d/dt)v(t) = Z(v(¢)), and v(0) = X(m). Hence to establish 1.2.1
it suffices to establish our assertion concerning the geodesics on &~ :

Of course a fundamental property of geodesics is that they locally
minimize length. Suppose we have a family of geodesic curves ¢ - 5(£)(m),
starting at m € M, where for 7, € IR, ¢, near 0, the map m — 9(t,)(m) isa
diffeomorphism so that ¢ > #, is a curve in &°. Then since the length of
a curve in Z°(M) given by our weak metric is the integral over M of the
lengths of each curve, ¢ — #,(m), this integrated length is also minimized.
Hence it is reasonable that ¢ — #(¢) should be a geodesic on Z*(M). The

7



182 JERROLD E. MARSDEN et al.

curves ¢ exp(tX)(m) have all the above properties so > exp(¢X)
should be a geodesic on Z°(M). This concludes our justification of 1.2.1.

1.2.2 CorOLLARY. Z is a C* vector field on TZ".

This is a consequence of the omega lemma since Z is a C* map.

Let us consider a simple example. Let T2 be the flat 2-torus. Then
T(T?) == T? x R?is also a flat 4-manifold and T(7TT?) =~ (T? x R2) x
(R? x R3). In this case the spray for the flat metric is given by

Z:T(T?) — T(T(T»): (x, v) — ((x, v), (v, 0)).

The x in the first coordinate is just the base point of the tangent vector
in TT2 The v in the third coordinate is an important formal property
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_.X.; < \ P

® ”

N

!
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~
\\
~

FIGURE 1.2

of sprays reflecting the fact that the geodesic equations are “second order™
(see Lang [1]) and the O in the last coordinate reflects the fact that the
metric is flat, hence each I'; = 0. In this case the geodesics are of the
form #(f)(m) = m + tX(m) (where X € T,2°(T?) and using the obvious
identification). These are straight lines and hence 2°(T?) is essentially
flat. In general, in coordinates x = (x%, ..., x) on a manifold M, we
have Z(x, v) = ((x, v), (v, —T%4070")).

We now consider the metric for Z,(M) < 2°(M). Even if 2%(M) is
geometrically relatively simple, as above for T?, (M) may be geo-
metrically very complicated. Consider the above example. It should be
clear that the diffeomorphism specified by having each point moving along
straight lines is generally not volume preserving. See Figure 1.2. So
requiring each point on a geodesic in 2° to be volume preserving must
introduce some curvature.

Suppose S is a submanifold of a Riemannian manifold Q such that we
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have an orthogonal projection of 7,0 onto TS for each p € S. This gives
us a bundle map P:TQ| §— T'S (where TQ| S = {v, € T,0 |p € S}).
This is of course the situation we have for Z;,(M) as a submanifold of
Z°(M) where the projection is given by the Hodge theorem (i.e., we project
onto the divergent free part of X for X € T,%°(M)). In this situation, the
following tells us how to put the spray on the submanifold.

FiGure 1.3

1.2.3 LEMMA. If Z is the spray on Q then TP o Z is the spray on S.

This is a standard result in Riemannian geometry. A proof using Hamil-
tonian theory may be found in Chernoff-Marsden [1].

Now Z is a vector field on TQ as is TPoZ on TS. However their
difference, say £, can be identified (technically by means of the vertical
lift—see below) with a map of 7' into 7Q || S, which turns out to be (the
quadratic part of) the second fundamental form of S as a submanifold.
Specifically for » € TS, h(v) is the normal component of V,v; cf. Chernoff-
Marsden [1] for details. Thus this difference /4 in the sprays tells us, how
curved Sis in Q. (More exactly the curvatures on Q and on § are related
through this second fundamental form by the Gauss-Codazzi equations;
cf. Yano [1], p. 94.)

Define

P T2 (M) — T, Z(M)

by carrying a vector field to its divergent free part. As we mentioned above,
this is an L? orthogonal projection so it is orthogonal for the weak inner
product on T,2°(M). We define for X e T,2°(M); n € Z,(M)

Py(X) = (PX o D) o 1.

This makes P right invariant and is correct since the metric on D, (M) is
right invariant as we now show
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1.2.4 PROPOSITION

@) Let n € 2°(M); then (R)*X, = X;on (where { € Z°(M), (R)*:
T,2*(M) — T;oq@*(M)). |

@) If neZ, (M) then ((R)*X, (R)*Y)p, = (X, Y),, where X,
Y e T,2°(M).

ProoF. Part (i) has been used before and is easily seen. We will show
the second part. Let n € &;(M); then:

(R)*X, (R)*Y )y = (X om, Y o)y

- f (X o (m), Y o n(m)yogim At
M

- f (X(m), Y ()7 ().
2 M)

But, since %' is volume preserving, (5)*(dy) = du and n (M) = M.
Hence

(RY*X, (R)*Y) = f (X(m), Y(m))om dp
M

=(X,Y),. m

Note that the metric on &° is not right invariant.

Putting all this together we can write down the spray S on Z,(M)
using 1.2.3. Namely, for X e TZ;(M) we have S(X)= TP(Z(X)) =
TP(Z » X). There is a major assumption in writing down this formula.
When we write 7P, we assume P is a C* map. This is not at all obvious
since if X' e T,9,,(M), we compose X with 5, project, and then compose
with . As we have seen, composition of H* maps is not generally smooth
(see Part II, § 2). However, we have this surprising fact.

1.2.5 THEOREM. P is a C® bundle map. That is P:T2*(M)| D,(M) —
TZ;(M) is C*. Hence the spray S on 2}, S(X) = TP(Z » X), is also a C®
vector field on T,

For a proof see Ebin-Marsden [1]. There is an alternative and perhaps
simpler proof to the one in the aforementioned paper. In this proof one
defines another metric on T2°(M); namely for X, Y € T,2°(M), set

X, Y), = (X, Y) + (A*2X, A*2Y)
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where () is the L? metric on T,2°(M), and A is the Laplacian. Then
extend (,), to make it right invariant.

It turns out that this metric is smooth and by regularity properties of
A is equivalent to the H* metric. Smoothness facts like this again are not
obvious but are proven in Ebin [1]. These facts are also useful for other
purposes. The Hodge decomposition is then easily seen to be orthogonal in
this strong metric (,), and hence it follows automatically that the projection
P is smooth. Below in § 1.4 we shall give further justification for why the
map P is smooth.

This result 1.2.5 is important for we are going to apply the Picard
theorem from ordinary differential equations to the equation:

ax,

= S(Xt) =TP(Z- Xy)
dt

and this requires that S is at least a Lipshitz map.

In case M has boundary, we do not get a spray on Z°, but we do get one
on Z,,. This is basically because P projects from vector fields sticking out of
M, onto vector fields parallel to 0M. We shall just accept as plausible that
this extension can be made.

As mentioned earlier, it is unknown whether 25(M) is geodesically
complete. (By results below, this is the same thing as saying solutions to
the Euler equations go for all time, and remain in H*). Note that this is not
equivalent to saying the induced distance metric is complete since the
metric is only weak. In fact Z7,(M) is not complete in this distance sense
since the completion of (M) under an L? topology is much larger than

Z,(M). (Presumably it consists of a class of measure preserving maps from
Mto M)

1.3 Derivation of the Euler equations

To show geodesics in Z;,(M) satisfy the Euler equations, we need to know
abitmoreabout T2M. Let 7: TM — M be the projection so that Tr: T2M —
TM. An element w € T2M is called vertical if Tm(w) = 0 (in coordinates
this means the third component is 0). Now let v, w € T,.M; define the
vertical left of w with respect to v to be

W)} = 4 (v+tw)|, €TM = T(TM).
dt It=0
In coordinates this is simply

W)k = (m, v, 0, w).



186 : _ JERROLD E. MARSDEN et al.

The proof that geodesics in 2, yield solutions to the Euler equations

B . s

essentially is calculations. The idea is to show that if a curve X, € TZ,,
satisfies the spray equation

ax,
dt

Then X, gives rise to a solution to the Euler equations in a sense explained
below. For alternative proofs, see Arnold [1], Marsden-Abraham [1],
or Chernoff-Marsden [1]; see also Hermann [1].

=S(X), X,eTZYM).

1.3.1 LemMA. Z(X) =Z o X = TX o X — (Vg X)k for X € T, Z".

Proor. In coordinates

Vexy =S x2X L 51 xixE
i ax’ i.k
Now

(TX « X) =3 X g—)i 50 (TX s X = (VX)) = S T4X'X"
i X i
This then puts the right expressions in the fourth component. ®

Note that both TX o X and (V xX)% are elements of T'xZ;,. The latter is
by construction of the vertical lift. To see this for TX o X, let m:T?°M —
TM be the projection; then since m o TX = X o m we have

moTXoX=Xomo X=X

since o X is the identity. o

As we observed in 1.2.2, the map X+— Z o X (for X e TQS(M)) is C*.
Hence even though TX o X and V ¢ X are only H*, their difference must
be H*.

1.3.2 LEMMA. Let ¢ and X be in T,2%(M) then TP[(0)k] = (P(0))k.
Proor. Since P is linear on each fiber and P(X) = X, we get
d
(P(Npx) = p (P(X) + tP(0))]:o
d
= ;i—t P(X 4 to‘),t=0

(chain rule)
=0

= TP(dit X+ ta))

= TP[(d%]. ™
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1.3.3 LEMMA. Let 1) € 9, and X € T,2*(M); then TP(T(X o ™Y o X) =
{T(PIX o 7]} o X.

PROOF. X o 1 is an H* vector field on M. Let F, be its flow (or any
curve tangent to it). Let G, = (Xon ) o F, Then Gy = X oy and
(dG,[df) = T(X o ™Y o (X o 7Y). Thus we get

TP(T(X o) o (X o 57%) = ‘—?;P(G,)’t:(, (chain rule)

- Ed} PX o™ 0 F)ico

= T(PX o) o (X o777).

But by right invariance TP(T(X o %) o (X o 9y™)) = TP(T(X o ) o X) o
L m

1.3.4 PROPOSITION. The spray on T, is given by

SX)=T(X oo X —(PVg,XoyyVyon where Xe T,2;(M).
Proor. This follows directly from the above lemmas. ®&

So now that we have an explicit formula for the spray, let us inspect the
Euler equations. Recall from the introductory § 2 that these describe the
time evolution of the velocity vector field on M. The equations are written
out in Eulerian coordinates and are equations involving elements of
T,2°(M). The spray on the other hand is a map on all of 79*(M). The
integral curves of the spray are the velocities written in Lagrangian
coordinates. So if X, € T,,9*(M) is an integral curve of the spray, one
would hope the pullback of X, ie., X;o 77t € T,.9%(M), would be a
solution of the Euler equations.

The vector field v(#) = X; o ;" is more carefully justified as follows.
We want %, to be the flow of v, so this means that

& ) = o),

Since we are dealing with geodesics and hence (dy/df) = X, we get the
desired relation v, = X, o n;%.

It turns out, as we shall see momentarily, that the derivative loss of
the Euler equations occurs in this pullback operation (or “coordinate
change”). '

We are interested in computing (dv/d?), and so we need this lemma.
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1.3.5 LeMMA. We have:

du(t)
dt

d aX
=—(X,0on,7) =
dt( eom) dt

t°"7t—1 — TX;o T’?t—l o X, °77t_1-

Proor. This follows by differentiating both places ¢ occurs, using the
chain rule and the formula

d, _ ~1 dn
—_— = T o— o N
5 e e oo
The last formula follows from the chain rule applied to 7, o ;- = id. W

So, putting this together, we get:

dv,

— = S(X)) e Nyt — T(X, oz e Xyonp.

Now using 1.3.4, this becomes = —(P,V,v,),. Note especially the
cancellation of the Tvo v terms which has occurred. But as we recall
P,(V,v) =V, v, — Vp, where p is a smooth function. We can identify
Pe(Vtht)f; with P,(V,,v;) (since dp/dt really stands for its vertical lift)
and hence get the Euler equations

dv
2= Vot Vp
or
dv
7: + Vo0 = Vp,.

(The minus sign on the pressure can be recovered by using —p,.) Thus we
have proved:

1.3.6 THEOREM. If X, is an integral curve of the spray on 9, its pullback
v, = X, o q;* does satisfy the Euler equations. In other words, 7, is a
geodesic on D;, iff its velocity field satisfies the Euler equations.

By inspecting the above calculation it becomes clear where the derivative
loss occurs. If X is an H* vector field on M, we know S(X) is an H* vector
field on TM. However it is the sum of two H* vector fields on TM.
The top derivatives cancel, but when this is pulled back to Eulerian
coordinates one of these terms disappears, namely TX; o X and so what
we are left with is one of the HA*! summands.

All of the above goes through for manifolds with boundary since the
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Hodge theorem projects vector fields at the boundary onto those which are
tangent to the boundary as mentioned before.
As a consequence of these calculations we have this theorem.

1.3.7 THEOREM. Given v, € T, %, there is an & > 0 and a unique vector
field v(t) € T,Z° for —e < t < & which satisfies the Euler equation. More-
over, these solutions v, depend continuously on the initial data v,.

ProoF. From 1.3.6 we see that the theorem is equivalent to finding
short-time solutions to the geodesic spray on Z;(M). But since &;(M) is
a Hilbert manifold and the spray is smooth (1.2.4) the existence follows
immediately from standard results on ordinary differential equations
(see Lang [1]).

The continuous dependence on initial conditions follows from the fact
that the pullback v, = X, o 5;" involves left composition so it is continuous
but not smooth. The initial condition for the spray on &; (M) is an element
of T,Z,(M) since we are interested in flows in £;(M) starting at the
identity. W

This existence theorem has been proved in weaker forms by Lichtenstein
[1] and Guynter [1]. The general case of manifolds with boundary is due to
Ebin-Marsden [1].

The flow in Lagrangian coordinates is C®. In Euler coordinates, let
E,(vy) = v, be the solution flow. Then for fixed ¢, E, is a smooth map,
although this is not obvious from what we have proven so far. However
it is not difficult to prove: TE, is just the pull back of the tangent to the
flow of §, which we know is smooth. Such smoothness properties are
sometimes important in applications; cf. Bardos-Tartar [1] and Foias-
Prodi [1]. For general properties of flows smooth for fixed #, see Chernoff-
Marsden [2]. See also Marsden [3, 4].

1.4 Discussion of the existence theorem

The proof of Theorem 1.3.7 is based on the existence of integral curves
for the spray S. This in turn follows from the fundamental existence
theorem for ordinary differential equations. Recall that this theorem is
proven by showing an iteration (called Picard iteration) always yields
solutions. So, by inspecting the above proof it should be possible to find an
approximation procedure which converges to solutions.

This in fact, points out an essential difference between working with the
whole spray and working with its pullback P,(V,v). The Picard method
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will not in general converge for the pullback even though it works for the
spray.

As an aside, this particular trick of using a spray on &;, finding solutions
and then pulling back will only work when the nonlinear term is of the
form V,v. For other systems one would have to modify the procedure.

One of the crucial steps in the proof was the smoothness of the pro-
jection P:TZ*(M)| P, — TZ,(M), which entailed smoothness of the
spray S on &, Let us try to see why this is. Recall that S(X) = TX o X —
P,(VxX)is the spray on &}, while Z(X) = TX « X — Vx X is the spray on
9°.

" Fioure 1.4

Since Z is smooth, then (smoothness of .S implies that) S — Z is smooth.
Now this difference is

VxX — P,(VxX) = grad p.

So if X is an H® vector field, this implies in particular that grad p =
gradient part of VX is H®; this of course is not obvious since VX is
only H*1,

1.4.1 PROPOSITION. Let X € T,9;, so that X is H°, 6X = 0. Now let
VxX = Y 4 grad p be the Hodge decomposition of VxX. Then grad p
is H® and not merely H*.

We will show this over the flat # torus T (the general case is similar).
Note T(T*) = T* x R” so we have a global orthonormal frame field on
T». Then we have the coordinate expression

VX = (X - V)xi =3 x?8X
=1 ox’
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and so
Ap = ddp =d6VgX

_3 2 ()
7.3 Ox* ox’

_eoXioxt | X!
i Ox* ox? ox*ox’
But 3, 0°X%/0x? 0x’ = 0 since V-X = 0 by assumption. Thus Ap =
> (0X7/9x7) - (0X7/0x?) which is an H*-* function on T* since it only involves
only first derivatives of X. This implies, by the regularity of the Laplacian,
that p is an H** function on T*. Hence grad p is an H° vector field. The
crucial point, of course, was that the top order term in Ap dropped out. ®

This shows the map X +— grad p maps T,2;(M) to itself. This does not
prove the map is smooth, but it does make it reasonable since the range
space does not have a weaker topology than the domain space. This proof
can also be made to work for manifolds with boundary.

The grad p, term has geometric significance. It is, being the difference
of the sprays, essentially the second fundamental form of & as a sub-
manifold of Z°. It therefore tells us (via the Codazzi equation) how curved
a submanifold &, is.

Suppose Q0 < R is a submanifold. A geodesic in Q may not be one in
R since the sprays are different. Intuitively it takes extra force to constrain
a geodesic to Q. This force is clearly given by the difference of the sprays
(since force is acceleration). So the grad p term measures the “force”
the fluid experiences by being constrained to ;. If there were no pressure
term, the particles of the fluid would follow geodesics on M and the result-
ing motion would not necessarily be volume preserving. Thus grad p
may be viewed as a force of constraint necessary to keep things volume
preserving in the same way that the centrifugal force is the constraint
force (= second fundamental form) for circular motion in the plane.

1.5 Kelvin Circulation Theorem

This is a standard classical theorem of hydrodynamics that is very easy
to prove in our context. It says the amount of circulation about any closed
loop is constant in time.

1.5.1 KeLVIN CIRCULATION THEOREM. Let M be a manifold and | = M
a smooth closed loop i.e., a compact one manifold. Let u, be a solution to
the Euler Equations on M and I(t) be the image of | at time t when each
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particle moves under the flow v, of u; i.e., I(t) = n,(I). Then

;Jd;fﬁt =0 (# is the one form dual to u,).

1162}

Proor. We have the identity L, % =V, u + % d(u, u) valid for any
vector field # on the manifold M. We leave the verification as an exercise.
Then, identifying the differential forms with their dual vector fields,
we find P (L&) = P,(V, u) since P, annihilates exact forms.
So, substituting into the Euler equations, we get the following alternative
form:
oa + P,(L,) =0
ot e '

Let 7, be the flow of u,. Then I(t) = #,(!), and so changing variables,

J‘ i, =J‘7i? ()
() :
which becomes, on carrying out the differentiation,

d . - oii
;tfut =fn?‘(Luu)+n2"5:-'-
ne(1) 1

Let P,(L, @) = L,ii — grad ¢q. By Stokes theorem |, grad g = 0, so

d (. *( . | Of )
— = Lig+——gradg) =0. &
di f”t f’?t Py g q

) 7

In practical fluid mechanics, this is an important theorem. One can
obtain a lot of qualitative information about specific flows by following
a closed loop throughout time and using the fact the circulation is constant.
In a similar way, one can show directly that the energy [(u, u) du is
constant in time.

1.6 Steady Flows

A flow is steady if its vector field satisfies (du/07) = 0; i.e., u is constant
in time. This condition means that the “shape’ of the fluid flow is not
changing. Even if each particle is moving under the flow, the global
configuration of the fluid does not change.

Not much is really known about steady flows, their stability, or what
initial conditions result in steady flows. We should mention, however,
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that for viscous flow quite a bit more is known. See for example Lady-
zhenskaya [2] and Finn [1]. There are some elementary equivalent
formulations of the Euler problem.

1.6.1 PROPOSITION. Let u; be a solution to the Euler equations on a
manifold M and ), its flow. Then the following are equivalent:

(1) uy € T,Z;, yields a steady flow (i.e., (Qu/of) = 0)
(2) n,is a one parameter subgroup of D3 (M)

(3) L,,#, is an exact form

(4) i,, duy is an exact form.

The proof should be clear; cf. the proof of 1.5.1.

It follows at once from (4) that if u, € T,25(M) is a harmonic vector
field; i.e., u, satisfies du, = 0 and df = O then it yields a stationary flow.
Also it is known there are other steady flows for manifolds with boundary.
For example, on a closed 2-disc, with polar coordinates (r, 0), v =
S (r)(9/06) is the velocity field of a steady flow because

Vo= —Vp, where p(r, 0) =frfz(s)s ds.
0

Clearly such a » need not be harmonic.

It would also be interesting to see if 2° has any closed geodesics.
Perhaps the methods in Klingenberg’s lectures could be modified. Actually
of more physical interest would be periodic solutions to the Euler equa-
tions: u,,, = u,. In terms of the geodesic #, this means not that %, is
periodic, but only n,,, = n,° 7, forall t € R,

1.7 Compressible flow

From the previous discussions of geodesics on (M) and Z;(M) it
follows that the pull back of the geodesics on 2°(M) yields the equation

du
— +4+V,u=0.
ot +Vau

Here we assume dM = &. Also we have from our explicit formula for
geodesics on 2°, an explicit solution to this equation:

u(t, x) = (;l‘it exp, tuo(x)) © fexp, fug()]

where the [exp,(1uy(x))]™ term is the pullback to T,2°(M) and the inverse
is with respect to the map in x. This of course is undefined where the map
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F,: x v exp,(tuy(x)) fails to be a diffeomorphism. In general there will be
a t where this will happen (as we discussed earlier) and so compressible
flow will not in general be a solution to the geodesic pullback equation
for all time.

Where F, fails to be a diffeomorphism we have a “shock or rarefaction
wave.’ Classically a shock wave is described by a large pressure gradient
(where Vp is the irrotational part of V, u). F; can fail to be a diffeo-
morphism by mapping several points to the same point (a shock) or by
failing to be onto (a rarefaction). In either case a large pressure gradient
would develop. When a shock or rarefaction develops one has to prescribe
other rules for its subsequent development such as entropy conditions.

Shock waves probably do not occur in &;(M). This is because the
volume preserving condition tends to prevent the above phenomena which
make the diffeomorphisms go bad. Also note that in H*(M, M), we will
not notice any singularities because even when the F, fail to be diffeo-
morphisms, it still is an H° map (physically it is unreasonable though,
because other effects come in when a shock wave develops). For more
information on compressible flow, see Friedrichs [2]. For recent research
and further references, consult for instance B. Quinn [1].

1.8 Other theorems using manifolds of maps

Let M be a manifold and let X and Y be time independent vector fields.
Now let H, be the flow of X + Y, F, the flow of X and G, the flow of Y.
Then we have the formula

H, =1}ij?o(Ft/n ° Gyr)"
where the power » means we iterate the map » times. Note this implies
that if F,o G, = G, F,, i.e., [X, Y] =0, then H, = F,» G,. See for
instance Nelson [1] or Chernoff-Marsden [1] for a proof of this result.
The result is usually referred to as the Lie-Trotter product formula.
More generally we have the formula of Chernoff which states that if
K(#): M — M is a family of maps, and X = K’(0), the flow of X is

H, = lim K(t/m)*
One recovers the above case by taking K(f) = F,° G,. See Chernoff [1],
Ebin-Marsden [1, 2], Marsden [2] and Brezis-Pazy [1] for more details.
We will use this type of theorem to get an expression for the Euler
flow. This makes sense since the Euler equations are derived from a vector
field on TZ;(M), which is a modification the geodesic spray on Z°. In
particular, let F; be the flow of the geodesic spray on T,2°(M), i.e., the
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solution to the equation (du,/0t) + V,u, =0, given explicitly above,
and let E, be the Euler flow on T,2;(M), P, is as usual the Hodge pro-
jection on T,2°(M) to T,2;(M).

1.8.1 THEOREM. We have the formula
E(ug) = Lim(P, o Fyy,)"(uo)

as long as E(u,) exists.

As we noted above, we have an explicit formula for F;, and P, isa
bounded linear operator which can be written down using Green’s
operators; as in Part I, § 1, so this formula gives us real information about
the Euler flow.

This theorem is hard to prove directly but is fairly easy if we transfer
to &:(M), since the sprays are C* there. One need first consider the spray
TP o Z on TZ;(M) and pullback to 7,9:(M). Here K(z) = P F,.

Product formulas like the above have several technical applications.
For example, they can be used to study viscous flow and the limit of zero
viscosity. See Ebin-Marsden [1], [2] and § 3 below. These formulas have
been found to be efficient in actual numerical computations; see Chorin
[2]. See also Temam [1] for some related ideas.

Smoothness of the spray on 2° implies that the geodesic exponential
map onZ; is C*; exp,: T,9;(M) — Z:(M). Now D exp,(0) maps T,2° 5 (M)
to T,9°¢ (M) (this is 1dent1fy1ng T,T. @8 W (M) ~ T,2;(M) which is correct
since T, Yo *(M) is a linear space). In fact D expe(O) is the identity and so
is an 1somorphlsm (compare Lang [1]). Hence we can apply the inverse
function theorem to exp, and conclude that it is a diffeomorphism from a
neighborhood of 0 onto a neighborhood of e in 22, In other words, there
is a neighborhood U of e in 9;(M) and & > 0 such that for n € U, there is
a unique vector field uy on M with 6y = 0, u, tangent to M and ||ty s < &
such that if v, is the Euler flow of uy then n = .

Intuitively, this says one can go from one state of a fluid to another
nearby state by going through a uniquely determined Euler flow. Some
ideas related to this and regularity discussed in § 2 below were abstracted
by Omori [2].

2. The global (all time) existence problem and
Leray’s criterion

As discussed above, the all time existence problem for the Euler equa-
tions is equivalent to the problem of whether or not 2;(M) is geodesically
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complete. This problem is trivial if the dimension of M equals one since
divergence free vector fields are then constant. If dim(3/) = 2, the problem
has been solved and is nontrivial. In 1933, Wolibner [1] proved that the
Euler equations have global solutions and hence that & (M) is geodesically
complete when dim(3/) = 2. Judovich [2] made this earlier result more
precise. In 1967, Kato [1] found a shorter, more elegant proof of this fact
using the Schauder fixed point theorem. However, all of the later proofs
are based on a key estimate already found in Wolibner’s 1933 paper. The
viscous case was treated by Leray in the early 1930’s and will be discussed
below. As stated above, it is unknown whether Z;(M) is geodescially
complete when M is a 3-manifold. The basic difference between the 2 and
3 dimensional cases will be discussed below. We shall now consider all
these problems in a bit more detail.

2.1 Sufficient conditions for extendability of Euler solutions

Recall from the standard extendability of solutions theorem in ordinary
differential equations that the length of time that solutions can be extended
varies inversely with the norm of the derivative of the vector field and if
the derivative is bounded globally then the solutions will go for all time;
see Lang [1]. This is the same sort of argument used for extending solutions
of the Euler equations for all time. This is not surprising since the geodesic
equations on 2°(M) are ordinary differential equations.

We first want to recall the following.

2.1.1 LemMA. Let G be a (finite dimensional) Lie group with ( , ) a right
invariant Riemannian metric. Then G is geodesically complete.

Proor. It is enough to consider geodesics starting at the identity e,
by right invariance. Now from the local existence theorem given d > 0,
there is € > 0 such that if v, € T,G and [|v,|| < 6, then the geodesic starting
in direction v, exists for a time interval [—e, &]. (cf. Lang [1], Ch. 4, § 3).
Now let v(f) be the tangent to this geodesic. By conservation of energy,
lo@®) = llvell. Leto(f) € T, G. By right invariance, if we look at the geodesic
starting in direction TR,,,-(e) € T,G where R,-1 is right translation by
g, and translate it back out to g(e), we get the geodesic starting in
direction v(¢). But by our above remarks, this geodesic exists for a time
¢ as well. Continuing the process, we see that the geodesic can be infinitely
extended. ®
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This does not work for the Euler equations because the Euler equations
have an existence time dependent on the H* structure, whereas the metric
is an L, metric. Nevertheless, the argument can be used as the basis for
the following.

2.1.2 THEOREM. Let v, be an H® Euler vector field on a manifold M defined
for te[0, T) (since the flow is reversible we could use (—T, T) here).
Then if thereis a K & R such that the C* norm of v, is boundedby K: ||v,]| cn =
K for all t € [0, T) then v, can be smoothly extended past T in H®.

Proor. For simplicity we will use [|v;] gz = K (s > n/2 + 1). This is
a slightly weaker result. (The general case will be discussed later.) Let
v, € T,9¢ (M) and let X, be the geodesic Ve10c1ty on TZ,(M), and 7,
be its base point. As in 2.1.1, given K there is an € > 0 "such that N
exists for time at least e provided [|y]zs = K Now use the same right
translation argument as above to conclude that v(f) can be extended

beyond time 7. ®

It should be noted that if we had the same theorem using the L? norm,
we could immediately conclude that Z,(¥) is geodes1cally complete.
This is because conservation of energy tells us the L? norm is constant and
hence uniformly bounded for all time. This fails because Z; is known
to be a nice manifold only if s is large.

As an obvious corollary to the above theorem we know that if, for an
Euler vector field v,, |v,]| c» is uniformly bounded for all time then it gives
an Euler flow for all time (or equivalently the geodesic flow #,, based on
v, goes for all time). Another corollary of the C? theorem is the following
regularity theorem.

2.1.2 COROLLARY. If v € T,Z3(M) is actually a C* vector field and v,
is an H*® Euler vector field, s > (nf2) + 1, such that vy, = v, then vy is a
C? vector field.

PrOOF. One simply applies the theorem to any s > (#/2) + 1 to show
v, is an H* vector field for each s’, since the C* norm is bounded on any
finite z-interval of existence. Also note that the time of existence of v, is
independent of s’ and in particular does not approach 0 as 5" approaches
infinity. W

Note. A different proof of this appears in Ebin-Marsden [1], § 12.
If M is a manifold with boundary, one must be careful about what



198 JERROLD E. MARSDEN et a/.

happens at the boundary, but the result remains valid in that case (again
see below).

Because of special properties of 2-manifolds, we can essentially find C1
bounds on the vector field and thereby prove that solutions do go for all
time in this case. The basic reasoning behind this is as follows. Let vy be an
Euler vector field and 7), its flow. Now dv, = w(r) corresponds to the curl
of v, (which is the vorticity of the flow). From (85/9f) + L5 = —dp,
we get (0w/0t) + L,w = 0 by applying the exterior derivative d. It follows
from this that w(f) = (3;7Y)*w(0). Now since 7 is volume preserving and
o(t) is a (time dependent) 2 form identifiable with a function, we get
() = (7, )*(0(0)) = w(0) o ;"% This last calculation shows that the
C?norm and all I? norms of w(z) are constant in time. In particular, since
® = dp, this allows us to make global estimates on the derivatives of v;
which is what is needed for the all-time problem. This is just the basic
idea, although the details are more involved. Indeed one can really only
directly estimate the C* norm for o < 1, the case a = 1 being delicate.
The conservation of vorticity is simply the two dimensional case of the
Kelvin Circulation Theorem, since vorticity at a point p in a two manifold
can be thought of as the mean circulation about a circular loop centered
at p.

It seems unlikely that this sort of approach, (i.e., finding bounds on
the derivatives) will work for dimension 23. In fact there are examples
of 3-dimensional flow for which the vorticity grows without bound. A
good deal of effort has gone into this without significant results.

2.2 Viscous flow

Viscosity is internal friction of the fluid and friction between the fluid
at the boundary. When one stirs up some fluid, it is its viscosity which
makes it eventually slow down. Since friction absorbs energy, it is often
easier to prove existence of viscous flows, since this allows us to more
easily find bounds on the H* norms of the vector fields. Intuitively, since
viscosity makes fluid effects dissipate, viscous flows are, in a sense,
bounded by Euler flows. Viscous flow is often described by the Navier-
Stokes equations:

%){t — V%, + (v, Vo, = —grad p,
N.S. divy, =0

v, = 0 on boundary of M
Here » > 0 and is called the viscosity of the fluid and is usually assumed
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to be constant. Because of the Laplacian term, one only expects solutions
for ¢ = 0. Also since the Euler part conserves the L, norm, it is easy to
check that for a solution of the Navier-Stokes equations the L, norm is
decreasing.

These equations are usually defined for a region Q < R~ If the metric
is not flat, we need a modified Laplacian which involves the curvature of
the metric. Note also that the boundary conditions are different than those
of Euler flow. Here we specify that the fluid does not move at the boundary
(this is the “no-slip’* condition). This is what actually happens in practice.
Consider a situation where a viscous fluid (in fact, water will work) is
flowing down a pipe and suppose when the water is not moving we
introduce a dye orthogonal to the flow as shown in Figure 2.1

¢ 10

DYE
FIGURE 2.1

\-—”

When the fluid is moving, one observes the situation in Figure 2.2.
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The Navier-Stokes equation [(dv,/0f) — ¥V, + (v, - Vv, = —Vp))]
is derived from the assumption that the internal stress exerted on the fluid
depends linearly on the deformation and is independent of position and
direction (see Serrin [1]). If one only assumes that the stress depends con-
tinuously on the deformation (rather than linearly) then one can show
this dependence is at worst quadratic. Engineers, when working with the
Navier-Stokes equations on a specific problem pick a distance scale d
(which may be the diameter of a pipe, say) a velocity scale V like the max
of the initial velocity field and define #Z = (Vd»); this is the Reynolds
number and is dimensionless. Then they use (0v,/0f) — (1/ %)V, +
(vy* V)v, = —grad p,. Note that if we rescale v, by V, the coordinates by
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d and the time by d/V we get another solution with the new value of Z.
All of this is important in order to understand much of the following.

As stated earlier, the Navier-Stokes equations are sometimes easier to
work with than the Euler equations. This is because the —V2p, term tends
to slow the fluid down and thereby makes it less likely it will run into a
singularity. In fact in order to keep a viscous fluid moving, one has to keep
pumping in energy (in Couette flow, for example, we move the boundaries).
It is surprising, but true, that steady pumping of energy does not really
affect the difficulty in dealing with the possible development of singularities
of the flow in the mathematical theory.

It is known that the Navier-Stokes equations have short-time solutions,
but it is unknown whether these solutions extend for all time over 3-
manifolds for all choices of initial data. There are three basic results on
the Navier-Stokes equations in three dimensions.

(a) There are weak (as in the sense of distributions) solutions which go
Jor all time t Z 0. These solutions are only L? flows and they are known
not to be unique! (Ladyzhenskaya [3]) So this theorem fails to specify
the flow of the fluid. This theorem is due to E. Hopf [3] in 1950. A proof
may be found in Ladyzhenskaya [2].

) If

ov,;

ot

(where C is a constant depending on the region L) then these initial con-
ditions yield smooth solutions for all t Z 0. This theorem is due to Kiselev-
Ladyzhenshaya [1].

Intuitively, it says if the fluid is not flowing very fast initially then the
flow will not have a singularity. (It is probably too slow for the interesting
case of turbulence.) This is not surprising considering our earlier obser-
vations about the Navier-Stokes equations. It might be mentioned that
this theorem only works for dimension =4; cf. Serrin [3].

The above two results may lead one to speculate that if |Jv,ll 2. is too
large, the Navier-Stokes equations quickly break down and this is the
source of the nonuniqueness in the weak solutions, as well as turbulence.
Actually this seems unlikely, but is not fully settled yet. This is discussed
more fully under the section on turbulence.

(c) For fixed initial data, the time of existence is ZCv where C is a
constant. (Ladyzhenskaya [2].)

Now this seems to imply that as » — 0, the equations do not have solu-
tions. But, at least for manifolds without boundary, when » = 0, the
equations reduce to the Euler equations, which we know have solutions.

Later however, we shall show that if 0M = ¢, strong, i.e., sufficiently

< C»®
LZ

o]l 22

t=0
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smooth, solutions of the Navier-Stokes equations have an existence time
independent of » and do converge to Euler flows as » approaches 0.

The two dimensional situation is more satisfactory. There one does
have global existence of smooth solutions. This is due to Leray [2] and
Ladyzhenskaya [1].

In case of no boundaries, one can use the Trotter product formula to
study solutions of the Navier-Stokes equations (see p. 194 above). One
considers the equations as the sum of the Euler equations and the heat
equation. For example, this can be used to show convergence of the
solutions as ¥ — 0 (see Ebin-Marsden [1, 2] and below), and might be
useful in trying to show that the set of time T solutions is dense (see
Marsden [2] and Bardos-Tartar [1]).

2.3 Some examples

Some three dimensional examples may help one understand some of
the difficulties and why the three dimensional case is essentially different
than the two dimensional case.

1. The tornado. Here we can assume ¥ = 0. A “tornado’” is a rotational
(spiral) flow whose radius is decreasing and whose height is increasing.
By conservation of angular momentum (or Kelvin’s Circulation Theoiem)
the decrease in radius leads to an increase in angular velocity (this is what
seems to cause the high wind speeds in these storms). The height increasing
causing a diameter decrease occurs because of incompressibility.

A possible singularity in this flow would arise if the radius went to zero

-
|

FiGURE 2.3
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FIGURE 2.4
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FIGURE 2.6

FIGURE 2.5
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(and the velocity to infinity) in a finite time. However, one can prove.the
radius cannot reach zero in a finite time.

2. The airplane wing. If an airplane is flying at a constant velocity,
assume the flow across the wing is time independent (i.e., it is a steady
flow). One finds experimentally that that flow goes over the middle of the
wing, but around the edge. This is called the “edge effect.”” See Figure
2.4, If we look on a sheet behind the airplane wing (possibly with smooth,
rounded edges) one finds an apparent discontinuity in the flow between
that below and above the sheet. It is unknown whether this is a real dis-
continuity in the solution to the Navier-Stokes equations. This may lead
to a counter-example to the all-time existence problem. More precisely,
if one sets up the initial conditions corresponding to the wind blowing
towards the wing such a discontinuity surface might develop even if every-
thing is initially C*. This is a genuinely three dimensional effect.

3. Smoke rings. As an example of the possible complexity of three
dimensional flows, consider the configurations of smoke rings as they
move in time. They tend to twist up and become more complicated as time
progresses, as shown in Figure 2.6; cf. von Neuman [1], where it is argued
that this may be responsible for “turbulent like’* flows.

2.4 Leray’s theorem

Leray [3] found that for viscous three dimensional flows, having an
L*" bound on the velocity is sufficient to guarantee all-time smooth
solutions. Here e is any positive number. In the proof of this theorem,
we use the following inequality of Sobolev-Nirenberg-Gagliardo; cf.
Nirenberg [1].

2.4.1 LeMMA. Let Q < R" be a bounded open set with smooth boundary
and f:Q — RE, Then if

1=l+a(1—m)+(1—a)l
p n ron q

where (jim) =a =<1 (if m —j — njr is an integer =1, only a < 1 is
allowed) then

ID*(NLe = Co I D"fFl1%r 1 FIZ*

where C, depends on Q and n, as well as on j, m, r, q, a, and Df denotes a
derivative of order j.

2.4.2 THEOREM (LERAY). For three dimensions and v > 0, if v, is a
smooth solution of the Navier-Stokes equations on [0, T) and if |v ]| ys+e S
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K < o for all t € [0, T), then v, can be extended beyond T to a smooth
solution of the Navier-Stokes equations.

(For a more complete analysis of theorems of this type, see Serrin
[3] and Duff [2].)

SkeTCH OF PrROOF. We shall show here that o] s+« =< K implies the H*
norm of v, is uniformly bounded. One can then proceed in a similar way to
show that all H® norms are bounded on [0, T). This implies the result by
general theory as in the Euler case.

Let A = V2 be the usual Laplacian operator and let

0 (I5l)* = —(Av, )z = — f (Ao ), v(x)) dx

where Q < R%is our domain. By ellipticity of Aand our boundary condition
v; = 0 on Q, one can show that this norm is equivalent to the usual H?
norm, modulo the L, part (which we already have control over).

Now:

@ ;Z% o = 14 f (Aux), v,x)) dx

__(/ v\
- f (800, 5 ) ) dx

this calculation uses the bilinearity of ( , ) and the fact that partials
commute. But

E;—’;’ = —(v,+ V)v, + v Av, — grad p,
80
@ 35 1ok
- f (Do), Av(x)) do(x) — f (A(x), —v(x) - Av,(x) — grad p,) dx
Note that
@ = f (Av(x), » Av(x)) du(x) < —» - (constant) - || D%

again using ellipticity of A, and ignoring L, parts. Clearly, it is important
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to estimate the second integral in (3). Using integration by parts, we get
(3)

f(Vzvt, —(v;* Vv, — grad p,) = _f<vvta V(v; - Vv —f(Vzvt, grad p,)
: )

If there were no boundary we would have f, (V?,, grad p,) = 0. The
boundary term arises because V2, need not be parallel to dQ. This point
is somewhat delicate and we shall ignore it, by pretending there is no
boundary.! Writing out (5) in coordinates, we have

f (Vo,, V(v - Vo)) dx = f 25 0 ( a”t) dx

e ox o\ Tox*
ovi (0vf dvf |, O] ‘)
= 2% ) g
f”kax (ax ot T axtan)
© vt ovF ovl ot 0%
Uz Ut Ut vt k vt
= — ——= d
ik 0x% 0x° ax zza:k( ) *ox’ ot x
o o

The second term is zero as one sees by integration by parts, using
div v, = 0. Hence we find from (6) that

™ (S CREIET
Putting things together we have from (4) and (7) the estimate

® ; ;z} o2 < —v - constant - | D% + || Doyl

Now we apply the lemma 2.4.1, letting j =1, p=3,andr =m = 2.
We get
IDvll 2 < Co I D?(li 7 lloal 2
We have to find ¢ and a. From the lemma, we know they satisfy this
relationship;

b=4+ (%—2)+(1—a)-

* This point can be dealt with by rewriting the boundary term (using the equations
and boundary conditions) and using the sort of argument in Proposition 1.4.1 to esti-
mate this boundary part.
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which implies that a = [6/(g + 6)]. Hence

1Dz = Co ol Z5 o) 2™ (since || D%, 2 < llv,lg2)
and so from (8), '

1d
5 7 10l = =9Ca ol + Callol 3" o 74+

for any g we choose. If we let g = 3 + ¢ (¢ > 0) so that [9/(q +‘6)] <1,
we find:

1d

5 75 1o = —=vCu Lozt + Colllod )™ ™ o 55+

by assumption, the norm ||v,] 72+ is bounded, so if the H? narm of v, is
unbounded, the first term eventually dominates the inequality and the
right hand side becomes =0, so for the H? norm large, the H! norm
is decreasing, so bounded. If the A2 norm of v, is bounded, the H* norm

is certainly also bounded. So in either case we get the H' norm of v, is
bounded. m

If we could lower 3 + ¢ to 2, we would have solved the problem. This
is because the L2 norm is globally bounded since the energy is decreasing
in time, However in the L? spaces there is an awfully large gap between
p =2andp = 3 + ¢! But nevertheless the assumption that the L3+* norm
is bounded seems to be quite weak, since it does not involve any derivatives.
Compare with what we could get for the Euler equations in Theorem
2.1.2 above.

One can put the Navier-Stokes equations on &%, as we did the Euler
flow to get a dissipative system. Although this converts the difficult term
V0 to an algebraic one, it doesn’t seem to help in lowering Leray’s L3 to
L,, because of other difficulties which arise.

It should be stressed that many aspects of this global existence question
remain glaringly open; for example even if we accept a priori that a
solution exists with no external forces and » = 0 on 0%, it is known that
v—0in L? as 1 — oo but not in L? or higher Sobolev norms (see 3.4.1).
Intuitively, of course, we expect that v must go to zero quite strongly.
In cases where global existence can be proved, this condition can be
established ; of course the question is closely related to the global existence
of v.

We also mention that when the more complete viscosity term is used,
including nonlinear terms, then the situation is improved but not decisively
(for example in Ladyzhenskaya [2], appendix, the coefficient of the
quadratic part cannot be too small).
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2.5 Discussion of the Kolmogorov’s law

We would like to briefly discuss a “physical law’’ which bears on the all
time existence problem discussed above. The law is, we believe, some
evidence for thinking that the equations do not break down if turbulence
sets in, at least turbulence of a certain type commonly observed. (It does
not cover the type of example indicated above by the airplane wing.) We
shall discuss the “nature’’ of turbulence in more detail below.

For now let us think of turbulence intuitively as chaotic motion with
collections of vortices of varying sizes. We can imagine again Couette
flow with the cylinders rotating rapidly in opposite directions. The motion
becomes chaotic, or fully turbulent when the cylinder speeds are large
enough. In such a situation, we are continually pumping in energy at a
constant rate, say e. This energy is believed to pass from the larger to the
smaller eddies and finally to dissipate due to viscosity. (In the energy
spectrum the energy flows out to the tail of the spectrum, i.e., to large
frequencies.)

The Kolmogorov law states that when the turbulence is locally isotropic,
as seems to be usually the case, the velocity v, of eddies of size ~A4 is
proportional to (¢4)!/%. One also thinks of v, as the variation of v over
distances of size 4. All this is in regions of [R3.

The *“derivation’ of this law is done purely by dimensional analysis and
elementary physical reasoning (see Landau-Lifschitz [1], p. 120-121).
In other words it is a heuristic principle which does seem to be valid in a
large number of situations. The law is more extensively discussed in
Batchelor [1] where further references are given. (We remark that the law
is the same as the “4~%/2 law”’ for the energy spectrum.)

Now the Kolmogorov law appears to give a bound on the velocity field.
In fact viewed directly the law indicates that for 0 < a < 2, the ath
power of Dv should be integrable. In other words,

veH] for 0<a<$,
Now if we use the Sobolev Lemma 2.4.1 above we see this implies that

vllz» is bounded for p < 3

(herewetake j=0,m=1,n=3,r=%,9=2,a=1,p =3).

Note that the critical value of p which occurs here is exactly the same
as that which occurs in Leray’s theorem. In other words, in this form the
Kolmogorov law apparently is not quite decisive in deciding whether or
not global solutions exist. '

However, it has been pointed out to us by A. Chorin that when we
translate the k=5/2 law on the spectrum into a law on v, with some additional
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physical assumptions (basically that the turbulence consists of vortices,
and so on, which are time repetitive) then one obtains a bound on the
H2/3 norm of v. Now by 24.1 (j=0, m=%,n=3,9¢=2,a=1,
p = 3%, r = 2), we would then find that

the L3: norm is bounded

which is decisive for Leray’s theorem. This analysis is, however, still the
subject of research and it is not yet complete; cf. Chorin [1].

We note not all flows need have the H%/® norm bounded; for example
on the three torus with coordinates (x, y, z),

v(x, y, z) = (sin y, 0, sin(x — 1))

solves the Euler equations, but its H#* norms for « > 0 are unbounded as
t — oo; a similar phenomena is undoubtedly true for the Navier-Stokes
equations. But this example does not conform to the sort of hypotheses in
Kolmogorov’s law. :

The moral of all this is that if the physical assumptions concerning
turbulence are correct then Kolmogorov’s law may indeed show, via
Leray’s theorem, that global smooth solutions do indeed exist for turbulent
flow. What would be interesting would be a proof of Kolmogorov’s law
(in this H?/3 form) under the assumption of “turbulence,” say as defined
in § 3 below, plus some isotropy assumption. This would provide a very
important step towards the complete understanding of Leray’s problem.

3. Turbulence, stability, and the limit of zero viscosity

3.1 Nature of turbulence

Intuitively, turbulence is very complicated fluid motion. There are two
rival theories as to the mathematical structure of turbulence

(a) Leray believed, perhaps because he could not prove that smooth
solutions to the Navier-Stokes equations exist for all time, that solutions
can become singular in a finite time. Turbulence therefore is supposed to
occur when Navier-Stokes equations break down and fail to describe the
actual flow of the fluid. Although this point of view is not widely accepted,
there is some evidence for it, which was developed by Leray. There is a
formal counter-example. i.e., an example of a Navier-Stokes flow where
the equations eventually do not hold (Leray [3], p. 224). Namely, it can
be shown that if u(x) is a solution of an equation 4u = 0 where 4 is a
specific nonlinear elliptic operator then

1

JT —t

u(t, x) =

u(x/JT — 1)
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is a solution to the Navier-Stokes equations with a singularity at t = T.
However, so far no one has found a solution to Au = 0 which is also
square integrable (i.e., has finite energy) and div # = 0. So this is not a
“real’” counter-example. As Professor G. Duff points out, in case one is
willing to accept infinite energies, one can easily do this just using
u(x, y, z) = (x,y, —2z) with u(t, x,y, z) as above and p(t, x, y,z) =
3z4(T — 1).

(b) The equations do hold for all time, but in case of turbulence the
solutions necessarily get complicated.

This seems to be the current belief among most theoretical fluid dynami-
cists, and the one we will favor below.

There is, in conjunction with (b), a well studied statistical theory of
turbulence. This involves computing correlation functions, spectra and so
on. One fundamental “law’ in this field is the Kolmogorov relation
discussed in § 2.5 above. This theory, while it is useful, does not explain
what turbulence “really’’ is or how it arises. It would be very nice if the
statistical theorems could be made a consequence of the Navier-Stokes
equations or perhaps equivalent to them (as Brownian motion is related to
the Laplace equation). For this statistical aspect, see for example, Landau-
Lifschitz [1] Batchellor [1] and the recent survey article S. Orszag [1].
Much important work has been done recently by Kraichnan [1, 3]. As
was argued in § 2.5, knowledge from statistical theory does indicate that
it is alternative (b) which is correct.

There is some reason to believe that mathematically turbulence is related
to the bifurcation theorem. The parameter is now the Reynolds number
(Z = Vd|v) defined earlier. To vary £, one can either vary v or V. As
mentioned above, we may write the main Navier-Stokes equation as

Z—::t + (v, - Vv, — 1&‘72% = —grad p,.

Physically, one would expect complexity as one decreased ¥ or increased
V (which is the same as increasing %). In fact as Z is increased one often
observes a sudden qualitative change in the solutions. This means the
flow represents a “stable”” solution for small &, which becomes unstable
as Z increases and consequently the flow moves to another stable solution.

This behavior explains a standard hydrodynamics “paradox.”” (cf.
Ladyzhenskaya [2], Birkhoff [1].) One would expect that symmetric
initial data would yield symmetric flows (“symmetric causes lead to
symmetric effects’’). And, indeed, this is observed for small &. However,
as % increases asymmetric flows develop. This can be explained by noting
that the initial data cannot be perfectly symmetric, and at the critical
point these symmetric solutions become unstable and the solution “falls”
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to an asymmetric stable one. In fact sometimes the more careful one is
to have the initial data symmetric, the longer the symmetries are preserved
in the flow.

For fixed Reynolds number, if we have turbulence, one generally
observes the turbulence to occur in well defined regions, such as the wake
behind an airplane. The flow in the turbulent region is time dependent and
highly rotational. Viscosity effects occur only in the smallest eddies, so in
some respects the Euler equations are valid in the turbulent regions!
See Landau-Lifshitz [1], § 34.

3.2 The limit of zero viscosity

Because turbulence and bifurcation phenomena take place as Z increases,
the detailed study of the Navier-Stokes equations as # — cois of con-
siderable importance.

We can study the nature of Navier-Stokes flows as & increases by
considering » — 0 (rather than ¥ — c0). So we shall consider V" and d
fixed and write the Navier-Stokes equation like this:

%l;t —vAv, + A, = —grad p, + f

N.S.
dive, =0

v, =0 on 0M (or v specified on M)

where f is an external force. Investigating » — 0 is very delicate since the
equations are non-linear, and the Av, term is of highest order. When
» = 0 the equation is in a sense “hyperbolic,”” and when» > 0 the equation
is “parabolic’’ or dissipative. When M # &, one cannot even expect C°
convergence of solutions as » — 0 since the boundary conditions of the
Euler equations are different than those of the Navier-Stokes equations.
In Euler flow, the fluid slips by the boundary (indeed one can prove
that in general even if v, = 0 on dM in Euler flow, v, will not vanish on
OM but merely be parallel to 0M), in the Navier-Stokes equations the
fluid is always motionless at the boundary.

The first question then is whether the boundary is the only source of
trouble. As the next theorem shows, the answer is, in a sense, yes.

First some notation. For » > 0, call »; the solution of the Navier-
Stokes equations with viscosity ». Denote by v} = v,, an Euler flow.
Assume vy = v,.

3.2.1 THEOREM. If OM = @ and the initial condition v, is a C* vector
field (or H**® will do) then v} converges to v, in the H® topology as v — 0
on a t-interval [0, T], T > 0.
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This was proved by Ebin-Marsden [1]. We shall give below the main
steps of a somewhat different proof. One can, it seems, relax the com-
pactness of M. One can show, also, that the convergence takes place on
the largest z-interval for which v, exists in °.

Swann [1] and Kato [2] also proved this theorem for IR3 using more
general arguments. The simplicity of the proof given below is due to the
cancellation of the highest order terms trick used earlier. This proof
requires the following lemma. (This lemma, with essentially the same

proof gives the C* regularity theorem 2.1.1 stated earlier.) In this lemma
we can assume oM # .

3.2.2 LemMA. Let v, satisfy the Euler equations, v,€ T,9*Y(M) on
[0, T), and |l go-r = K on [0, T). Then if v, € T, 2% M), v zs is also
bounded on [0, T). (The bound depends on K and v,.)

PROOF. ?eﬁne Vv to be the iterated sth covariant derivative. Then if
we let [lo]l; = (V, V*) this norm is equivalent to the H* norm modulo
the L, part, which we can safely ignore. In particular, consider

1 _fi_ s 5 S s avt
SACACRIAS
—— _(stt’ VsPe(V’U;Ut))

where P, is the Hodge projection. Recall that from the discussion of
Green’s operators that P,(V,,0) = V,,», — dA~1 6V, v,. Hence
1d
Ny Vo, Vo) = —(V'v, V°V,0) + (Vv dA7 6V,,0)).
Now
(Vv,, V3,0.)
1
= 5 f vV, Vo) + f (Vev,, Vi 1v,) + lower order terms
M

M
This computation uses the formula o(w,y) = (V,w, y) + (w, v.»
and the fact that V, and V commute up to lower order terms involving the
curvature. (In fact, VxVyZ — Vo Vi Z = Vi x 1Z + R(X, Y)Z.)
Now letting f = (V*v,, V°»,) we have

f 0dV0,, Vo) = 14' olf) = ]! (VF, v

M
=ff-6vt+ff*vt=0+0=0
M M /

since dv, = 0 and saying v, is tangent to dM means *v, = 0 on M.
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Itis evident that [, (V*0,, V5 v,) is dominated by ||v;l3 |v,ll o1, since
the H® functions form a ring.

Now, using the fact dv, = 0, one can show that if v, is H**! then 6V, v,
is H*. This calculation has been done before. Hence (V'v;, dA™! 6V, v,)
will be dominated by [lv;]|3s |0, s as well. Putting this together we get

1d

___UszLuzsv s—1
2dt(ll A7) = Lllvdlge ol a
= LK |lvgl| %
Hence
d
Hvtllzf;t oz = LK o3
and so

d
— vl g# = LK ||v,|| g
Y [0l e = loell 2

which implies (by Gronwall’s inequality) that [|o]l gs = [lvoll sz e“X*t which
proves the lemma. =

Note that this regularity lemma holds for manifolds with boundary.
We now use this argument in one more lemma.

3.2.3 LEMMA. Let M = @ and v} be a solution of the Navier-Stokes
equation with vy = vy a H® vector field. Then v; exists on an interval [0, 7]
where T is independent of v, and there is a constant K and A > 0 such that:

Iz S K for tel0,T], O0=»=A

Proor. We argue as above by computing the rate of change of the H*
norm of ¢}. Since dM = @ we can integrate the Laplacian term by parts to
get something negative which can then be discarded without destroying
the inequality. Keeping track of the constants in the above proof more
carefully, we get

1d N v
ST (0% S Lo}l &
or

d, v v

— v}l z* = 2L}j0}l

dt

Thus from the dominating ordinary differential inequality (d/d)x(¢) =
2Lx(f)* we see that on a sufficiently small sinterval [v]||z. is a priori
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bounded independent of ». The lemma then follows (see the existence
statements in§ 2). W

Now we are ready to prove the theorem.

Proor oF THEOREM 3.2.1. Suppose v, the Euler vector field with initial
conditions v, € T,2;; (M) exists on [0, T]. Since [0, T] is closed, we see
that ||v;l g+ is bounded on [0, T] for any s. For any » > 0 we have by
Lemma 3.2.3 that {o}] ;- is bounded, the bound being independent of ».
Using the sort of calculations as in the above lemma we find

== o — o}l4
= (Vi = o)), V'(P(Vo,2) — P(Vyp0}) = » A)))
= v o, — o}l Io¥llore + (25 = 03 Virpvs + V(v — 01)

+ pressure terms of lower order.

Note that as in 3.2.3 this situation is a bit different than the lemma.
If M had boundary, the Ay} term need not be tangent to M, so we need
to suppose M = &.

So we want to estimate the terms

(Vi(v, — v)), ngm-v;’”t) and (V¥(v, — v;), stq;}'(vt )
The second term’s highest order part is zero, as in the lemma:

[ouv2 = 2, V30— oy = 0
M
and the first term is dominated by |v, — v}| % |0, gosr.
Now by lemma 3.2.2 ||v ] gs+» and ||v;]| gs+2 are bounded on [0, T].
Also, by 3.2.3 ||[v}|| gs+= is bounded on [0, T7], if we choose T sufficiently
small (which depends on v,). Thus we have

1 d v \d v
>0 oy — 0¥l = 9Ky oy — vilg* + Ko lloe — o3l
So, by Gronwall’s inequality (after differentiating as in the lemma)
o, — v}l g < vKpe™*

which approaches 0 as » approaches 0. =

As a corollary we observe that the convergence is linear in ». That is,
for fixed ¢ € [0, T,

v, = v}l g* = 0(»).
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3.3 Boundary layer theory

Boundary layer theory relates to the study of viscous flows on manifolds
with boundary. As mentioned above, »} cannot converge to v, at the
boundary, because of the no-slip condition which is present when » > 0.
Hence one might expect there would be layers near the boundary where
the derivatives of v} get large as » approaches 0 (Figure 3.1).

BM—_

BOUNDARY -
LAYER

Ficure 3.1

It seems, at first, a reasonable conjecture that v} converges to v, on
compact subsets contained in the interior of the manifold. However, on
physical grounds we can argue that this conjecture is false. Consider the
situation shown in Figure 3.2.

\
/ DN
CONJECTURE TRUE )
IN THIS REGION
CONJECTURE FAILS
HERE
FIGURE 3.2

In the figure one sees fluid flowing from a narrow pipe into a wider one.
The boundary layer is carried by the stream into the interior of the larger
portion of the pipe. So because of the downstream wake of the boundary
layer, v; does not converge to v, in the interior of the wider pipe; v, does
not have any downstream wake (and is a stationary potential flow). This
effect will be seen for any » > 0 and will not die out as » approaches 0.
So it seems the convergence of v; depends on the geometry of the boundary.
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There is an extensive literature on boundary layers (see Serrin [4] and
the bibliography), but the theory remains somewhat unsatisfactory. In
particular we would like to mention the work of Lions [2] who has several
related theorems, (but as yet his hypotheses seem to break down for the
Navier-Stokes equations). In Ebin-Marsden [2] one can find results which
perhaps isolate the source of the difficulties. For example, one relevant
fact already noted above is that Av; need not be parallel to the boundary,
even if v; is. In the aforementioned paper it is shown, under a certain
condition that, as in the no boundary case, the time of existence of the
equations is independent of the viscosity, and we have convergence in
the C* norms. This is discussed in the appendix to this section.

3.4 Stability and turbulence

Shortly we shall explain more fully the Ruelle-Takens [1] theory of
turbulence. For now we just wish to stress the point that turbulence
appears to be some complicated flow which sets in after sucessive bifur-
cations have occurred (see Part I, §3). In this process, stable solutions
become unstable, as the Reynolds number £ is increased. Hence turbulence
is supposed to be a necessary consequence of the equations and in fact of
the “generic case’ and just represents a complicated solution. For example
in Couette flow as one increases the angular velocity €, of the inner
cylinder one finds a shift from laminar flow to Taylor cells or related
patterns (discussed later) at some bifurcation value of €2;,. Eventually
turbulence sets in. In this scheme, as has been realized for a long time,
one first looks for a stability theorem and for when stability fails (Chandre-
sekar [1], Lin [1] etc.). For example, if one stayed close enough to
laminar flow, one would expect the flow to remain approximately
laminar. Serrin [2] has a theorem of this sort which we present as an
illustration:

3.4.1 StABiLITY THEOREM. Let D < [R3 be a bounded domain and suppose
the flow v} is prescribed on 0D (this corresponds to having a moving boundary,
as in Couette flow). Let V = max ||[vi(x)||, d = diameter of D and v

xeD

=0
equals the viscosity. Then if the Reynolds number £ = (Vdly) < 5.71,
v} Is universally L? stable.

Universally L? stable means that if 7} is any other solution to the
equations and with the same boundary conditions, then the L2 norm
(or energy) of o} — v; goes to zero as t — 0.

The proof of 3.4.1 is really very simple and we recommend reading
Serrin [2] for the argument.
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Chandresekar [1], Serrin [2], and Velte [1] have analyzed criteria of
this sort in some detail for Couette flow, to which we shall return shortly.

As a special case, we recover something that we expect. Namely if
v} = 0 on OM is any solution for » > 0 then v} — 0 as ¢ — co in L? norm,
since by 3.4.1, the zero solution is universally stable.

3.5 Discussion of Couette flow

Let us consider Couette flow again but now in a bit more detail. Let €,
be the angular velocity of the inner cylinder, and Q, the angular velocity
of the outer cylinder. Say that Q; > 0 if the cylinder is going in a counter-
clockwise direction (this just keeps the signs right). Let R, be the radius of
the inner cylinder and R, the radius of the outer one.

By
gy

!

@

I
\‘\_/‘}/'” L

|

-

Ty

FIGURE 3.3

If one assumes that Q, and Q, are constants, then Couette flow is a
particular stationary, or steady-state, solution of the Navier-Stokes
equations; that is, it satisfies

ov
0 =—a—t =—@-Viv+ vV —gradp
dive, =0
v, does not slip at the boundary.

In practice, there are special phenomena at the ends of the cylinders.
We will ignore these end effects. This can be done mathematically either by

identifying the ends (and thereby work on the annulus crossed with the
circle) or by considering the cylinders to be very long with respect to R,.
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For arbitrary ,, ,, Couette flow is an explicit solution, which, in
cylindrical coordinates (v, @, z) is given as follows

), = (QzRS - QIR‘;‘)r 4 ((Q1 - Qz)Rng) 1

R} — R RE—-R: /r
—ar+2
r
v,=0
v, =0.

This solution is stable for small velocities and hence is physically observed.
In what follows, we are interested in qualitative change of the solutions as
€, and Q, vary.

Fix Q, > 0 and suppose £, > 0 and imagine Q; increasing. Thus Q,
is our bifurcation parameter. When Q, reaches a critical point, Taylor

TURBULENCE ' »
DOUBLE (I
PERIODICITY Lfs'\g/sEtilsTAYL
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FIGURE 3.4
¢ = 7*(R; — RD/IR,R, log(R,/R)T

cells develop (see page 170). Intuitively, what is happening is that the par-
ticles near the inner cylinder have so great an angular velocity that
centrifugal force throws them towards the outer edge. Since the flow is
incompressible particles near the outer edge must be pushed back towards
the inner cylinder. Hence each particle experiences a circular motion in
the r — z plane as well as its motion due to the Couette flow (this was
described earlier).

The various qualitative “stable’ flows occurring for various values of
Q,, Q, are shown in the simplified graph in Figure 3.4.
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“In Figure 3.4, the zone of universal stability has the meaning ex_plained
in 3.4.1 and is taken from Serrin [2]. In reality Couette flow is more
complicated; cf. Coles [1], and Snyder [1].

For Q, > 0 and Q, sufficiently large, we get a helical (barb.er pole)
pattern of Taylor cells. In this region solutions are periodic in time and
presumably correspond to the periodic solutions predicted by the Hopf
bifurcation theorem. We also can develop “double periodicity’” corre-
sponding to undulations or waves in the Taylor cells which progress
around the cylinders. As Q, increases further this pattern breaks down
and we find “fully developed”” turbulence. This turbulent motion appears
as just chaotic, disorganized motion between the cylinders. Now for

(b} DOUBLE
PERIODICITY

(a)} HELICAL
STRUCTURE
FIGURE 3.5

Q, > 0 and Q, sufficiently large, we find steady-state Taylor cells de-
scribed earlier. This bifurcation corresponds to the fixed point theorem
discussed earlier (Theorem 3.1). Actually the situation is complicated by
the presence of symmetry groups and these groups can affect th_e generic
possibilities for bifurcations; namely whether or not we are in a real
irreducible representation space for the group will determine 1f_‘ a l.)lfurca-
tion takes place when the eigenvalues generically cross the unit circle on
or off the real axis. This seems to distinguish the two cases in Couette
flow. See Ruelle [4] for details.

Let us investigate this bifurcation idea further. Fix , < 0. Recall
that the Navier-Stokes equations can be thought of as a vector ﬁc?ld on
T,%5(M) (the space of v,). So to apply the Hopf Bifurcation th'eorem in this
situation, one has to check that it holds in infinite dimensional spaces.
If this could be shown, the Hopf theorem would imply that there wquld
be stable periodic solutions as the eigenvalues of the linearized Nav.le.r—
Stokes equation crossed the imaginary axis (this involves many nontrivial
technicalities due to the presence of not everywhere defined vector fields).
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Note. Linearization is done as explained in Part I, § 3 and not by just
throwing out the nonlinear terms—the Stokes linearization (cf. Lady-
zhenskaya [2]). As more eigenvalues cross the axis the stable periodic
solutions lie in higher dimensional tori and thus the periodicity would
become more complicated.

In fact, recently two papers have appeared justifying the use of the
Hopf theorem in this context: Bruslinskaya [2] in 1965 and Sattinger
[1] in 1971, established that the Hopf theorem does indeed hold for the
Navier-Stokes equations. Moreover, an important feature is that they
can show that when a bifurcation does occur one retains global existence
of smooth solutions near the closed orbit. This is in fact good evidence in
the direction of verifying that the Navier—Stokes equations do not break
down when turbulence develops. Other important papers in this regard
are Joseph and Sattinger [1] and Judovich [3, 4]. These theorems may
be more easily proved if we pass to &}, and use the characterization of
periodic solutions given on p. 193 above. See also Marsden [3, 4].

For Q; > 0 and Q, sufficiently large, the flow develops Taylor cells
that are steady-state. Taylor conjectured that Taylor cells are an exact
solution to the full (not linearized with respect to »,) Navier-Stokes
equations. But, up to recently no one could even prove these have such a
solution. Velte [3] in 1966 showed that Taylor cells do correspond to a
solution of the Navier-Stokes equations which bifurcate off from Couette
flow. His proof consisted of two main parts:

(a) He checked when the eigenvalues of the linearized equations
crossed the imaginary axis.

(b) He used this information together with the Leray-Schauder degree
to show a certain operator has a fixed point in a neighborhood of the
solution of the linearized equations, and this fixed point corresponds to
the desired stationary solution of the full Navier-Stokes equations.

The second part of the proof of this theorem can also be proved using
Theorem 3.3.1 in Part I. (In fact this method gives sharper smoothness of
the curve of fixed points.) Recall that this theorem involves a Hilbert
space H and a smoothly parameterized set of operators {®,} on H. Then
certain conditions on the eigenvalues of D®,(0) imply that as u crosses
some critical value, the @, develops another curve of fixed points. In this
application we use the map @, : Z;(H) — & ;(M) where M is the region
between the cylinders, and Z7,(M) is the H® divergence free vector fields,
defined by P

Do, (v) = A, ((v;* VIv + grad p)
where the Ag! means the solution of the Dirichlet problem with the
appropriate boundary data determined by €, and our fixed value of Q,.
It can be shown that this operator satisfies the hypotheses of the theorem
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and clearly the fixed points of this operator are steady solutions to the
Navier-Stokes equations (@ maps H° to H* because of the smoothing
effect of A—1). As Q, increases one might expect a bifurcation in the solution
of the equations since Theorem 3.1 states there is a bifurcation in the fixed
points of @, . Taylor cells occur when the new line of fixed points of
Gy, appear. Strlctly speaking one must use a version of the bifurcation
theorem in which a symmetry is present, since both Couette flow and
Taylor cells are symmetric about the z-axis. As D. Ruelle has pointed
out, the theorem must be modified to cover the case when a symmetry
group is present

There is an interesting phenomenon of indeterminacy connected with
the doubly periodic solutions (Coles [1]). Namely, that the geometry of
the waves which develop (their number and location) depends on the
past history of the experiment. This is, however, easily understood if we
think of a bifurcating vector field on the space Z',. Indeed, the vector
field can develop many different new attracting sets as & increases and
we can be attracted to any one of these. We thank D. Ruelle for pointing
this out, as well as the above proof of Vette’s theorem.

Couctte flow is not the only situation where this Taylor cell type of
phenomenon occurs and where the above analysis is possible. For example,
in the Bénard Problem one has a vessel of water heated from below. At a
critical value of the temperature gradient, one observes convection currents,
which behave like Taylor cells; cf. Rabinowitz [1].

This transition from laminar to periodic motion (the Hopf bifurcation)
occurs in many other physical situations such as flow behind an obstacle

(cf. Scientific American, January, 1970, p. 40).
3.6 A definition of turbulence

A traditional definition (as in Hopf [2], Landau-Lifschitz [1]) says
that turbulence develops when the vector field v, can be described as

o,(Wy, .« .., w,) =f(twy, ..., tw,) where f is a quasi-periodic function,
i.e., f is periodic in each coordinate, but the periods are not rationally

FIGURE 3.6
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related. For example, if the orbits of the v, on the tori given by the Hopf
theorem can be described by spirals with irrationally related angles,
then v, would such a flow.

Considering the above example a bit further, it should be clear there are
many orbits that the v, could follow which are qualitatively like the
quasi-periodic ones but which fail themselves to be quasi-periodic. In fact
a small neighborhood of a quasi-periodic function may fail to contain
many other such functions. One might desire the functions describing
turbulence to contain most functions and not only a sparse subset. More
precisely, say a subset U of a topological space S is generic if it is a Baire
set (i.e., the countable intersection of open dense subsets). It seems
reasonable to expect that the functions describing turbulence should be
generic, since turbulence is a common phenomena and the equations of
flow are never exact. Thus we would want a theory of turbulence that
would not be destroyed by adding on small perturbations to the equations
of motion.

The above sort of reasoning lead Ruelle-Takens [1] to point out that
since quasi-periodic functions are not generic, it is unlikely they “really”
describe turbulence. In its place, they propose the use of “‘strange
attractors.”” (See Smale [2] and Williams [1].) These exhibit much of the
qualitative behavior one would expect from “turbulent™ solutions to the
Navier—Stokes equations and they are stable under perturbations.

Here is an example of a strange attractor. Let U < R™ be open and
o;: U — U some flow; suppose further for x € U, there is an s € R such
that o, ,(x) = 0,(x), i.e., x belongs to a periodic orbit of the flow. Let
(d/dt)o,(x) |t=0 = Y, and let ¥V be the affine hypersurface in U orthogonal
to ¥,. For a small neighborhood § of x in V, there is a map P:S—V
called the Poincaré map, defined as follows: For w € S, it is easy to show
there is a smallest P, € R such that op (W)€ V. Call P(w) = op (W)
Now of course one can do this for each point of the periodic orbit. By
doing this one gets a map on a small “tubular’’ neighborhood of the
periodic orbit in U. (Here one must check that there is a neighborhood & of
the orbit such that if x €V then x belongs to a unique hypersurface
orthogonal to the orbit.) Also one can drop the condition that P be
defined about a closed orbit by requiring that the vector field be almost
parallel and everywhere transversal to a hypersurface V. In this case one
can define a Poincaré map P over the entire space U by letting P(x) be the
first intersection of the integral curve through x with V.

In particular consider ¥ to be a solid torus in three space and suppose
we have a flow ¢, on U such that its Poincaré map wraps the torus around
twice (Figure 3.7). Then the attractmg set of the flow (i.e., {x elU | X =
lim, ., o,(y) for some y € U} is locally a Cantor set cross a 2-manifold
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P(V)

FIGURE 3.8

FIGURE 3.7

(see Smale [2]). This is certainly a strange attractor! Ruelle-Takens [1] have
shown if we define a strange attractor to be one which is neither a closed
orbit or a point, then there are stable strange attractors on' T* in the
sense that a whole neighborhood of vector fields has a strange attractor as
well.

If the attracting set of the flow, in the space of vector fields, which is
generated by Navier-Stokes equations is strange, then a solution attracted
to this set will clearly behave in a complicated, turbulent manner and
since strange attractors are “‘generic”, this sort of behavior should not be
uncommon. Thus we have the following reasonable definition of turbu-
lence as proposed by Ruelle-Takens:

“...the motion of a fluid system is turbulent when this motion is
described by an integral curve of a vector field X, which tends to a set
A, and A is neither empty nor a fixed point nor a closed orbit.”

This turbulent motion is supposed to occur on one of the tori T” that
occurs in the Hopf bifurcation. This takes place after a finite number of
successive bifurcations have occurred. However as S. Smale and C. Simon
pointed out to us, there may be an infinite number of other qualitative
changes which occur during this onset of turbulence (such as stable and
unstable manifolds intersecting in various ways etc).

Since this sort of phenomena is supposed to be “generic,”” one would
expect it to occur in other similar phenomena such as the Benard problem.
(As the temperature gradient becomes very large, the flow becomes
“turbulent.””)

Recently Ruelle [1] has shown how the usual statistical mechanics of
ergodic systems.can be used to study the case of strange attractors,
following work of Bowen [1] and Sinai [1]. It remains to connect this up
with observed statistical properties of fluids, like the time average of the
pressure in turbulent flow.

For the analytical nature of turbulent solutions, the work of Bass [1, 2]
seems to be important.
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In summary then, this view of turbulence may be phrased as follows.
Our solutions for small 4 (= Reynolds number in many fluid problems)
are stable and as u increases, these solutions become unstable at certain
critical values of x4 and the solution falls to a more complicated stable
solution; eventually, after a certain finite number of such bifurcations,
the solution falls to a strange attractor (in the space of all time dependent
solutions to the problem). Such a solution, which is wandering close to a
strange attractor, is called turbulent.

APPENDIX
The limit of zero viscosity in the presence of boundaries

In our work above we saw that we could, by a rescaling process,
simulate large Reynolds numbers by taking » small. Specifically, if v(x, £)
is a solution of the Navier—Stokes eqliations with viscosity », then #(x, 1) =
Vo(x, tV) is a solution with # = V. This rescaling argument also makes
plausible the fact that for fixed initial data, the time of existence is = Cv;
see p. 200.

In the »-# plane then, our region of existence looks like a wedge:

Vv

FIGURE 3.9

We saw above that if no boundaries are around, this region could be
fattened out to a square and that we get nice convergence to Euler flow
asy —0.

As we know (see p. 214), the situation is much different in case bound-
aries are present. Let us examine another situation. Consider flow around
an obstacle as in Figures 3.10(2) and (b). '

As Z increases a “line of separation’’ develops and vorticity gets ripped
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off the boundary layer and moves downstream to form the turbulent wake.
As before, this phenomenon is persistent as % — o0, so we do not get
convergence to the Euler flow. Not only that, but we can not get con-
vergence to the Euler flow even on the boundary near the leading edge
because of the difference in boundary conditions.

This line of separation is discussed in Landau-Lifschitz [1]. There they
assume the line is sharp and that various discontinuities of the flow occur.

; "~ TURBULENT
- (& REGION

(a) Low Reynolds. Number (b) High Reynolds Number
FiGcure 3.10

This is probably just in the limit &% — co, or otherwise we would have a
counter example to the global existence questions. This point seems to
warrant further investigation. They also suggest that a line of separation
must always form (Landau-Lifschitz [1], p. 155). We give a result below
which seems to be support for this claim.

It is natural to inquire if we can obtain a time of existence independent
of ¥ even though the flows might not converge. This seems to be a very
difficult problem.

A word of caution: for low Reynolds numbers one observes steady
flows with the velocities increasing as # — co. When simulated by » — 0
and a fixed initial condition note that a time rescaling is also going on,
so one must be careful when interpreting the results. Also note that for
high Reynolds numbers, turbulent wakes are definitely time dependent
flows, so the context of steady flows is certainly not appropriate.

THEOREM. Let M be a bounded open set in [R® and let there be no external
forces. For fixed initial data, let G denote the region of existence in the
v-t plane. Let —grad p*(x, ) denote the pressure forces due to the inertial
terms Apv*, s0 as v’ = 0 on 0M, grad p is tangent to OM, » > 0.

Suppose that for each t,, grad p*(x, t,) is bounded in the L3, norm on
OM asv— 0, v € G. (The L1y norm on 0M corresponds to the Ly norm on
M, i.e., the Ly norm of derivatives of order <2.)

Then we have existence on a nontrivial t-interval independent of v. More-
over v" converges to the Euler flow in C*, uniformly for t € [0, T].
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Actually what is interesting is the contrapositive theorem. Namely,
we know that the conclusion is, in interesting cases, false. Therefore,
the condition on the pressure must also fail. In particular the pressure
condition can fail if, for example, the pressure forces develop a dis-
continuity, since the L3 norm is at least as strong as the C° norm.

Thus, if we have any kind of reasonable boundary layer which prevents
the flow v* from converging C°, then the theorem states that the stated
norm of the pressure forces must blow up as » — 0 or else the time of
existence —0 before » reaches zero. Colloquially speaking, this means
that if we have a boundary layer at all, then a line of separation must
develop at very high Reynolds numbers.

The proof of the theorem is too involved to go into here. Suffice it to
say that it relies on a coupling of the heat equation terms with the Euler
terms via a “product type’® formula as was discussed in § 1.8 above.
To establish the appropriate estimates, one must passto %} ;i.e., Lagrangian
coordinates.

As was pointed out by T. Kato, the situation in the case (M unbounded
and) external forces are present seems to be different. Consider an infinite
cylinder of fluid as shown in Figure 3.11.

Y 3

[H) - [

PRl -

Figure 3.11

The fluid starts from rest (v, = 0) and under gravity, it accelerates
down. For» = 0it moves uniformly downwards, slipping by the boundary.
For » > 0 a boundary layer develops (one can solve the equations
explicitly here) so v* will not converge C° to v°. But the pressure forces are
zero and no line of separation develops.

III. DYNAMICS OF GENERAL RELATIVITY

In part two above, we saw how the diffeomorphism groups play a
fundamental role in hydrodynamics. These groups also enter into the
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formulation of other theories such as elasticity (this was pointed out to
us by H. Cohen; cf. Chernoff-Marsden [1]). In this part we shall investi-
gate general relativity and shall see how the group of diffcomorphisms
again enters. In the present context it gives us a clearer understanding of
the “coordinate invariance’” of the theory.

In hydrodynamics, the idea of a Hamiltonian system in its special case
of the geodesic flow also played a key role. For relativity we shall be
primarily concerned with geodesics in the presence of a potential term. As
before, we are dealing with an infinite dimensional system. We shall begin
in § 1 with the basic ideas about Hamiltonian systems. After some motiva-
tion for general relativity we shall then apply this Hamiltonian formalism
to study the geodesic motion on the space .# of riemannian metrics and
its connection with the usual Einstein equations Ric = 0.

After this we shall want to see how the evolution, or Hamiltonian
picture changes when we make a space-time coordinate transformation.
This is done by introducing what are called the “lapse’ and ‘“‘shift”
functions of Wheeler [1]. We shall also investigate the geometry of these
quantities. Some additional theorems related to the lapse and shift
functions will also be presented.

The basic references for this work are Arnowitt-Deser-Misner [1],
Wheeler [1], Dewitt [1], and Fischer-Marsden [1]. The approach in these
papers is based on the Lagrangian formalism. However one can also base
the development on the Hamilton-Jacobi theory; cf. Gerlach [1].

1. Infinite dimensional Hamiltonian systems

Before beginning relativity, we shall first develop some preliminary
machinery. This machinery is a fairly straight forward generalization to
infinite dimensions of finite dimensional mechanics; see Abraham [2].
Since we are not presupposing a detailed knowledge of that material, we
make the exposition as self contained as possible. The treatment of
Lagrangian systems is fairly complete and also allows the degenerate case
for later purposes.

We shall begin with the special case of the spray of a metric and motion
in a potential.

1.1 The spray of a metric

Let M be an infinite dimensional manifold (typically a manifold of
maps) with a symmetric, bilinear form B defined on each tangent space
T,M. Recall that B induces in a natural way, a map B:T,M — Tq M at
eachx e M:ifv e T,M, (B - v)(w) is defined to be B(v, w) for any w e T, M.
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The form B is said to be weakly nondegenerate if the map v Bv is in-
jective at each x & M; this is clearly equivalent to the statement: B(v, w) =
0 for all w implies » = 0. If the map v+ By is an isomorphism, B is said
to be strongly nondegenerate. The two notions coincide in the finite
dimensional case. If B is weakly nondegenerate, (M, B) is called a weak
pseudo-Riemannian manifold.

It is convenient to denote B by ( , ), on the fiber over x € M. We now
wish to define the spray S of the metric ( , ),. This should be a vector
field on TM; S: TM — T*M whose integral curves project onto geodesics.
Locally, if (x, v) € T,M, write S(x, v) = ((x, v), (v, ¥(x, v)). If M is finite
dimensional, the geodesic spray is given by putting y(x, v) = — ', (x)vi*.
In the general case, the correct definition for y is
(1) <y(x: U), W>w = %Dm<va U)w W= Da;<v’ W)m "V
where D,(v, v), - w means the derivative of (v, v), with respect to x in the
direction of w. In the finite-dimensional case, the right hand side of (1)
is given by  og 3

5 Kk’ vriwt — a—i;z v'wirk,
which is the same as —I'j,v#v*w,. So with this definition of y, S is taken
to be the spray. The verification that S is well-defined independent of the
charts is not too difficult. Notice that y is quadratic in ». One can also
show that S is just the Hamiltonian vector field on TM associated with the
kinetic energy $(v, v). This will be done in § 1.4 below; cf. Abraham [2]
and Chernofi-Marsden [1].

The point is that the definition of 9 in (1) makes sense in the infinite as
well as the finite dimensional case, whereas the usual definition of T'%,
makes sense only in finite dimensions. This then gives us a way to deal with
geodesics in infinite dimensional spaces.

1.2 Equations of motion in a potential
Let £+ (x(), v(#)) be an integral curve of S. That is:
@ X)) =0@®); () = y(x(t), v(2)).
These are the equations of motion in the absence of a potential. Now let

V:M — R (the potential energy) be given. At each x, we have the
differential of ¥V, dV(x) € T3 M, and we define grad V(x) by:

3 {grad V(x), w), = dV(x) * w.

It is a definite assumption that grad V exists, since the map T,M — T*M
induced by the metric is not necessarily bijective.
The equation of motion in the potential field is given by: -

“) x(8) = v(t); 0(8) = y(x(®), v(r)) — grad V(x(?)).
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The total energy, kinetic plus potential, is given by H(x, v) = }{v,, v,) +
V(x). It is easily checked that H is constant along curves (x(¢), v(?))
satisfying (4), i.e., along integral curves of the vector field Z which, in
coordinates, is given by Z(x, v) = ((x, v), (v, y — grad V)).

1.3 Example: The wave equation

A solution to the three-dimensional wave equation is, by definition, a
function f(x, ), x € R3, ¢ e R, satisfying 0% (x, #)/0t> = V3. We can
show these to be the equations of motion in a potential field on the
appropriate space M. Choose M = L,(R?, R); M is a Hilbert space with
a strong metric given by the usual inner product (f, g) = { fg dx. This
makes sense in our context since A is a linear space and so may be
identified with its tangent space. Note that y = 0, since the right side of
(1) vanishes identically. The geodesics are therefore straight lines. Now
let the potential function be defined by

V() =3} f IVF 12 dx

We are proceeding formally at the moment, since ¥ is really defined only
on H*(R3, R). (See Part I, § 1 for the definition of the Sobolev space H*.)
The equations of motion (4) become f'= —grad V(f), since y = 0. We
compute grad V as follows: (grad V(f), k) = dV(f) h = fps Vf - Vh =
— [ (V¥)(h) = —(V*, k), where we have integrated by parts. Thus
grad V(f) = —V2f, and we get f= V?, which is the wave equation.
Since two derivatives have been lost in this process, the gradient will not
be everywhere defined. Nevertheless, one can show the existence of a
global flow (producing “curves of functions) which is the solution to the
wave equation; cf. Yosida [1], and 2.6 below. The total energy is given by:

H ) =L + 386V
H=KE. +PE

Note that the vector field associated to the wave equation is only densely
defined, so one has to be somewhat careful with derivatives and flows. For
our purposes we can ignore these technicalities which, fortunately, do not
affect understanding the basic ideas in what follows. (See Chernoff-
Marsden [1] for a complete discussion of the technical points just alluded
to.)

1.4 Lagrangian systems

We now want to generalize the idea of motion in a potential to the idea
of a Lagrangian system, which is a special case of a Hamiltonian system.
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See Abraham [2] for an alternative exposition of the finite dimensional
case, and Marsden [1], and Chernoff-Marsden [1} for additional results.

We begin with a manifold M and a given function L:TM — R called
the Lagrangian. (Here M is, in general infinite dimensional not to be
confused with the notation M which will be used below for a space like
hypersurface.) In case of motion in a potential, one takes

L(vw) = %<vm’ Uw> - V(x)
which differs from the energy in that we use — ¥ rather than + V.

Now L defines a map, called the fiber derivative, FL:TM — T*M as
follows: let v, w € T,M. Then

FL(v) w= %L(v + W)l

That is, FL(V) - w is the derivative of L along the fiber in direction w.

In case of L(v,) = 3{v,, v,), — V(x), we see that FL(v,) - w, = (U, Wy)a
so we recover the usual map of TM — T*M associated with the bilinear
form (, ),

Now T*M carries a canonical two form w called the canonical sympletic
form (see Abraham [2], Lang [1]). Using FL one obtains a closed two
form wy, (i.e., doy, = 0) on TM by pulling back the canonical symplectic
structure on T*M, wz, = (FL)*w. All we shall require is the following
local formula for wg: if M is modeled on a linear space [, so locally TM
lookslike U x [E where U < [E is open, then wz(u, e)for (u,e) e U X E
is the skew symmetric bilinear form on [E x [E given by

2071, €) - ((ey, €3); (€3, €)) = D1(D:L(u, €) " e5) * &
— Dy(D,L(u,e) e3) e, + DyD,L(u, €) - ey e, — DyDyL(ut, €) > €57 €5

where D;, D, denote the indicated partial derivatives of L. Rather than
going through the (routine) derivation of this formula from that of w, let
us just adopt this as our basic two form.

It is easy to see that wy, is (weakly) nondegenerate iff D,D,L(u, €) is
nondegenerate. But we want to also allow degenerate cases for later
purposes. In case of motion in a potential, nondegeneracy of wz, amounts
to nondegeneracy of the metric ( , ),. The action of L is defined by 4: 7B —
R, A(v) = FL(v) - v, and the energy of Lis E = A — L. In charts,

E(u,¢) = D;L(u, €) - e — L(u, e)
and in finite dimensions it is the expression

. oL .; .

(summation convention!)
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Now given L, we say that a vector field Z on TM is a Lagrangian vector
field or a Lagrangian system for L if the Lagrangian condition holds:

20L0)(Z@), w) = dE(@v) - w

for all v € T,M, and w € T,(TM). Here, dE denotes the differential of E.

Below we shall see that for motion in a potential, this leads to the same
equations of motion which we found above.

If w;, were a weak symplectic form there would be at most one such Z.
The fact that oz, may be degenerate however means that Z is not uniquely
determined by L so that there is some arbitrariness in what we may choose
for Z. Also if wy, is degenerate, Z may not even exist. If it does, we say
that we can define consistent equations of motion. These ideas have been
discussed in the finite dimensional case by Dirac [1] and Kunzle [1].

The dynamics is obtained by finding the integral curves of Z; that is the
curves v(f) such that v(f) € TM satisfies (dv/dt)(t) = Z(v(?)). From the
Lagrangian condition it is trivial to check that energy is conserved even
though L may be degenerate:

1.4.1 PrROPOSITION. Let Z be a Lagrangian vector field for L and let
v(f) € TM be an integral curve of Z. Then E(v(t)) is constant in t.

Proor. By the chain rule,
%E(v(t)) = dE(v(?)) * v'(t) = dE(w(D) - Z(v(1))

= 20, 0(ONZ(v(), Z(v(1)) = 0
by the skew symmetry of wz. M

We now want to generalize our previous local expression for the spray
of a metric, and the equations of motion in the presence of a potential.
In the general case the equations are called “Lagrange’s equations™.

1.4.2 PROPOSITION. Let Z be a Lagrangian system for L and suppose Z
is a second order equation (that is, in a chart U x E for TM, Z(u, ¢) =
(e, Zo(u, €)) for some map Z,:U X E — [E). Then in the chart U X E,
an integral curve (u(z),v(t)) € U x [E of Z satisfies Lagrange’s equations:

() = o)

)
iw@wmw»w=D¢me»w

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 231

for all we [E. In case L is nondegenerate we have

(2) ZU {Dz oL(u, U)}——l{D1L(u v) — D,DyL(u, v) - v}'

In case of motion in a potential, (2) reduces readily to the equations we
found previously defining the spray and gradient.

ProoF OF 1.4.2. From the definition of the energy E we have
dE(u, €) * (1, e;) = Dy(D,L(u, €) - e, + DyD,L(u,€) - e- ey — DiL(u, e) -
e,. Locally we may write Z(u, ) = (e, Y(u, €)) as Z is a second order
equation. Using the formula for wy, the condition on ¥ may be written,
after a short computation:

D,L(u, e) - e, = Dy(D;L(u,€) *ey) " e

+ Dy(DyL(u, e) - Y(u,e)) e, forall ¢ €lE.
This is the formula (2) above. Then, if (u(2), v(¢)) is an integral curve of Z
we obtain, using dots to denote time differentiation,

D,L(u, e) - & = D (DyL(u, %) - €y - 4t + DyDpL(u, 1)~ ii* &,
d
= — DyL(u, 1) " e
dt 2 ( ) 1
by the chain rule =

We remark that if w;, were nondegenerate Z would automatically be a
second order equation (cf. Abraham [2]). Also, the condition of being
second order is intrinsic; Z is second order if 7w o Z = identity, where
w:TM — M is the projection. See Abraham [2], or Lang [1].

Often L is obtained in the form

L(u,u)——f,?( ak, )dy

fora Lagranglan density & and pu some volume element on some manifold
Q. Then M is a space of functions on Q or more generally sections of a
vector bundle over Q. In this case, Lagrange’s equations may be converted
to the usual form of Lagrange’s equations for a density .#°. We shall see
how to do this below in a special case.

1.5 Conservation theorems

We now wish to formulate some basic conservation laws which hold
in the presence of a group of symmetries. We first state the laws in the case
of motion in a potential.
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Let M be a pseudo-riemannian manifold acted on by a Lie group
G—i.e., for each a € G, there is a diffeomorphism ®,: M — M, such that
d, 0 O, = @, and O, = identity. Let v € S, the Lie algebra of G. Then v
determines the l-parameter subgroup exp(v) and thus a 1-parameter
group of diffeomorphisms @y, of M. Let X(m) = (d]d)Dexp (i) (M) i—o-
The vector field X is called an infinitesimal generator of the action. For
example the infinitesimal generators of SO(3) acting on [R? are the usual
vector fields corresponding to rotations about an axis.

Suppose that a potential function V:M — IR is given and suppose
further that:

(a) @, is an isometry forallae G
(b) Vis invariant under the action of G: V- ®, = V,a e G.,

Given this, there exist certain functions which remain constant on the
integral curves of the equations of motion. Namely for each infinitesimal
generator X,

) P(X):TM — R defined by P(X)(v,) = (Vg X (X))

is such a function. We call P(X) the momentum function for X. (P can be
regarded as a homomorphism from .# to the Lie algebra of functions on
TM under the Poisson bracket.)

We shall now prove a more general theorem in the context of Lagrangian
systems. Namely, consider a general Lagrangian L:TM — R. The
assumption in this case is that T®,: TM — TM leaves L invariant. The
constants of the motion are now defined by

()] P(X):v+ FL(v) " x

where FL(v) - x is the fiber derivative, defined above. f L = K — V, (2)
reduces to (1) immediately.

In this result, observe that we do allow for the possibility that L might
be degenerate. The only special assumption needed on Z is that it exist
and be second order.

1.5.1 PROPOSITION. Let Z be a Lagrangian vector field for L:TM — R
and suppose Z is a second order equation.

Let @, be a one parameter group of diffeomorphisms of M generated by
the vector field Y: M — TM. Suppose that for each real number t, L o T®, =
L. Then the function P(Y):TM — R, P(Y)(v) = FL(v)* Y is constant
along integral curves of Z.

ProOF. Let v(¢) be an integral curve for Z. Then we shall show that
(d]dD{P(Y)(v()} = 0. Indeed, in a coordinate chart, if (u(r), v(¢)) is the
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integral curve,
S AFLOO) - 7 =L (DL, o) - Y0}

= DD, L(u(t), (1)) - Y(u(1)) - i(®) + DDy L(u(2), v(1))

“Y(u(®) - 5() + DoL(u(®), v(1)) - DY (u(®)) - (2).
Now the condition that Z be the Lagrangian vector field of L means
exactly that the first two terms equal DyL(u(t), v(2)) - Y(u(t)) (see the
proof of 1.4.2 above). However if we differentiate L o T®, with respect to ¢
we obtain for any point (u, v),

- ‘%L((Dt(u), DP,(1) - )lms

= D,L(u, v) - Y(u) + D;L(u, v) - DY(1) - v.

Comparing this with the above gives (d/df){FL(v)* Y} = 0 and proves
the assertion.

2. The basic equations of general relativity;
dynamics on .#

In this section, we develop the dynamics on the space .# of riemannian
metrics on a fixed three manifold A/ and its relationship with the (exterior)
FEinstein field equations, namely that the resulting four dimensional metric
have zero Ricci curvature.

We shall be concentrating in this section on the simplest possible case in
which the four metric %g and the three metric ®g are related by

Yg,p dx* dxP = —di® + g,; dx* dx’.
Here x* = (t,x") and our conventions are that ‘g has signature
(—, +, +, +). Inthe next section we shall consider the case of a general 4g.

We begin with some motivation and explanation of the usual Einstein
field equations.

2.1 General relativity; introductory remarks

Einstein was led to the general theory of relativity by his conviction that
gravitational forces should be incorporated into the geometry of spacetime
in a “natural” way—‘‘natural’’ meaning natural in a geometrical sense.
The idea is that a body moving under the force of gravitation alone (e.g.,
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a satellite circling the earth) should travel along a geodesic in an appro-
priate differentiable manifold. Such a manifold is certainly not flat
3-space, since the motion of a satellite would not then be geodesic. It is
also easy to see that the manifold cannot be a curved three-dimensional
Riemannian space: consider the case of two projectiles Py, P, launched at
the same time from 4 with trajectories as indicated in Figure 2.1, both
passing through B (this is easily arranged). It is clear that not both P; and
P, can be geodesic with respect to any 3-space metric; since B can be
moved arbitrarily close to 4, there are no normal neighborhoods of 4 (in
which there are unique minimizing geodesics).

PN

A B

EARTH
'\\\\\\\\\\

FIGURE 2.1

On the other hand, we do get unique trajectories if we require the
projectile to pass through B at a given time. So we are compelled to con-
sider a manifold of dimension at least four. Finally, it is almost obvious
that this 4-manifold cannot be Riemannian (metric tensor positive
definite): Riemannian manifolds are isotropic in the sense that there are
no intrinsically defined, distinguished directions. But space time is not
isotropic; for example the geodesic connecting (you, now) with (Sirius, 1
second later) could not be traversed by a material particle required to
travel at a speed below that of light. One has to distinguish between
possible particle trajectories (timelike curves), impossible particle tra-
jectories (spacelike curves), and possible photon trajectories (null curves).

All in all, one is led to consider a four-dimensional pseudo-Riemannian
manifold whose metric tensor g has the signature {—, +, 4, +}. This is
quite natural since it tells us that locally (in the tangent space, or in a
normal neighborhood) the universe looks like Minkowski-space. In this
manifold, the “world line” or space time trajectory of a freely falling
particle is a geodesic. Furthermore, it is assumed that this geodesic does
not depend on the mass of the particle (an orange and a grapefruit behave
the same way in the same gravitational field). This is called the principle
of equivalence.

No matter what the gravitational field, the space-time is required to
satisfy the Einstein field equations Ric = 0 (or R,p = 0) in the absence of
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matter, or in regions exterior to sources. Of course Ric denotes the Ricci
tensor of our metric.

We would like to now present the geometrical meaning of the field
equations Rie = 0. This can be used as motivation for the equations.
Compare Pirani [1] and the Rund-Lovelock lectures in this seminar. The
following exposition was provided by Dan Norman.

Let u be the tangent to a timelike geodesic x(f) (timelike means {u, u) <
0), so V,u = 0. Consider the Jacobi field (or deviation vector) 7 along
x(t); it satisfies Jacobi’s equation:

V.V + R(n,wu=0

where R is the curvature tensor. Regarded as.a map R, in 7, Ric(u, u) is
its trace.

We are supposing Ric = 0. Let e;, i = 1, 2, 3 be vectors orthogonal to u
at a point p where ¢t = 0. Then extend e, to be Jacobi fields with initial
condition V,e; =0 atp. Then V, (u-e) =Vu-e;+u- Ve, =u- Ve,
soV,V, (u-e)=u-V, Ve, = —u-Re; u)u =0 (we have (R(v, wu, u) =
0 always by skew symmetry of (R(u, v)w, z) in w, z). Hence u - e; = 0 for
all time. Choose e; to be eigenvectors of K, on the space orthogonal to u.
We denote this restriction by RiL. Thus Rje; = 2¢;,and 4, + 2, + 13 =0
because B,u = 0 and the trace of the symmetric operator R, is zero.

Now these vectors e; span a three volume. Multiply e; by ¢ (so that we
can be sure exp maps the field ee; onto geodesics close to the geodesic
through p). A satisfactory approximation of the volume of the cube
spanned by these vectors is (vol) = &%, A e; A e3. We compute:

g,p Ax* dxF = —dt® + g;; dx* dx’.
d2
'd§ (VODIp = Vuvu(VOI)Izz

={(VVe)Aeshes+ e, AV, Ve Aeg e Aes AV, Ve,
+ First derivative terms}|,,.

Since the ¢;’s are Jacobi fields and eigenvectors (at p) of R, and since
V.eil, = 0, we have

2 .. d(vol
¢)) —d—g(vol)lz, = —(A + A -+ A)(voD|, =0 if devol) | _ 0
dt dt s
as the condition equivalent to Ric = 0.
We can interpret this more physically as follows. Imagine ourselves in a
freely falling elevator and watch a collection of freely falling particles. The

particles are initially at rest with respect to each other, but due to motion
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towards the earth’s center, they will pick up a relative motion (see
Figure 2.2).

The condition (1) says that the 3-volume (up to second order) is re-
maining constant during the motion. This geometric property is directly
verifiable in the case of the Newtonian gravitational field, so is a reasonable
candidate for generalization. Thus we shall adopt Ric = 0 as the Einstein
field equations in our Lorentz four manifold. '
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FIGURE 2.2

2.2 The general program

Let V be a spacetime with M a three-dimensional spacelike section
without boundary (a spacelike section is a submanifold such that for
0 #£ve T, M, (v,v) > 0). Assume for the moment that M is compact, so
that there exists a neighborhood U of M in which the timelike geodesics
(that is geodesics whose tangent vectors v have (v, v) < 0) orthogonal to
M have no focal points. If we let # measure proper time on these geodesics,
with t = 0 on M = M, then the function ¢ is well-defined in U. The
surfaces M, given by ¢ = constant form a one parameter family of space
sections, all diffeomorphic to M. Let g, be the induced Riemannian metric
on M,. Via the aformentioned diffeomorphism, we can regard g, as a curve
in the space of positive definite metrics on M. The fact that ¥ is Ricci flat
implies that g, satisfies certain differential equations. We want to work
these out.

We also want to go the other way! given M, a positive definite metric
8o, and a symmetric tensor k, = g, (the second fundamental form of M
in V) we want to find the curve g; describing the time evolution of the
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geometry of M, and then to paste together the resulting 3-manifolds M,
to obtain a piece of spacetime.

2.3 The space of Riemannian metrics and the DeWitt metric

Fix M, a compact, oriented 3-manifold. (It is actually not necessary to
assume M compact; the noncompact case is handled by imposing certain
asymptotic conditions at infinity.) Let S,(M) be the linear space of (C*)
symmetric twice covariant tensor fields on M. The set # < S,(M) of all
positive definite metrics forms an open cone in Sy(M)—i.e., . is invariant
under addition and multiplication by positive scalars. The same sorts of
technicalities encountered in hydrodynamics arise here, and so one should
properly work with the set .#¢, the metrics in the Sobolev class H*; but
for simplicity, most of the development will be done directly in .#. Since
# is an open cone in Sy(M) (in the C® or H* topology), we know that
TMH = M X S,

We want to construct a Hamiltonian system on .#, and the first order
of business is to produce a metric—i.e., for each ge.#, we need a
symmetric bilinear map %,:S, X S, — R. We define ¢ by:

) G,:(h, k) > f [h - k — te(h)te(k)] du,
M

where 4 - k = Kk, tr(h) = ki, all indices being raised with g and g, is
the volume element associated with g, p, = det Zi dx1 A dx® A dx3,
Observe that & is symmetric, bilinear, and depends on g; it is called the
DeWitt metric. ¥ is not positive definite because of the minus sign, but
it is nondegenerate:

2.3.1 PROPOSITION. ¥ is a weak metric.

PrOOF. Assume that for some g € A, G,(h, k) = 0 for all k € Sy(M).
Put £ = h — }tr(h)g € S,. Then one sees that G, (h, k) = [y h-hdp, =0
soh=0. =

Observe that as was the case with hydrodynamics, &, is not a strong
metric in any of the topologies of interest on .# (such as the C* or H*
topologies).

Next, we wish to compute the spray of ¢; this is nontrivial because of
the dependence on g. ‘
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2.3.2 ProposimioN.  The spray of % is the map S: M X S,—
(M X S3) X (Sy X Sy) whose last component is given by

@ S(g, k) =k x k — jtr(bk — [k - k — [tr(k)Plg

where, in coordinates, k X k = k, k..

To prove this, we must verify that S satisfies the equation (1) of §1.1
which in this case, reads:

3) Z,(S(g. k), h) = $D,%,(k, k) - h — D,%,(k, h) - k.

And to verify this, we need to know how to take the appropriate deriva-
tives. This is done in the next lemma. )

2.3.3 LemMA. (a) The derivative of the map g u, in the direction
he S, is §tr(h)p,.

PrOOF. Let g(t) = g + th. We want (d/dt)p,(t)}s—,, which we can get
once we know (d/dt)det(g,, + thik)|t=0' We have (g,;, + thy,) = (g;;) X
(8 + thf). So (dfdi)det(g,, + thy)|,— = det(g;){(ddr)det(s] + thi)], o} =
det(g;tr(h;;). The lemma follows immediately. m

(b) For fixed h, k, the derivative of g h-k in the direction hy, is
—2h, + (h X k).

Proor. Note that we can regard 4 € S,(M) as a map T,M — Tx¥M so
g7h is a map of T,M to T,M. In coordinates, g% is h%, and glis
g". Then i - k = tr(g~'hg~'k). For g(f) = g + th,, we have

(d/dNg ()| ;mo = —g g™

Then (d/dt)(h - k)|,g = —tr(g~ygthg=1k) — tr(g-thg~hyg~tk) = —2h, -
(hx k. m

() The derivative of the map h v tr(h) in the direction h, is —hy A

ProoF. By definition, tr(h) is the trace of the linear transformation
g7h of T,M to itself. If g(t) = g + th, then at ¢ = 0 the derivative is
—tr(g g th) = —h *h,asin (b). m

Now to prove the proposition, it is a straightforward job to plug
everything in to both sides of (3) and verify the equality. Namely from
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(a)~(c), we get

D, % (k, h) - hy = f (=2hy - (k X B) + (tr )by - k + (tr K)hy - B)dp,
M

+f[h ~k — (tr h)(tr k)] - & tr hy du,.
M
Thus the right hand side of (3) becomes
fh-(k X k) — %h - k(tr k) — (tr h)k - k
M

+ Mtr K2 tr b + Hk - k — (tr B)%ltr b du,

while the left side is [, S,(k) - B — tr(S,k)tr(h) du, which becomes, on
substituting the stated expression for S,, usingg s =trh, trg =3, and
tr(k x k)=k-k,

fh-(k % k) — 3(h-K)trk — 3k - ktr b — (tr k)% b} dp,
M

—fk'ktrh — Htr kP trh — 3k -k-3tr h — 3(tr k)* tr h} dp,
M
which equals the right side of (3) obtained above. &

2.4 The potential

Now that we have found the spray of the DeWitt metric, the next
project is to add on a potential. It turns out that the appropriate object is
obtained from the scalar curvature r(g) = 3r(g) of the metric g on the
3-manifold M. We define V:.# — R by

€)) Vigi —2fr(g) du,.
M

(The factor —2 is conventional here.) To find grad V, we first need to
know the derivative of r(g):

2.4.1 LEMMA.
@ D,r(g) - h = A(tr h) + 86k — Ric(g) - &,

where 00h is the double covariant divergence hi' ,; and A is the Laplace
Beltrami operator on scalars, Ap = —gio,; ;.
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This result with further references may be found in Deser [1] and Berget-
Ebin [1]. It is straightforward but long, and we shall omit it.

2.4.2 PROPOSITION.
3) grad V(g) = 2 Ric(g) — #r(g)g
Proor. Using 2.3.3 and 2.4.1 and observing that | A(tr k) and 86k

drop out because M is compact without boundary, we get:

dv(g) h =2 f Ric(g) - h dpt, — f H(@)tr(h) dp,
M M

It is easy to check that (3) satisfies %, (grad V(g), k) = dV(g) - h. Indeed
the left hand side becomes .

f (grad V(g) - h — tr grad V(g) - tr h) dy,
=f(2 Ric(g) - h — §r(g)g - ) du, —f(27‘(g)tr(h) — $r(g)tr b) du,

=2 f Ric(g) « h du, —Jr(g)tr h du,
which equals d¥(g) - . Thus (3) holds. =

We now summarize what we have done so far:

2.4.3 THEOREM. The equations for an integral curve (g(t)k(t)) for

geodesic motion in M in the presence of the potential V(g) = —2 [,,7(g) du,
are:

d
ot 8(1) = k(1)

4 k() =k x k — }tr(k)k — 2 Ric(g) — 3#(g, k)g
ul
where

H(g, k) =4k -k — (trk)?} —2r(g)
Proor. This follows immediately from equation (4) of § 1.2,2.3.2, and
242. m
2.5 The constraints

Before we can show that the equations of motion in 2.4.3 lead to a
Ricci-flat spacetime, we need to establish certain conservation laws. The
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first of these will be proved by using the results of § 1.5. The first thing to
observe is that there is a natural isometry group for ., the group & of
diffeomorphisms. The action of & on ./ is defined by:

1) D,:g — (77)*g.

One can easily check that it satisfies the requirements for an action (§ 1.5),
consists of isometries of .# and leaves V invariant. This invariance is
basically due to the tensorial nature of ¢ and V. We want to think of &
as the “active’ coordinate transformations of M. That the action (1)
leaves ¢, and V invariant may therefore be interpreted as the invariance
of the theory under (active) coordinate transformations.

To obtain the conservation law, we need to compute the infinitesimal
generators of @. Let X € T,% and %, = flow of X, a one parameter group
of diffeomorphisms of M. By definition, the infinitesimal generator of the
action corresponding to X € T,9 is given by (d/dt)((5:)*8)|;=0 = —Lxg>
where Ly is the Lie derivative. Thus the infinitesimal generator is
g +— —Lxg. Theconstant of the motion is therefore (g, /) > Z,(—Lxg, h).
To simplify this we need the following version of Stokes’s theorem:

2.5.1 LEMMA.

fLXg-kd,ug=2fX-6kd,ug.
M M

PROOF. One can easily show that Lxg = X;; + Xj;, where ; denotes
covariant differentiation. Then

k- X)=(0©k)- X -k VX
where
k- VX = kiXy, = 309Xy, + kiX;) = 3 - Lxg

by the symmetry of k. Since, by Stokes’s theorem, , 8(k - X)du, = 0,
we get the lemma. M

2.5.2 THEOREM. The constant of the motion above is given by
@,(k, Lyg) = 2 f X - m dp,
M

where = = k — (tr k)g, the “conjugate momentum.”

Note. Our notation differs slightly from Fisher-Marsden [1] in the sign
of & and V and the fact that = is not a density.
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PROOF OF 2.5.2. Now

9, (k, Lyg) = f (k- Lyg — (tr K)(tr Lx2)} du,
M
- f (Lxg) - (k — (tr K)g) dp
M .

=|Lxg " mdy,

M

=2fX'5ﬂdﬂg. n
. M

From the arbitrariness of X, it follows that (m)u, is conserved and thus
if 0w = 0 at t = 0, it remains 0 on the integral curves of the equations of
motion. This is the first basic constraint on the initial data we will wish to
impose on the Einstein equations.

Although the result can be proven directly we feel it is important to
emphasise that it results just from the invariance of the theory under 2.
Similarly if one had another theory on a different vector bundle than
Sy(M), one would obtain a conservation law merely from the coordinate
invariance. Now we come to the second basic constraint.

2.5.3 THEOREM. (pointwise conservation of energy) Let (g(t), k(t)) be an
integral curve of the system in 2.4.3 and let 6w = O on this curve. Then the
energy density

H(g, Dp, =tk k — (tr K)p, — 2r(g)y,

is pointwise constant in time.

Proor. Let £y (k) = $(k - k — (tr k)?), the kinetic energy density. Then

dk

0 2 A
'a—t('}{g:uy) = gg(ks E):ug + DA o(k) - ky, + —EQ tr(k,

where QZ, (ki ky) = ky - ky — (tr ky)(tr k). Using the formulas in Lemma
2.3.3 we have

DA LK) k= k- (k X K) + k- k(tr k)
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and
_g,(k,%) =k kxk—3trk-k—}A,(tr k)
— {tr k(k - k) — 3tr K)® — 3t )}
— 2 Ric(g) - k + dr(itr(k) -
+ 2 r(g)tr(k) — Sr(g)tr(k).
Adding, we get
2 () = (=2 Ric(@) -k + r(@e(loNa,

On the other hand,

%(—ZF(g)ﬂg) = —r(@tr(R, — 2AGr k)

+ 206k — 2 Ric(g) - k))u,.
Hence adding,

3 .
Py (u,) = =2(A(tr k) — d6k)u, = 206mu, = 0. m

This is a rather surprising result; normally it is the total (integrated)
energy which is conserved in dynamical systems. But the pointwise
conservation of energy is actually a necessary condition for any theory to be
relativistically invariant. We shall see this more precisely below in § 3.

To get some idea of what the constraint = = 0 means, it is instructive
to look at the orbits of & in .# (Figure 2.3). We may think of all metrics
in the same orbit as being geometrically the same. The condition é7 = 0
means that the curve g(f) must start off perpendicular to the orbit
(L re. &), while the conservation law states that the motion continues to
cut the orbits perpendicularly. This space of orbits /2 is known as

M

THE CURVE {9 (1)
k(t)=g (1)

ORBIT OF g = {(n‘I P gl ne.ﬁ}'

Figure 2.3
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superspace and has been studied fairly extensively; see Fischer [1]. Super-
space is not a manifold, but rather is a stratified set. One of the most
important results in this regard is the “slice theorem’ proved by Ebin [1].

In order for the Hamiltonian analysis to go through compietely, we have
to restrict our attention to a subset € of T.Z:
€ ={(g.h|3h-h— (trh? —2r(g) =0 and & — (tr k)g) = O}
Unfortunately, it does not seem that % is a submanifold of T.# ; singulari-
ties occur at metrics which have nontrivial isometry groups. These singulari-
ties are sort of rare since there is a theorem, due to Ebin [1], that almost
all metrics (an open dense set) have no nontrivial isometries. However, it
is not necessary for our purposes that € be a submanifold. The important
fact is that € is invariant under the flow—the integral curves starting at
points in %, remain in €’; this is precisely the meaning of the:two constraint
theorems just established.

Recall that in hydrodynamics we had the “constraint’ dv = 0, and
that the Hodge theorem was basic in this regard. Similarly there are basic
decomposition theorems related to the constraint set % due to Deser [1];
See also Berger-Ebin [1]. These decompositions are basic to analyzing
the geometry of %, but we do not go into that here; cf. Fischer-Marsden
[4] and Brill-Deser [1].

On %, the equations of motion 2.4.3 simplify to:

og

"
) ok
P k x k — }(tr k)k — 2 Ric(g)
since ## = 0. Conversely, one can show that a solution of (2) with d and
A initially zero maintains these conditions, so 2.4.3 will hold. The
difficult term here is the Ricci tensor which is quasilinear (linear in the
highest order derivatives); all the other terms are purely algebraic. In some
cosmological dust models, it is possible to neglect Ric(g), and in these
cases Bardley-Liang-Sachs [1] have obtained explicit solutions.

Warning. One must be careful in interpreting 2 as the “physical”
energy density. Indeed, in any region where no matter is present we will
have # = 0. However, there may in fact be gravitational radiation
carrying gravitational energy across such a region. For more on this
point, see Arnowitt-Deser-Misner [1, 2], and Brill-Deser [1].

2.6 Remarks on existence of solutions -

The original theorem concerning existence of solutions for the Einstein
system (which is basically (2) above) is due to Fourés-Bruhat [1]. The
result was improved on by Lichnerowicz [1] using Leray systems. See also
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Choquet-Bruhat [1] and Dionne [1]. The method involves the theory of
second order partial differential equations which are quasi-linear and
“strictly hyperbolic.”” Actually, there is a simpler theory of quasi-linear
Jirst order systems which is applicable here, as was observed by A. Fischer
(cf. Fischer-Marsden [2, 3]).

The way this goes is a bit complicated and will not be presented in
detail here. However, we will give the intrinsic geometrical definitions, as
they should be of some interest to geometers. We will illustrate with the
wave equation how one reduces a second order system to a first order one.
The method for relativity is more complicated, but the basic idea is the
same.

First of all let us consider the linear problem in R”: Let u be a vector-
valued function u:[R» — [R™, The system

ou & .. . 0u

o~ & g T B

is said to be symmetric hyperbolic if the m x m matrices A? are symmetric
for all 1 =i = n. The system is first order and linear in u. Under fairly
mild restrictions, 4%, B should be of class H®, s> (n/2) + 1, there
exists a unique solution u, in H* (all time) for any initial condition #, in
He. This result is due basically to Petrovsky [1], Friedrichs [1], and others.
A proof may be found in Courant-Hilbert [1] Vol. II; see also Kato [3],
Dunford-Schwartz [1], and Chernoff-Marsden [1}. Using standard
techniques of reducing second order systems to first order, this theorem
may be used to solve the wave equation in R~:

M

2.6.1 EXAMPLE. The wave equation.
The equation is

2
Z—t£= Vi f=1G .. Xm0,
Put, formally,

B f ] B Uy ]
/A
ot U
o
ox" “n
K/

| o¢ | _un+1_
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Then the wave equation for f is the same as the following symmetric
hyperbolic system for u:

d

512_0 = Upp
zu_l_ — aun+1
ot ox'

aun aun—i—l

ot ox"
Oityyy  Ouy Oy
el R,
o T T
In this case
00
00 1
0o 0 .
AV = etc
01 ... 0

are symmetric (n + 2) X (r + 2) matrices. ‘

Thus, using the linear theory for general first order symmetric hyperbolic
systems, we get an existence theorem for the wave equation, namely that
if (fi, (9fy/0F)) € H** x H° there is a unique solution f, € H**!, —o0 <
t < oo, satisfying the given initial conditions.

The hyperbolicity of (8%//91%) = A% is reflected in the symmetry of the
At If we had used (9%f/0¢?) = —A?, the 4¢ would not have come out
symmetric—the Cauchy problem in this case is not well posed.

How do we do this invariantly? Well, we consider a vector bundle
m:E — M and sections u: M — E. Let J'(E) be the first jet bundle; its fiber

over xe M is
JYE), = L(TM, E;) ® E,.

A section u of E gives a section j(u) of J(E); the two components of j(u)
are Du and u. More precisely, we assume E has a connection and let Du
be the horizontal part of Tu; cf. Palais [1].
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A first order linear operator may be regarded as a map
AJYE)—~E

linear on fibers and such that the following diagram commutes

o~

A
JYE) —> E
N
M

Then 4 s j(u) reduces, in the case of R, to > A,(0u/ox?) + B-u as we
had before. Let us write, conforming to earlier notation

Aojy=A-Du+B-u

(the two components of A), so 4:L(TM, E) — E.
Suppose now that we have an inner product { , ), given on each fiber E,,
as well as the connection.

We call 4 symmetric hyperbolic when the following condition holds:
Jor any sections u, v of E, (4 -ju),v) = {j), 4-v). (S.H)

We now shall explain the symbols appearing in this definition. Here j(u)
is the first jet of u (in coordinates, (Du, u)) and u® is the corresponding
section of the dual bundle E*, Now recalling that 4 is a map

A L(T,M, E)—E,
observe that we can also regard 4 as a map

A:E,— L(E*, T,M)

as follows: let uy € E,, y € E7, l € Ty M and setl, € L(T,M, E,), 1, (v) =
I(v)uy. Then let

(Aupyy)D) = 7(4(,)

Now #” is a section of E*, so j(u") € L(T,M, E}) ® E¥ and (j(u?), A - V)is
the natural pairing between

L(T,M, E* and L(E* T,M)
given by

o, 7 tr(7 o ).

This completes the explanation of condition (S.H.).

One easily sees that in [R” this condition reduces to the earlier case.
The point is that most of the theory works well in this context, provided
M is complete Riemannian, and the sectional curvature is bounded above.
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One requires 4 to be H?, a condition which also depends on the metric on
M see Fischer-Marsden [2] and Chernoff-Marsden [1] for details.

Now consider the nonlinear problem in R™. In this case we have a
system of the form

% _ s i o
Py ; A¥x, t, u) " + B(x, t, u),

where the 4° and B are matrices which are polynomial in u (or more
generally, satisfy Sobolev’s “condition T"°; cf. Sobolev [1]). The system is
quasi-linear and the matrices 4 are symmetric. The nonlinear theorem is
obtained from the linear theory by adapting the Picard method. In this
case also, unique solutions exist in /°, but only for short time, in contrast
to the linear theory. This makes sense on vector bundles in much the same
way as the linear case; we just require 4 to be linear in the first factor Du.
The symmetry condition is unchanged.

The Einstein system (2) in § 2.5 above is rather like the wave equation
and one can show that on the appropriate bundle, obtained in a way not
unlike that for the wave equation, it is symmetric hyperbolic.

The verification that it is symmetric hyperbolic uses “harmonic co-
ordinates”; cf. Lichnerowicz [1].

Thus we get existence and uniqueness of smooth solutions for short time
(which can be extended to maximal solutions as well). These solutions
depend continuously on the initial data.

In case that M is noncompact, if a section u of the bundle 7: E — M is in
H*, then this means, intuitively, that it goes to zero at co. For relativity
one usually requires an asymptotic condition; for example fix a metric g,
(such as the spatial part of the Schwartzchild metric on R3) and require
instead that our solution g(¢) be asymptotic to g,, that is, g(t) — g, is in
H* on a neighborhood of co. Under certain mild restrictions on g, the
existence theory goes through in the class of metrics which are asymptotic
to g,.

This existence theory might be useful for finding some non-trival
solutions to the Einstein system which exist for all time without singulari-
ties (a conjecture of S. Deser). This uses the geometry of %, the slice
theorem of Ebin [1], and most importantly the idea of the total mass of
a geometry (Brill-Deser [1]); see Fischer-Marsden [4] and Marsden [2].

Such a result is interesting because, in the presence of matter, one
expects singularities to develop, as explained in professor Kundt’s lectures.

2.7 The Einstein field equations and the dynamical equations

Now we wish to return to the relationship between the four geometry
and the evolving three geometry.
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Let g, = 3g,;(x, 1) dx* dx’ be a curve in .. Think of this as sweeping
out a 4-manifold as mentioned in the introduction. We want to construct
the full spacetime metric Zap(x, t) (as usual, Greek indices run from 0 to
3, Latin from 1 to 3). This is straightforward: Put V = M x R and on v,

efine

8up(x, 1) = g;; dx* dx? — di? = x".

Clearly, this is a special Lorentz metric with 8o = —1, go; = 0; we shall
see how to get the most general ones presently. This construction is hardly

remarkable; it can be done for any curve g, in 4. What is remarkable is
the following:

2.7.1 THEOREM. g, is Ricci-flat (that is, 8.p On V satisfies the Einstein
vacuum field equations) <>

(1) %g satisfies the equations (2) of § 5 and

(2) o = 0, dm = O—the energy and divergence conditions are satisfied:
(that is, (g,, k,) lies in €)

REMARK. This theorem (and a more general one to follow), establish an
equivalence between a geometrical condition (R.p = 0) in the 4-geometry
and the Cauchy (evolution) problem for %. This is precisely the way in
which the field equations are interpreted as equations of motion; i.e., as
a dynamical system.

PrOOF OF THEOREM 2.7.1 (cf. Wheeler [1]). Given ¥ = M x R and
the metric g,,(x, 7) given by (1), 8i(x, 1) is the induced hypersurface
metric on M x {t} = M, The necessary additional information comes
from the second fundamental form and the Gauss-Codazzi equations,
which describe the extrinsic structure (second fundamental form) of M,
as an embedded submanifold. The second fundamental form has a simple
expression. K. Yano [1], Ch. 5 §5 is a good reference for the basic
definitions and geometry of embedded hypersurfaces which we shall need.
In particular for a hypersurface M < V with unit normal Z, the second
fundamental form S(X, ¥) is defined by S(X, Y) = (H(X), Y), H(X) =
VxZ, (the Weingarten equation). There is a change in sign over what is
in Yano since (Z, Z) = —1 rather than +1. We shall need:

2.7.2 LeMMA. The second fundamental form of My < V for M, V, % as
above, is given by

1 .
(1) Sy = 5* = %ki:i'



250 JERROLD E. MARSDEN et al.

ProoF. By definition, S;; = Z;; where Z* = (0, 1) is the unit normal.
Now Z, = (0,—1)s0S;; =0 — I'},Z, = I'Y;. But one easily computes
from the formula I'j, = 2g *(Zurv + Gvrwy — Zuv.s) that TY; = 3(9g,,/00).

n

This lemma therefore gives the geometrical significance of the “velocity”’
k; it is just (twice) the second fundamental form. The tensor S measures
the difference between the covariant derivative on ¥ and that on M via
the Gauss equation:

where 4V is the connection of V, 3V that on M (compare the expression
for S(X, X)as the difference between the sprays that we used in 1nterpret1ng
the pressure in hydrodynamics earlier).

Now we come to the Gauss-Codazzi equations; they are quite general

for any embedded hypersurface. First, the Gauss equation states: for
X, Y, U, Wtangent to M,

WRX, Y, U, W)=3R(X, Y, U, W)+ {S(X, W)S(Y, U)

This follows very easily from the definitions (Yano [1], p. 94). For R we
use the standard definition:

RX, V)Z =VxV3Z — VyVxZ — Vix 72
In coordinates; the Gauss equation reads as follows:
@ *Rijia = *Ryja — 1SuSi — SiSul-
Similarly the Codazzi equation is:
‘RX,Y,U,2)=(CVS)(X, U, Y)- ((VS)(Y, U, X)
where we use (VS)(Y, U, X) = (VxS)(Y, U) or in coordinates,

3) Ry = Silc]a' - Sk:i]i'

(Yano [1], p. 95), where the covariant derivative is taken on M, and Zis a
unit normal.

This does not yet give a complete decomposition of the curvature tensor
because we do not have a formula for *R(Z, X, Z, Y). This involves more
than just M, its metric structure and S. In fact it depends on having a
whole family of hypersurfaces M, and knowing S on each hypersurface.
This formula was worked out in general by Schouten and Struik, a
convenient reference being Abraham [3]. In our case, the formula may be
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worked out directly from the definition
‘RZ,X,Z, Y) = (R(Z,X)Z, Y) = (V;VxZ, ¥) — (VxV,Z, Y)

+ (Viz.x:1Z, )
Taking X = (0/0x9), ¥ = (8/0x"), Z = (9/0¢) gives, in our case, using
Si = VyuZ’ = 77}, and the formulas

(VW) = Wy = A IE,w

ot
&
= aai +Th W+ Thw
k
: og,; .
=—at—+0+%glk—g—”W‘
ot
the result:
0
4R0i09’ = (’a'; Sﬁ) 8 + (8 X 8);
or

“Roio; = ( i) — Siki; + (S x 8),
so by 2.7.2 we finally get:

0 1 0k;;
4 4
4 Ry, = Y Sy — (8 X 8)y = i.a_tj — ik X k).
We now have the information needed to complete the proof of 2.7.1.
Assume “R,; = 0. Then using (2), (4) and Yano’s conventions on Ric,
0= 'R, = *g* 4Rou‘7'ﬁ = +*Roi; — & “Ryiis
- {l ok
20t
which gives the correct equation for 0k/o.
Similarly using (3),
0= "Ry, “ *Ryo = """ Ruon
= %(kfw - Z:h')
= —}0(k — (tr k)g)

— ¥k x k)} + {Ric(g) + {(tr bk — (k x k)]}

which gives dz = 0. Finally

- 4 __ 4,84 _
0="Ryp = gaﬁ RuOOﬁ = ‘3gkl 4choz

10k :
- 3gkl(2 akz 3k x k)kl)'
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Substituting in the equation for 0k/0t gives 0 = —45€(g, k), the energ);
condition.
The converse is proved by retracing the steps. H

3. The lapse and shift functions

We now want to generalize the analysis in § 2 to allow more general
representations of the four metric than

6)) Zup Ax* dXP = —dt® + g,; dx* dx’.
B £

This may be achieved by subjecting g,s to an arbitrary coordinate trans-
formation. Indeed for any Lorentz metric g,; and spacelike hypersurface
M,, we can bring g,, into the form (1) by choosing Gaussian normal
coordinates; ie., a standard tubular neighborhood defined by the
exponential map. This is easy to check and is well known (cf. Synge [1]).
In other words, the evolution equations we have derived previously ((2) in
2.5) correspond to the use of Gaussian normal coordinates in the space time.
Physically, these coordinates may be described as follows. From M, we
consider freely falling observers who start out orthogonal to M, (i.e., start
out “at rest’’). The coordinates on M, and the proper time as measured by
these observers then defines the Gaussian system.

If a set of observers start off in relative motion to the above ones, and-

if they measure time differently, they will generate an isometric spacetime,
but will see the 3-geometry evolving differently. The relative motion is
described by the “shift> and the new clock rates by the “lapse.”” By this
procedure we recover the full coordinate invariance of the spacetime.

We can look at the same procedure in a slightly different way. Starting
with our 3-manifold M = M,, we can choose a completely arbitrary
congruence of timelike curves through M, subject only to the condition
that the new parameter ¢’ be zero on M, (this is no restriction). Since M, is
compact, there will be a finite #'-interval in which the 3-manifolds M,
defined by # = constant are all spacelike. Thus this new congruence
determines a new curve g, in M, satisfying §, = g,; and the curve g, will
satisfy a different set of evolution equations than those satisfied by g,.
However, g, and g, both represent the same spacetime; thus it is essential
to find the relationship between the two curves. To do this, we shall
introduce the lapse and shift functions.

Generally, in this dynamical approach we are restricting ourselves to
a small interval of ¢ € R. When a singularity develops one may require
other procedures to develop the spacetime further. Such procedures are not
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well developed; cf. Geroch [1]. We refer also to Professor Kundt’s
lectures for these matters.

We begin by introducing the shift. The lapse will be discussed separately
below.

3.1 The shift

A shift function is a given time-dependent vector field X, on M. Let 7,
be its flow starting at the identity. The geometric picture for this is that our
arbitrary congruence of timelike curves through M, is parametrized by
requiring the surface ¢’ = constant to be identical to those given by
t = the same constant, in Gaussian coordinates. Then the only thing
happening is a coordinate transformation within the surface itself via a
one-parameter family of diffeomorphisms on M. This is a shift.

Let g(¢) be the solution for no shift with initial values g,, k, on M,. Let
£(¢) be the solution with the shift.

We have an induced coordinate transformation of M x R given by

G, )= (%), 1) = (%, 7).
This transformation (thought of actively) changes the metric
8up Ax* dXP = —dt? 4 g, dx? dx
into the form
G dx*d7? = —(1 — X - X) di®* — 2X, di d%* + g,; d%* d%'.

Note that we require X+ X < 1, or the relative velocity of our two
observers must be less than that of light ¢ = 1. Thus the solution g, is
required to be such that g,; will be Ricci-flat. But § = (7;")*g so we can
easily obtain the evolution equations for ¢ from those of g. Letting
k = (i) *k, k = 0g/0t, we get this system:

of -
==k —Lxg

ot x8
(D -

ok - . .
P 3(k) — 2 Ric(g) — Lxk
where
S;(k) = k x k — I(tr b)k.

These are the evolution equations for g; they differ from those of g by
just an additional Lie derivative. In .# we have the picture shown in
Figure 3.1. Note that g, is perpendicular to the orbits, while g, is not. They
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both intersect the same orbits at the same #; thus they determine the same
curve in superspace.

Notice that (1) is more complicated than the evolution equations with
X = 0 because of the additional terms Lyk, Lxg. However, the solution
is obtained from the solution for X = 0 once we know the flow of X. This
is rather like the procedure one uses in the Cauchy method of charac-
teristics (i.e., the solution of 9f/ot = — > X*(¢, x)(9f]0x?) is f(¢t,x) =
Jo(m7(x)) where 7, is the flow X = (X1,..., X7)). ‘

NOT SHIFTED

SHIFTED BY Tlf

THE ORBITSOF & IN M _
(THE POINTS OF SUPERSPACE)

FiGcure 3.1

We wish to stress that the shift X is to be prescribed before hand. It is
not evolving according to any equations (unless some are imposed for
special reasons).

For X =0 we have seen the precise sense in which the evolution
equations (and the constraints) arise from a Hamiltonian system
(8§ 2.4, 2.5). There remains the same problem for the equations (1) with
a shift,

This can be done very simply and naturally as follows. (Compare
Arnowitt-Deser-Misner [1] for another approach.) Consider the enlarged
configuration space & X .# and the map

QDX M>D XM

(1, & = (1, 7*g).

Now consider our original system on & x .# with the first factor just
being ignored (a degencrate variable). We transform this by @ to obtain
another degenerate system on & X . ; for example the metric is easily
worked out to be

(2) (?n,n)(Xls hl, X2a hz) = gg(hl + LXlon—lga h2 + LXzor’—lg)
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which is a well defined degenerate metric on & x .. Similarly

3 V(n,8) = V(g
is the potential. Thus we have constructed on & X 4 a metric and a
potential. The following is almost obvious from our discussion:

3.1.1 THEOREM. The equations of motion (1) are consistent equations for
the metric & and potential V on D X M, in the sense defined in § 1. The
vector field X; may be arbitrarily specified.

There is another way of looking at this which is analogous to what
happens in hydrodynamics. Namely, let &7 denote the set of maps
g:M — S,(M) which cover some 7 € Z. Then &/ becomes a vector bundle
over @; w: 9/ — 2 with fiber isomorphic to the sections of S,(M). In
particular we can restrict to 7, corresponding to the positive definite g’s.

Now &/, is diffeomorphic to Z x # in two ways: Let g € &7, n(g) =
neg.

G X M—Ay—>D X M
(n, (r)*(gon =g g g0m)
The difference is, of course, just the map ® above. These ways of realizing
o/yas Z X M are analogous to the two ways one realizes TG as G X ¢
by left and right translations (G is a Lie group, # its Lic algebra). The
transition is that from “body’’ to “space’’ coordinates (cf. Arnold [1}), or
roughly the difference between a stationary and a moving frame.

Thus 7, is analogous to T’ &, in hydrodynamics; i.e., to Lagrangian
coordinates while 2 x .# is analogous to 2,° T,%,, or Euler coordinates.

It is a good exercise to write down the metric and spray intrinsically
on the manifold &7, a task which we leave to the reader.

3.2 The lapse

The shift takes care of coordinate changes in M. To rescale the time
parameter, one introduces the lapse function N:R x M — R. Let 7 =
C®(M; R), a vector space over [R under pointwise addition. Let £, be a
curve in 7 with & = 0 = identity in 7. The idea is that £,(m) is the
setting of a clock at m € M. Define the lapse function by N(z, m) =
dé&,(m)/dt, and consider only curves &, such that N,(m) is positive (time
is increasing). Alternatively given the lapse function the clock settings
may be obtained by integration.

Define a Lorentzian metric on M X [R by setting

@ gup dx"dx’ = —N"df* + g;; dx' dx’
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(in this section we are ignoring the shift). The evolution equations for
this g turn out to be

% _ Nk =4
ot
@) .gif = NS,(k) — 2N Ric(g) + 2 Hess N

where Hess N = Ny,
and we have the following

3.2.1 THEOREM. With N as described, the space time (1) is Ricci flat
(R, = 0) <> the evolution equations (2) are satisfied and the constraints
H =0, 6 = 0 are satisfied with k = g|N.

The proof is a straightforward generalization of the argument given in
2.7.1. We leave it to the reader to make the necessary adjustments. Notice
that Vis still M x R, but ¢ is no longer the proper time. The relationship
between ¢ and the proper time is worked out below.

Two questions immediately arise:

(1) In what sense are the evolution equations (2) Hamiltonian? If we
want N to be arbitrarily specifiable, then the appropriate configuration
space ought to be J X  rather than .#; and the correct Lagrangian
L would then live in T(J X .#) rather than in T.Z4.

(2) Is there a geometrical way to pass from the solutions for one N to
those for another N'?

3.3 The Lagrangian on J X .#

Recall that the Lagrangian on ./ is given by L(g, h) = ¥9,(h, h) +
2 37 7(g) du,. This can be written in the form L(g, ) = [, L(g, k) du,;
this is obvious from the definition of 4. %’ is called the Lagrange density.
Bearing in mind the classical way of obtaining relativistic homogeneous
Lagrangians on T(R X M) (see Lanczos [1] p. 121, Chernoff-Marsden
[1]), we define L: T(J X M) =T x T x T.# — R by

3 L N, g, b) = J NZ (g, %) dug

(on the subset where N > 0). This Lagrangian is necessarily degenerate. In
the general case of degenerate Lagrangians, there may not be consistent
equations of motion. For the classical extension of L to T(M x R) by
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L(t, s, v) = sL(v/s), there is no problem about the existence of its
Lagrangian vector field. One can easily check that the most general such
second order vector field is given by

Z(t, 2, v) = AZ(@) @ alt, 1)

where o is any second order equation on TR (cf. Abraham [2], p. 136).
The fact that « can be arbitrarily specified reflects the degeneracy.

We should point out (a remark of A. Taub) that the choice of L
as defined by (3) is closely related to the 4-dimensional approach em-
bodied in the 4-dimensional variational principle (cf. Adler-Bazin-Schiffer
(1D

In case of 7~ x . there will not exist consistent equations of motion
because of general considerations (§4 below). We must restrict to the
subset of constraints,

3.3.1 TueoREM. Consider the LagrangianL defined by (3) on T(7~ X ).
Let € be the subset of T(F X M) on which ém =0, # = 0. Then at
points of €, consistent equations of motion exist and are given by (2) of
§ 3.2 above. Solution curves map € to €.

The fact that the equations leave dw = 0, # = 0 invariant may be
proved as before. Surprisingly, the fact that these are consistent equations
for L is not obvious, but is tied up with the condition 5# = 0. We explore
this aspect next.

3.4 Relativistic Lagrangians

In a “relativistic’” theory, one requires that N should be arbitrarily
specifiable consistent with the Lagrangian. We shall now prove that this
implies that J# = constant in time (where 5# is the energy density of the
unextended Lagrangian.#). That this must be the case has been recognized
by Misner [1]; see also Gerlach [1] and Tomonaga [1]. R. Sachs has
remarked that the result is analogous to the fact that for a system of
relativistic particles, the Hamiltonian which is derived from the Lagrangian
of the system is identically zero (cf. Lanczos [1], p. 320).

Note that external fields are not allowed—one can “tell time’ by
looking at the fields. The constant value of S is often zero, but as Sachs
has pointed out, in some dust models, it is nonzero.

3.4.1 TeeoreM. (i) If a Lagrangian vector field Z for L (defined on
T(T x M) above) exists at (&, N, g, h) then it must be a second order
equation provided that it is second order in either § or g.
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(il) In order that Z should exist as a second order equation at (£, N, g, h),
and that N be arbitrarily specifiable, that is, that the ““degenerate direction”
is all of 7", it is necessary that for any curve (£(t), N(t), g(¢), h(t)) tangent
to Z we have

%{%(g’ %).%J =0, where %(g, ]%) = .2-(.]%_]% _ (tr ]%)2) —21(g).

PrOOF. (i) In general the relation between Z and L on a manifold B is the
Lagrangian condition

207, )(Z(@), w) dE(v) - w
on TB (see § 1.4 above). If welet Z = (Z,, Z,) locally on 7B, thlS condition
reads as follows: for all e, e, we have
DD, L(u,e) e, e — D;L(u,e) e, + DyDyL(u,e) ey e
= DzDzL(u, e) reéy” Z]_ - .D]_DzL(u, e) * Z]. ‘e

+ DyD,L(u, ) Z, - e, — Dy D;L(1t, €) - Z, + €.
These split up into two conditions:
) DyDyL(u, e) - Zy - ey = DyDyL(u,e) e, e
and
(2) DD, L(u,e) e, e — D, L(u,e) e, = DyD,L(u,e) e, Z;

- D1D2L(u, e) ‘ Z]_ e — D2D2L(u, e) * Zg €4,

In general, we cannot conclude from (1) that Z;(u, ¢) = e because L is

degenerate.

Now let us turn to the case at hand. Let us incorporate y, into £ so we
can briefly just write

L g N, b =fN£f(g, %)

We also suppress the fact that & depends explicitly on Dg, D’g which
is irrelevant for the present discussion.

Using obvious notation, the derivatives of L are easily worked out to
be the following:
(@ DL(&, 8 N, b)- (5’ 15

= derivative of L with respect to (&, g) in direction (£, )

A
=fNag$ (g, ﬁ) ' 8
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(b) D,L(&,g,N,h)- (N, B)
= derivative with respect to the velocity variables (N, %) in direction

(N, b
“far(ut) - frasod) o furlit) o

(©) DyD,L( g, N, by - (& 8- (N, b

h h h -
= (7o, 2(g, ¥9,8,2(s, 2o (oa2(a ) 500
f (g ) f (gN) N+f”h (gN) &

(d) D2D2L(E’ g,N,h)'(N, ﬁ)'(N’h)

- W % h K\ . h
_ Na%z(,—)-—-— faz,?(,—)-h-—.
f \eN) N N T ey Y

Note that in the computation of the second derivative of L with respect to
the velocity variables, two pairs of terms canceled out. Now let us use this
expression to write out condition (1). Let us write Z,(&, g, N, k) = (£, §)
for convenience. Condition (1) splits into two conditions, taking respec-
tively e, = (I, 0) and (0, /). We get

.. AN B\ & h
1y 0=N823(,~)-—-~—fN82$(,—-)-—-—
()d fgth N N =S N NN
an

, B\ » h h » &
1y  0=-— 825,”(,—)-/1-— fa%z(,—)-h-—.
1) ffh g,N N2+ n gN N

Each of these conditions is equivalent to the single condition &k = Ng.
Thus if £ = N then & = g and vice versa. Hence (i) follows.
To establish (ii), we write out condition (2) which now becomes

D L(u,e)- e, = D, D,L(u,e) e e, + D,D,L(u,e)-Z,- ey.

Again we have a split into two separate conditions, taking respectively
e, = (¥, 0) and e, = (0, h). Letting Z = (N, h) we get:

’ AT h AT h
2) 0=fNag$(g,N) 'h—fNagahg(g,N) ‘h-

b

N
. B\ h B\ h
N 23’(,—) = ———fNazg( ) ==
+fN w\ey) N N 'N) NN
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and

@ fNa,,z(g,%)ﬁ =J'a,,ah$(g, %) hek —fNa,fg(g,ﬁ) g

N2
h\ » h
523(,—)'}1'—.
+[ae(er) ik

Condition (2)" is just the condition for Lagrange’s equation for (4 - N) =
k which we work out in a moment. .

For now we want to focus our attention on the nontrivial condition
(2)'. Since we are supposed to have complete degeneracy in 7, N is
arbitrary, so (2)’ is equivalent to

h h h
o=02(e ) - n—2 ag(,—)-h-—
g (gN) g Un gN N
. B\ h h AN
Nazz(,—)-—-—_a%g(,—)-—-—.
+ N EN) N v "8y NN

Setting & = h/N, this becomes

m h h h h h
2 oEag:;f( ,—)-h—agag(,—)-h-~_a2g(,—)-k-—.
@ &y W\& FEGALET N

Let us take a curve (§(9), g(2), N(t), h(2)) tangent to Z which we suppose
exists. Then (2)" says just that

0= g;{amg, K) -k — #(g, )}

or
d
= [#(g, k)p,] = 0.
5 [ (& el

This proves the theorem. m

Using condition (2)" above and the fact that &# is conserved for the
equations (2) of § 3.2, one can return to Theorem 3.3.1 and complete its
proof. It is straightforward but a bit tedious. We leave the task to the
reader. (It boils down to the fact that the gradient of —2 [y Nr(g) du, in
the DeWitt metric is given by —grad ¥ = —2N Ric(g) + $Nr(g)g +
2 Hess N; here we pick up the extra term Hess N. This is proved in the
same way as 2.4.2.)

3.5 The solution for a general lapse from N = 1

Next, we wish to explore the geometry of the Lapse function a little
further. Previously we saw a geometrical way to solve the Einstein system
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for general shift, if we knew how to solve it for X = 0. We want now to do
a similar construction for the lapse.

If we use a Gaussiannormal coordinate systemfor — N2 df? + g,; dx*dx/,
then as was pointed out earlier, in the new coordinates the metric takes the
form —di® 4 g;; d%¢ dx’. Now finding normal Gaussian coordinates means
just that we compute the geodesics normal to ¢ = 0 with initial tangent
vector of unit length, and use these to define a coordinate system. Thus if
we have the solution for a particular N we can construct one for N = 1.
What about the converse? That is answered by an equally simple con-
struction.

3.5.1 THEOREM. Let g be a solution of the Einstein system for N = 1.
Construct a four metric on R X M by setting

o —d
lg dx® dxP = —l\ﬁ—

+ %; dx* dx?

and find its Gaussian normal coordinates. In these new coordinates the
metric —dt® + g,; dx? dx* is transformed to —N?dt? + g,; dx* dx9 which
therefore solves the Einstein system for this N.

As one would expect, the proof is very simple. If we examine the
condition that new coordinates X* transform N to N = 1 (i.e., Gaussian
coordinates) we see that it is:

6x°)2 0x* Ox
k1

el g 222
o) T B 5z 550

0 0 k i
LR Ea

0 .
0x* 0x° 0x° ozt

Thus for any g, we can solve these partial differential equations for
X*(x") with initial conditions X*(0, x’) = (0, x’) by using Gaussian
coordinates. Similarly the condition that X*(x*) transform N = 1 to N is

ox%\2 ox* ox!
—N2 = — (_) Jr IA
o) T 8 g g

o7 o0 | g0 o

These have the same form as the previous equations with 1/N? for N2
and g;;/N? for g,;. Hence the theorem. M

0= i=12,3.
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3.6 The intrinsic shift

When we discussed the shift above, we saw that prescribing X, was the
same as prescribing arbitrarily a one parameter curve %, € 4. The curve
7, represents the “actual shift” rather than the shift vector field X,.

Similarly for a lapse N, we can introduce, and also prescribe arbitrarily,
the proper time function 7, a curve inJ . It is just the %° coordinate in
Gaussian normal coordinates. The relationship between the curve 7, €
and the lapse N, is however more subtle than in the case of the shift Xj.
For the case of the shift, X, o 7, is just the tangent to the curve 5, € 2,

E = X;o0%;
For the case of the lapse, however, we assert that the correct relationship
is:

) N, dr, 1

Tt 1+ Jgrad

where [|grad 7|| is computed with respect to the time-dependent metric.
Also 7, is taken to be the zero function on M (all clocks start at noon), so
that at ¢t = 0, N, = (dr,/dt);_o. (The meaning of &,(m) introduced earlier
is the proper time of the curve ¢ - (o, m) with m fixed, while 7,(m) is the
proper time along a geodesic; cf. Wheeler [1].)

To see the relation (1), we write the equations which relate a coordinate
system x* to Gaussian coordinates ¥* (see § 3.5):

e L () e
=T a2 0 £ Ql
@ N2 \0x | 0x* 0x |

oo _LoBeE  afex

Noxtox® T ¢ oxtaxt
Since =, = X%, the first equation yields
d'Tt 1

©d YT+ Ngrad e

The presence of the extra factor takes into account the fact that the lapse
in general depends on the space coordinates and therefore the proper time
function 7, pushes up the hypersurface M through R X M unevenly; see
Figure 3.2.

The question naturally arises if we can construct the rest of the Gaussian
system from , alone. Let the spatial coordinates be denoted ¢, so that
(v, @) are the normal Gaussian coordinates. The surprising thing is not
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that we can find ¢ (we could just use N for that) but that g is really a flow
of a geometrically interesting vector field on M so that it behaves just like
a shift. It describes the “tilting” of the Gaussian normal coordinates,
again due to the fact that the lapse N, depends on space and therefore
causes a tilting of the hypersurface. This tilting is described by ¢,; we
refer to its generator as the intrinsic shift of N.

R

o _~ SURFACES

" OF CONSTANT
PROPER TIME
LAPSE N#1

/"\/\/ M {t}
=

M

FIGURE 3.2

3.6.1 THEOREM. Let 7; be given. Then ¢, described above may be obtained
by integrating the time dependent vector field Y, on M given by

i e
Yt= il B —
V14 lgrad 7,
If p, is the flow of Y,, then @, = y; ™.

)grad 7, as follows:

PRrOOE. The condition on ¢, is, from the second equation of (2)
0r 00, _ 2 1 0 0m

ot or B oxlont
= N:T¢,  grad =,

dr\? 1
= (&) ————— T¢, grad
(dt)l ¥ fgrad 2 T BT
so that
do, (d'rt)( 1 )
£ _ (42} (—————| T, grad
dt dt/ \1 + |grad =,[? Py BTAC T,
= —Tg,Y,
where L
dr, 1
-1 Izgradq-t.

- ;t- 1 + [grad +,|
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Thus

1 do
1 ¢
"'—Y —_— T (e}

t Pt It

, (d _
=Tg7 o (—%0 Pe ) o Py
dt
= (¢7V) x Z, where Z, is the generator of g,.

It follows that ¥, = —(¢;") * Z, is the generator of the flow ¢;*. ®

Note. If Y is time-independent, then g, is the flow of ¥ = —Z.

In case the lapse N, does not depend on space, then N, = (dr,/dt), and
the relation of solutions (g,, k;) to Einstein’s equations with N = 1, X = 0,
and N, = f(¢), X = 0 is particularly simple. In fact if we define 7(f) =
{4 N, d2, then the solutions to the Einstein equations with N, = f(z),
X = 0, are just reparameterizations by 7(f) of the solutions (g;, k,) of
the Einstein system with N = 1, X = 0. We check this formally as follows.

3.6.2 PROPOSITION. Let (g, k):R — M X S,(M), t+ (g, k) be a
solution of the Einstein with N =1, X = 0. Then given N, = f(t) we
construct 7:R — R by setting 7(t) = {¢ N, dA. Then the solution of the
Einstein system with- N, = f(t) and X = 0 and the same initial conditions
(2o ko) is given by

g=gor and k=kor.

PROOF.
g0 = g6y (v =)
= N;k (7(1))
= Nk,
and

K (& = N& (r(1)
= Ny(Syunk((?)) — 2 Ric(g(=(#))
= NSy k() — 2N; Ric(z()). =

In this case, where the lapse is independent of the spatial point, we see
that ¥, = 0 as we expect.

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 265

BIBLIOGRAPHY
Abraham, R.
[1] *“Lectures of Smale on Differential Topology.” (mimeographed, Columbia,
1961).

[2] “Foundations of Mechanics,” Benjamin, 1967.
[3]1 Piecewise Differentiable Manifolds and the Space-Time of General Relativity,
Journ. Math. and Mech. 11 (1962) 553-592.
[4] Morphogenesis, Publications du département de Mathématiques de Lyon
(1972).
Abraham, R., and Robbin, J.
{1] “Transversal Mappings and Flows,” W. A. Benjamin Inc., N.Y. 1967.
Adler, S., Bazin, R., and Schiffer, M.
{1] “Introduction to General Relativity,” McGraw-Hill (1966).
Andrea, S. A.
[11 The Hodge Existence Theorem (I, II), Advances in Math. 6 (1971) 389.
Antman P., and Keller, J.
[1] “Bifurcation theory and Nonlinear Eigenvalue Problems,”” Benjamin
(1969).
Andronov, A., and Chaikin, C.
[1] “Theory of Oscillations™ (8. Lefschetz ed.), Princeton University Press
1949.

Antonelli, P. L., Burghelea, D., and Kahn, P. J.

[11 The Nonfinite type of some Diffy(M™), Bull. Am. Math. Soc. 76 (1970)

1246-1250 and Topology 11 (1972) 1-50.
Arnold, V.

[11 Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses
applications & Uhydrodynamique des fluids parfaits, Ann. Inst. Grenoble
16(1) (1966), 319-361.

Arnowitt, R., Deser, S., and Misner, C. W.,

{11 The Dynamics of General Relativity, in “Gravitation; an introduction to
current research,” ed. L. Witten, Wiley, New York, 1962.

[2] Dynamical Structure and Definition of Energy in General Relativity, Phys,
Rev. 116 (1959) 1322-1330.

Avez, A, )

[1] Essais de géométric riemannienne hyperbolique global—applications a la
relativité général. Ann. Inst. Four. Grenoble 13 (1963) 105-190.

[2] Le Probleme des Conditions Initiales, 163-167 in “Fluides et champs
gravitationnels en relativité générale.”” Colloques internationaux du
C.N.R.S. no. 170, Paris (1967).

Bardos, C., and Tartar L.

[1] About Backward Uniqueness for Evolution Equations and Some Related

Questions, Arch. Rat. Mech. and Anal. (to appear).
Bass, J.

[1] Les fonctions pseudo-aléatoire, Mémorial des Sciences Mathématique,
Fascicule CLIII, Gauthier-Villars, Paris (1962).

[2] Fonctions stationnaires. Fonctions de Corrélation. Application & la repré-
sentatis, Spatio-temporelle de la turbulence, Ann. Inst. H. Poincaré, 5
(1969) 135-193.



266 JERROLD E. MARSDEN et a/.

Batchelor, G. K.
[1] “The Theory of Homogeneous Turbulence,” Cambridge University Press
(1953).

Berger, M., and Ebin, D.
[1] Some Decompositions of the Space of Symmetric Tensors on a Riemannian
Manifold, J. Diff. Geom. 3 (1969) 379-392.

Birkhoff, G.
[1] “Hydrodynamics; a Study in Logic, Fact and Similitude,” Princeton
University Press (1950). .

Bishop, R., and Crittenden, R.
[1] “Geometry of Manifolds,” Academic Press, N.Y. 1964.

Bowen, R.
[1] Markov Partitions for Axiom A diffeomorphisms, Am. Journ. Math, 92
(1970) 725-747, 907-918.

Brezis, H.
[11 On flows of W*? vector fields, (private communication).

Brezis H., and Pazy, A.
[11 Semi-groups of nonlinear contractions on convex sets. J. Funct. An. 6
(1970) 232-281, 9 (1972) 63-74.
Brill, D., and Deser, S.

[11 Variational Methods and Positive Energy in Relativity, Ann. Phys. 50
(1968) 548-570.

Browder, F.
[11 Existence theorems for non-linear partial differential equations, Proc. Symp.
Pure Math. Am. Math. Soc. XVI (1970) 1-60.

Bruslinskaya, N. N. ‘
[11 The origin of cells and rings at near-critical Reynolds numbers, Uspekhi
Mat. Nauk. 20 (1965) 259-260.
[2] The Behavior of Solutions of the Equations of Hydrodynamics when the
Reynolds number passes through a critical value, Doklady 6(4) (1965) 724-
728.
[3]1 Qualitative Integration of a system of n differential Equations in a region
containing a singular Point and a Limit cycle, Dokl. Akad. Nauk, SSSR
139 (1961) 9-12.
Cantor, M.
[1]1 The group 23(IR™) (preprint).
[2] Thesis, Berkeley (to appear).
Cerf, J.
[1] Topology de certains Espaces de plongements, Bul. Soc. Math. France 89
(1961) 227-380.
[2] “Sur les diffeomorphismes de la sphére de dimension trois (I'y = 0).”
Springer Lecture Notes #53, 1968.
Chafee, N.
[1] The Bifurcation of One or More Closed Orbits from an Equilibrium Point
of an Autonomous Differential System, Journ. Diff. Equations 4 (1968)
661-679.

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 267

Chandresekar, S.
[1] “Hydrodynamic and Hydromagnetic Stability,” Oxford University Press
(1961).
Chernoff, P.
[1] Note on Product Formulas for Operator Semi-Groups, J. Funct. An. 2
(1968) 238-242,
Chernoff, P., and Marsden, J.
{1] “Hamiltonian Systems and Quantum Mechanics,” (in preparation).
[2] On Continuity and Smoothness of Group Actions, Bull. Am. Math. Soc.
76 (1970) 1044.
[31 Quantum Mechanics as a Lagrangian System, (preprint).
Chillingworth, D., (ed.).
[1] “Proceedings of the Symposium on differential equations and dynamical
systems.”” Springer lecture Notes in Mathematics 206 (1971).
Choquet-Bruhat, Y.
[11 Espaces-temps einsteiniens généraux chocs gravitationels, Ann. Inst. Henri
Poincaré, 8 (1968) 327-338.
[2] Solutions C® d’équations hyperboliques non linéares, C. R. Acad. Sc. Paris,
272 (1971) 386-388.
[31 New Elliptic System and Global Solutions for the Constraints Equations in
General Relativity, Comm. Math. Phys. 21 (1971) 211-218.
Choquet-Bruhat, Y., and Geroch, R.
[1] Global Aspects of the Cauchy Problem in General Relativity, Comm. Math.
Phys. 14 (1969) 329-335.
Chorin, A. J.
{11 Turbulence, Spectra and Equilibrium, Comm. Pure and Appl. Math. (to
appear).
2] Opnp the Convergence of Discrete Approximations to the Navier-Stokes
Equations, Math. of Comp. 23 (1969) 341-353.
Coddington, E., and Levinson, N.
(11 “Theory of Ordinary Differential Equations,” McGraw-Hill, N.Y. (1955).
Coles, D.
[11 Transition in Circular Couette Flow, Journ. Fluid Mech. 21 (1965) 385-425.
Courant, R., and Hilbert, D.
[1] “Methods of Mathematical Physics,” vol. I, I1, Interscience, New York,
1953, 1962,
Cronin, J.
[11 One-Sided Bifurcation Points, J. Diff. Eq’ns. 9 (1971) 1-12.
Deser, S.
[1] Covariant Decomposition of Symmetric Tensors and the Gravitational
Cauchy Problem, Ann. Inst. H. Poincaré VII (1967) 149-188.
DeWitt, B.
[1] Quantum Theory of Gravity, I The Canonical Theory, Phys. Rev. 160
(1113-1148), 1967.
[2] Space time as a Sheaf of Geodesics in Superspace, in “Relativity,” ed. M.
Carmeli, S. Fickler, and L. Witten, Plenum Press (1970).
Dieudonné, J. A. ’
[1] “Foundations of Modern Analysis,” Academic Press, New York, 1960.



268 JERROLD E. MARSDEN et al.

Dionne, P.

[1] Sur les problémes de Cauchy bien posés. J. Analyse Math. 10 (1962-3) 1-90.
Dirac, P. A. M.

[1] Generalized Hamiltonian Dynamics, Can. Journ. Math, 2 (1950) 129-148.
Duff, G. F. D,

1 {)ijfe{‘ential forms in manifolds with boundary, Ann. of Math, 56 (1952),
15-127.

[2] On Turbulent Solutions of the Navier-Stokes Equations (unpublished).
Duff, G., and Spencer, D. : '
[1] Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math.
56 (1952), 128-156.
Duff, G., and Naylor, D.
(1] ;‘Il;aggal Differential Equations of Applied Mathematics,” Wiley, N.Y.
Dunford, N, and Schwartz, J.
[1] “Linear Operators,” Vol. I, Interscience (1958).
Eardley, D., Liang, E., and Sachs, R.
[11 Velocity dominated singularities in irrotational dust cosmologies, Journ.
Math. Phys. 13 (1972) 99-107.
Earle, C. J., and Eells, J.
[1]1 A fiber bundle description of Teichmiiller theory, J. Diff. Geom. 3 (1969)
p- 19-43 (also Bull. Am. Math. Soc. 73 (1967) 557-559).
Earle, C. J., and Schatz, A.
[1] {g;’chlrggller theory for surfaces with boundary, J. Diff. Geom. 4 (1970)
Ebin, D.
(1] The manifold of Riemannian metrics, in Proc. Symp. Pure Math. xv, Amer.
Math. Soc. 1970, 11-40 and Bull. Am. Math. Soc. 74 (1968) 1002-1004.
Ebin, D. G., and Marsden, J.
(1] Groups of diffeomorphisms and the motion of an incompressible fluid, Ann.

of Math. 92 (1970), 102-163. (See also Bull. Am. Math. Soc. 75 (1969)
962-967.)

[2]1 Groups of diffeomorphisms and the motion of an incompressible fluid, 11 (in
preparation).
Eells, J.
[11 On the geometry of function spaces, in Symposium de Topologia Algebrica,
Mexico (1958) 303-307.
[2] A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966) 751-807.
Eells, J., and Sampson, J.
[1] llﬁggmonic Maps of Riemannian Manifolds, Am. J. Math. 86 (1964) 109~
Eliasson, H.
[1]1 Geometry of Manifolds of Maps, J. Diff. Geom. 1 (1967), 169-194.
Epstein, D. B. A.
[1] The simplicity of certain groups of homeomorphisms, Compositio Math.
22 (1970) 163-173.

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 269

Fabes, E. B., Jones, B. F., and Riviers, N. M.
[1]1 The initial value problem for the Navier-Stokes equations with data in L?,
Proc. Symp. Pure Math. 23 AMS (to appear)._
Faddeev, L. D.
[1] Symplectic structure and quantization of the Einstein gravitation theory,
Actes du Congres Intern, Math. 3 (1970) 35-40.
Feynman, R. P., Leighton, R. B., and Sands, M.
[1] “The Feynman Lectures on Physics (II),” Addison-Wesley Co. Reading,
Mass. (1964).
Finn, R.,
[1] On Steady State Solutions of the Navier-Stokes Equations, Arch. Rat.
Mech. 3 (1959) 381-396, Acta Math. 105 (1961) 197-244.
{2] Stationary Solutions of the Navier-Stokes Equations, Proc. Symposia Appl.
Math. 17 (1965) 121-153.
Finn, R., and Smith, D. R.
[1] On the Stationary Solutions of the Navier-Stokes Equations in Two Dimen-
sions, Arch. Rat. Mech. Anal. 25 (1967) 26-39.
Fischer, A.
[1] The Theory of Superspace, in “Relativity,” ed. M. Carmeli, 8. Fickler and
1. Witten, Plenum Press (1970).
Fischer, A., and Marsden, J.
[1] The Einstein Equations of Evolution—A Geometric Approach, J. Math. Phys.
13 (1972) 546-568. )
[2] The Einstein Evolution Equations as a First Order Symmetric Hyberbolic
Quasi-Linear System 1, Comm. Math. Phys. (to appear). II (in preparation).
[31 General Relativity, Partial Differential Equations and Dynamical Systems.
Proc. Symp. Pure Math. 23 AMS (to appear).
[4] The Existence of Complete Asymptotically Flat Space times (in prepara-
tion).
Flanders, H.
[1] “Differential Forms,” Academic Press, New York (1963).
Foias, C.
[1] Une remarque sur l'unicité des solutions des equations de Navier-Stokes en
dimension n. Bull. Soc. Math. France 89 (1961) 1-8.
Foias, C., and Prodi, G.
[1]1 Sur le comportement global des équations de Navier-Stokes en dimension 2.
Rend. Sem. Mat. Padova XXXIX (1967) 1-34.
Fourés-Bruhat, Y.
[1) Théoréme d’existence pour certains systémes d’équations aux dérivées
partielles non linéaires, Acta Math., 88 (141-225), 1952,
Friedrichs, K. O.
[1] Symmetric hyperbolic linear differential equations, Comm. Pure and Appl.
Math., 7 (1954) 345-392.
[2] “Special topics in fluid dynamics,” Gordon and Breach, N.Y. 1966.
Friefeld, C.
[L] One Parameter Subgroups Do Not Fill a Neighborhood of the Identity in an
Infinite Dimensional Lie (Pseudo) Group, in “Battelle Rencontes,” ed. C.
M. DeWitt and J. A. Wheeler, W. A. Benjamin (1968).



270 JERROLD E. MARSDEN et al.

Fujita, H., and Kato, T.

[1] On the Navier-Stokes Initial Value Problem, I, Arch. Rat. Mech. Anal.

16 (1964) 269-315.
Gerlach, R.

[1] The Derivation of the Ten Einstein Field Equations From the Semiclassical
Approximation to Quantum Geometrodynamics, Phys. Rev. 117(I) (1969)
1929-1941.

Geroch, R.

[1] ?2/2‘"5 415 a Singularity in General Relativity? Ann. of Phys. 48 (1968)

[2] Some recent work on global properties of spacetimes, Actes congrés
Intern. Math. 3 (1970) 41-46.

Golovkin, K.

(1] About Vanishing Viscosity in the Cauchy Problem for the Equations of Fluid

Mechanics, Memoire of Steklov Inst. XCII, Moscow (1966).
Gordon, W. ’
[11 The Riemannian Structure of Certain Function Space Manifolds, J. Diff.
Geom. 4 (1970), 499-508.
Graff, D.
[1] Thesis, Princeton University (1971).
Guynter, N,

[1] On the Basic Problem of Hydrodynamics, Trudy Fiz-Mat. Inst. Steklov,
2 (1927) 1-168. See also Izv. Akad. Nauk (1926) 1326, 1503 (1927) 621,
735, 1139, and (1928) 9.

Hall, W, S.

[1] The Bifurcation of Solutions in Banach Spaces, Trans. Am. Math. Soc. 161

(1971) 207-218.
Hartman, P.

[1] “Ordinary Differential Equations,” Wiley, N.Y. (1964).

[2] The Swirling Flow Problem in Boundary Layer Theory, Arch. Rat. Mech.
Anal, 42 (1971) 137-156.

Hermann, R.

[1] “Differential Geometry and the Calculus of Variations,” Academic Press,
N.Y. (1968).

[2] *“Lectures on Mathematical Physics (I, II)”, W. A. Benjamin, N.Y. (1971).
Herman, M. R.

(1] Simplicité du groupe de diffeomorphismes de class C®, isotopes a I'identité,

du tore de dimension n, C. R. Acad. Sc, Paris t. 273 (1971) 232-234.
Herman, M., et Sergeraert, F.

[1]1 Sur un théoréme d’ Arnold et Kolmogorov, C. R. Acad. Sc. Paris t. 273 (1971)

409-411.
Heywood, J.

{11 On Stationary Solutions of the Navier-Stokes Equations as Limits of
Nonstationary Solutions, Arch. Rat. Mech. and Anal. 37, No. 1 (1970),
48-60. See also Acta Math. 129 (1972) 11-34.

Hirsch, M., and Pugh, C.

[1]1 Stable Manifolds and Hyperbolic Sets, Proc. Symp. Pure Math. XIV, Am.

Math. Soc. (1970) 133-163.

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 271

Hirsch, M., Pugh, C., and Schub, M.

(1] Invariant Manifolds, Bull. Am. Math. Soc. 76 (1970) 1015-1019 and

(in preparation).
Hodge, V. W. D.

[1] “Theory and Applications of Harmonic Integrals,” Sec. Ed. Cambridge,
1952.

Holt, M. (ed) ~

[1] “Proceedings of the Second International Conference on Numerical
Methods in Fluid Mechanics,” Springer Lecture Notes in Physics, Springer-
Verlag (1971).

Hopf, E.

[1] Abzweigung einer periodischen Losung von einer stationaren Losung eines
Differential systems, Ber. Math-Phys. Sachsische akademie der Wissen-
schaften Leipzig 94 (1942) 1-22.

[2] A Mathematical Example Displaying the Features of Turbulence, Comm.
Pure Appl. Math. 1 (1948) 303-322.

[3]1 Uber die Anfanswert-aufgabe fur die hydrodynamischen Grundgleichungen,
Math. Nachr. 4 (1951) 213-231.

[4] Repeated branching through loss of stability, An Example, Proc. Conf.
on Diff. Equations, Univ. of Maryland (1955).

{51 Remarks on the Functional-Analytic Approach to Turbulence, Proc. Symp.
Appl. Math., XIIT, Amer. Math. Soc. (1962) 157-163.

[6] On the right weak solution of the Cauchy Problem for a quasi-linear equations
of first order, J. Math. Mech. 19 (1969/70) 483-487.

I’in, V. P. (ed).

[1] “Boundary Value Problems of Mathematical Physics and Related Aspects
of Function Theory” (I), Seminars in Mathematics (Leningrad) (5)
Consultants Bureau, N.Y. (1969).

Tooss, G.

[11 Contribution & la theorie nonlineare de la stabilité des ecoulements lami-

naires, Thése, Faculté des Sciences, Paris VI (1971).
TIrwin, M. C.

[1] On the Stable Manifold Theorem, Bull. London Math. Soc. 2 (1970)

196-198.
Itaya, N.

[11 On the Cauchy Problem for the System of Fundamental Equations Describing
the Movement of Compressible Viscous Fluid, Kodai Math, Sem. Rep.
23 (1971) 60-120.

Joseph, D. D. and Sattinger, D. H.

[1] Bifurcating Time Periodic Solutions and their Stability (to appear, Trans.

Am. Math. Soc.).
Jost, R., and Zehnder, E.

[1]1 A generalization of the Hopf Bifurcation Theorem, Helv. Phys. Acta, June

(1972).
Judovich, V.

[1] Non Stationary Flows of an Ideal Incompressible Fluid, Z. Vycisl. Mat. i.
Fiz. 3 (1963), 1032-1066.

[2] Two-Dimensional Nonstationary Problem of the Flow of an Ideal Incom-
pressible Fluid Through a Given Region, Mat. Sb. N.S. 64 (1964) 562-588.



272 JERROLD E. MARSDEN et al.

[31 Example of the generation of a Secondary Stationary or Periodic Flow
when there is a loss of Stability of the Laminar Flow of a Viscous Incom-
pressible Fluid, Prikl, Mat. Meh. 29 (1965) 453-467—J. Appl. Math.
Mech., 29 (1965) 527-544.

Kahane, C. .

[11 On the Spatial Analyticity of Solutions of the Navier-Stokes FEquations,
Arch. Rat. Mech. Anal. 33 (1969), 386-405.
Kaniel, S., and Shinbrot, M.

[11 A Reproductive Property of the Navier-Stokes Equations, Arch. Rat.
Mech. Anal. 24 (1967) 302-324.

[2] Smoothness of Weak Solutions of the Navier-Stokes Equations, Arch. Rat.
Mech. Anal. 24 (1967) 302-323.
Kato, T.
[11 On Classical Solutions of the Two-Dimensional Non-Stationary Euler
Equation. Arch. Rat. Mech. and Anal. 25 (3) (1967) 188-200,
[2] Nonstationary Flows of Viscous and Ideal Fluids in R ®, Journ. Funct. An. 9
(1972) 296-305.

[3] Linear Evolution Equations of “‘Hyperbolic” Type, Journ. Fac. Sci. Univ.
of Tokyo, Sect. 1, XVII (1970) 241-258.
Kiselev, A. A,, and Ladyzhenskaya, O. A.
[1] On Existence and Uniqueness of the Solution of the Non Stationary Problem
for a Viscous Incompressible Fluid, Tzvestiya Akad. Nauk, SSSR 21 (1957)
655-680.
Knops, R. J., and Payne, L. E.

{11 Or the Stability of Solutions of the Navier-Stokes Equations Backwards
in Time, Arch. Rat. Mech. Anal. 29 (1968) 331-335.

Kodaira, XK.
{1} Harmonic Fields in Riemannian Manifolds, Ann. of Math 50 (1949),
587-665.
Kolmogorov, A, N.
[1] The Local Structure of Turbulence in Incompressible Viscous Fluid for
Very Large Reynolds Numbers, C. R. Acad. Sci. USSR 30 (1941) 301.

[2] Dissipation of Energy in Locally Isotropic Turbulence, C.R. Acad Sci.
USSR 32 (1941) 16.

Kraichnan, R. H.

{1} The Structure of Turbulence at Very High Reynolds Numbers, Journ.
Fluid Mech. 5 (1959) 497-543.

[2]1 The Closure Problem of Turbulence Theory, Proc. Symp. Appl. Math.
X1, Am. Math. Soc. (1962) 199-225.

[3] Isotgopic Turbulence and Inertial Range Structure, Phys. Fluids 9 (1966)
1728-1752.

Krikorian, N.

[1]1 Differentiable Structures on Function Spaces (to appear, Trans. Am.
Math. Soc.).

Kunzle, H.
1] é)geégreglezate Lagrangian Systems, Ann. Inst. H. Poincaré (A) XI (1969)

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 273

Ladyzhenskaya, O. A.

(1] Solution ““in the large™ of Non Stationary Boundary Value Problem for the
Navier-Stokes System with two Space Variables, Comm. Pure and Appl.
Math, 12 (1959) 427-433.

[2] “The Mathematical Theory of Viscous Incompressible Flow” (2nd
Edition), Gordon and Breach, N.Y. 1969.

[3] Example of Nonuniqueness in the Hopf Class of Weak Solutions for the
Navier-Stokes Equations, Math. USSR-Izvestija 3 (1969) 229-236.

{4] (ed.) “Boundary Value Problems of Mathematical Physics and Related
Aspects of Function Theory” (11, III), Seminars in Mathematics (Lenin-
grad) (7, 11) Consultants Bureau, N.Y. (1970).

Lanczos, C.
[1] “The Variational Principles of Mechanics” {2nd Edition), University of
Toronto Press (1962).

Landau, L. D., and Lifshitz, E. M.
(1] “Fluid Mechanics,” Addison-Wesley, Reading, Mass., 1959.

Lang, S.
[1] “Introduction to Differentiable Manifolds,” Interscience, New York
1962. (Second Edition 1972).
[2] ““Analysis IL,” Addison-Wesley, Reading, Mass., 1969.

Lax, P.
[1] Cauchy’s Problem for Hyperbolic Equations and the Differentiability of
Solutions of Elliptic Equations, Comm. Pure and Appl. Math. 8 (1955)
615-633.

Leray, Jean

[1] Etude de diverses equations integrales non-lineares et de quelques problémes
que pose Uhydrodynamique, Journ. Math. Pures, Appl. 12 (1933) 1-82.

[2] Essai sur les mouvements plans d’un liquide vesqueux que limitent des
parois, J. de Math. 13 (1934). 331-418.

[3] Sue le mouvement d’un liquide visqueux emplissant I'espace, Acta Math 63
(1934) 193-248.

[4] Problemes non-linéaires, Ensign, Math. 35 (1936) 139-151.

[5] Lectures on hyperbolic equations with variable coefficients, Inst. for Ady.
Stud., Princeton, 1952.

Leslie, J.
[11 On a differential structure for the group of diffeomorphisms, Topology 6
(1967), 263-271.
121 Some Frobenius Theorems in Global Analysis J. Diff. Geom. 2 (1968)
279-297.
[3]1 On two classes of Classical Subgroups of Diff (1), J. Diff. Geom. 5(1971)
427-436.

Lichnerowicz, A. - .
[1] “Relativistic Hydrodynamics and Magnetohydrodynamics,” Benjamin,
1967.

Lichtenstein, L. '
[1] “Grundlagen Der Hydromechanik,” Verlag Von Julius Springer, Berlin,
1929,



274 JERROLD E. MARSDEN et al.

[2] Uber einige Existenzprobleme der Hydrodynamik homogener unzusammen-
driickbarer, reibungsloser Fliissigkeiter und die Helmholizschen Wirbelsatze
Math. 2.23 (1925), 89-154, 309-316; 26 (1927), 196-323; 28 (1928),
387-415, 725; 32 (1930), 608.

Lin, C. C.
1] ‘(‘The)Theory of Hydrodynamic Stability,” Cambridge University Press
1955).
Lions, J. L. .

[1] Sur la régularité et Punicité des solutions turbulentes des equations de
Navier Stokes. Rndiconti Seminario Math. Univ. Padova 30.(1960) 16-23.

[2] Singular perturbations and singular layers in variational inequalities.
in Zarantonello [1].

Lions J. and Prodi G.

[1] Un théoréme d’existence et unicité dan les equations de Navier Stokes en

dimension 2. C, R. Acad. Sci. Paris 248 (1959) 3519-21.
Marcus, M., and Mizel, V.

[1] Functional Composition of Sobolev Spaces, Bull. Am. Math. Soc. 78 (1972)
38-42.

Marsden, J. .

[1] Hamiltonian one parameter groups, Arch. Rat. Mech. and Anal. 28
1968 (362-396).

[2] Publications du Département de Mathématiques de Lyon (1972).

[3] The Hopf bifurcation for nonlinear semigroups (to appear);

[4] Smoothness of nonlinear semigroups, Can. Math. Bull. (to appear).

Marsden, J. and Abraham, R.
(1] Hamiltonian Mechanics on Lie Groups and Hydrodynamics, Proc. Pure
Math. XVI, Amer. Math. Soc. (1970) 237-243. '
Martin, M. H.
[1] The flow of a viscous fluid, I, Arch. Rat. Mech. Anal. 41 (1971) 226-286.
Mather, J.
[1] Appendix of Smale [2]
McGrath, F. J.

[1] Nonstationary plane flow of viscous and ideal fluids, Arch. Rat. Mech.

Anal. 27 (5) (1968), 329.
McLeod, J. B. and Serrin, J.

[1] The Existence of Similar Solutions for some Laminar Boundary Layer
Problems, Arch. Rat. Mech. Anal. 31 (1969), 288-303.
Meyer, K. R.

[1]1 Generic Bifurcation of Periodic Points, Trans. Am. Math. Soc. 149 (1970)
95-107.
Milnor, J.
[1] “Morse Theory,” Princeton University Press (1963).
Misner, C.
[1] Feynman Quantization of General Relativity, Rev. Mod. Phys. 29 (1957)
497-509.
Montgomery, D.
[1] On Continuity in Topological Groups, Bull. Am. Math. Soc. 42 (1936) 879.

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 275

Mortrey, C. Jr., and Eells, A.
[1] A Variational Method in the Theory of Harmonic Integrals 63 (1956)
91-128.
Morrey, C. B, Jr.
[11 A Variational Method in the Theory of Harmonic Integrals II, Am. J. Math.
78 (1956) 137-170.
[2] “Multiple Integrals in the Calculus of Variations,” Springer, 1966.
Moser, J.
[1} On the Volume Elements on a Manifold, Trans. of Amer. Math. Soc. 120
(1965), 286-294.
Naimark, J.
{1] Dokl Akad. Nauk SSSR 129 (1959) No. 4.
[2] Motions Close to Doubly Asymptotic Motion, Soviet. Math. Dokl. 8
(1967) 228-231.
Nash, J.
{11 Le probléme de Cauchy pour les equations differentielles d’un fluide
general, Bull Soc. Math. France 90 (1962), 487-497.
Nelson, E.
{1] “Topics in Dynamics I, Flows.” Princeton University Press (1969).
VonNeumann, J.
[1] Recent Theories of Turbulence, Collected Works VI, Macmillan, N.Y.
1963, 437-472.
Nirenberg, L.
(11 On Eliiptic Partial Differential Equations, Annali delli Scuola Norm. Sup.,
Pisa 13 (1959) 115-162.
Omori, H.
[1] On the Group of Diffeomorphisms on a Compact Manifold, in Proc. Symp.
Pure Math, XV, Amer. Math. Soc. (1970) 167-184.
[2] Regularity of Connections, Notes, Univ. of Warwick, Coventry, Feb. 1971,
{31 On LL.H. Properties of Mapping Spaces (to appear).
Orszag, S. A.
[1] Analytical theories of turbulence. J. Fluid Mech. 41 (1970), 363-386.
Palais, R.
[1] “‘Seminar on the Atiyah-Singer Index Theorem,” Princeton, 1965.
{21 On the Homotopy Type of Certain Groups of Operators, Topology 3
(1965) 271-279.
[3]1 Homotopy Theory of Infinite Dimensional Manifolds, Topology 5 (1966)
1-16.

[4] “Foundations of Global Non-Linear Analysis,”” Benjamin, N.Y., 1968.
[5] The Morse Lemma on Banach Spaces, Bull. Am, Math. Soc. 75 (1969)
968-971.
{61 Extending Diffeomorphisms, Proc. Am. Math. Soc. 11 (1960) 274-277.
Payne, L. E., and Weinberger, H. F.
(1] An Exact Stability Bound for Navier-Stokes Flow in a Sphere in “Non-
Linear Problems,” ed. Langer, University of Wisconsin Press (1962).
Penot, J. P. . )
[1] Variété différentiables d’applications et de chemins. C. R. Acad. Sc. Paris
264 (1967) 1066-1068.



276 JERROLD E. MARSDEN et al.

[2] Une méthode pour construire des variétés d’applications au moyen d’un
plangement, C. R. Acad. Sc. Paris 266 (1968) 625-627.

[31 Géomérrie des variétés fonctionnelles, Thése, Paris (1970).

[4] Sur la théorém de Frobenius, Bull. Math. Soc. France 98 (1970) 47-80.

[5]1 Topologie faible sur des varietés de Banach. C. R. Acad. Sc. Paris 274
(1972) 405-408.

Petrovskii, 1.
(1] Uber das Cauchysche problem fiir lineare und nichtlineare hyperbolische
partielle Differentialgleichungen, Rec. Math, (Mat. Sbornik), N.S. 2,
44 (1937) 814-868.

Pirani, F.
[1] “Lectures on General Relativity,” Brandeis Summer Institute of Physics,
Volume One (1964).
Quinn, B. .

(1] Solutions with Shocks: An Example of an Li-Contractive Semigroup,
Comm. Pure and Appl. Math. XXIV (1971) 125-132,

Rabinowitz, P. H.
[1] Existence and Nonuniqueness of Rectangular Solutions of the Bénard
Problem, Arch. Rat. Mech. Anal. 29 (1967) 30-57.
[2] Some Global Results for Non-linear Eigenvalues Problems, J. Funct. Anal.
7 (1971) 487-513.

Reynolds, O.
[1] On the Dynamical Theory of Incompressible Viscous Fluids and the Deter-
mination of the Criterion, Phil. Trans. Roy. Soc. London A186 (1895)
123-164.

Robbin, J. .
[1] On the Existence Theorem for Differential Equations, Proc. Amer. Math.
Soc. 19 (1968) 1005-1006.
[2] Stable Manifolds of Hyperbolic Fixed Points, Illinois Journ. Math. 15
(1971) 595-609.
[31 A Structural Stability Theorem, Ann. of Math. 94 (1971) 447-493.

Rosenblat, M., and Van Atta, C. (ed.).
[1] “Statistical Models and Turbulence,” Springer Lecture Notes in Physics
#12 (1972).
Ruelle, D.
[1] Statistical Mechanics on a compact set with a Z” action satisfying expansive-
ness and specification Publ. du dept. math. Univ. Lyon (1972).
[2] Dissipative systems and differential Analysis, Boulder Lectures (1971) (to
appear).
[3] Slt);gmge Attractors as a Mathematical Explanation of Turbulence, pp. 292~
299 of Rosenblatt-Van Atta [1].
[4] Bifurcations with Symmetries (in preparation).
Ruelle, D., and Takens, F.
(1] On the Nature of Turbulence, Comm. Math. Phys. 20 (1971) 167-192, 23
(1971) 343-344.

Saber, J.
[11 On Manifolds of Maps, Thesis, Brandeis University (1965).

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 277

Sattinger, D. H.

{11 Bifurcation of Periodic Solutions of the Navier-Stokes Equations, Arch.
Rat. Mech. Anal. 41 (1971) 66-80.

[2] On Global Solution of Nonlinear Hyperbolic Equations. Arch, Rat. Mech.
Anal. 30 (1968) 148-172.

{31 The Mathematical Problem of Hydrodynamic Stability, J. Math. and Mech.
19 (1971) 797-817.

Schauder, J.

111 Das Anfangswertproblem einer quasilinearen hyperbolischen Differenti-
algleichungen zweiter Ordnung in beliebiger Anzahl von unabhangigen
Veranderlichen, Fund. Math., 24 (1935) 213-246.

Schnute, J. and Shinbrot, M.

{1] The Cauchy Problem for the Navier-Stokes Equations (preprint).
Sel’kov, E.

[1] Self-Oscillations in Glycose, Europ. Journ. Biochem. 4 (1968) 79-86.
Serrin, J.

[11 Mathematical Principles of Classical Fluid Dynamics, Encyclopedia of
Physics, Vol. 8/1, Springer (1959). »

[2] On the Stability of Viscous Fluid Motions, Arch. Rat. Mech. Anal. 3
(1959) 1-13.

31 The Initial Value Problem for the Navier-Stokes Equations, in ‘‘Non
Linear Problems,” ed. Langer, University of Wisconsin Press (1962).

[4] “Mathematical Aspects of Boundary Layer Theory,” Lecture Notes,
Univ. of Minnesota, 1962 (out of print).

{51 On the Interior Regularity of Weak Solutions of the Navier-Stokes Equa-
tions, Arch. Rat. Mech. Anal. 7 (1962) 187-195.

6] On the Mathematical Basis for Prandtl’s Boundary Layer Theory: An
Example, Arch. Rat. Mech. Anal. 28 (1968) 217-225.

Shinbrot, M.
[1] Fractional Derivatives of Solutions of the Navier-Stokes Equations, Arch.
Rat. Mech. Anal. 40 (1971) 139-154.
Simon, C.
[1] The Onset of Turbulence (notes).
Sinai, Ya G.

[11 Mesures invariantes des Y-systémes, Actes Congrés intern. Math, tome 2

(1970) 929-940.
Smale, S.

{11 Diffeomorphisms of the Two Sphere, Proc. Amer. Math. Soc. 10 (1959)
621-626.

[2] Differentiable Dynamical Systems, Bull. Am. Math. Soc. 73 (1967) 747-817.

Sniatycki, J.
{11 Lagrangian Systems, Canonical Systems and Legendre Transformations (to
appear in volume 2 of these proceedings).
Snyder, H. A.
[1] Phys. Fluids, 11 (1968) 728-734, 1599-1605.
Sobolev, S. L.

[1] “Applications of Funcational Analysis in Mathematical Physics,” Transla-
tions of Math. Monographs, Vol. 7, Am. Math. Soc., Providence, R.I.
(1963),

10—(20 pp.)



278 ‘ JERROLD E. MARSDEN et a/.

Sobolevskii, P. E.

[1] An Investigation of the Navier-Stokes Equations by Means of the Theory
of Parabolic Equations in Banach Spaces, Sov. Math. Dokl. § (1964)
720-723.

Swann, H. S. G. .
[1]) The Convergence with Vanishing Viscosity of Nonstationary Navier-Stokes
Flow to Ideal Flow in [R3, Trans. A.M.S. 157 (1971) 373-397.
Synge, J. L.
[1] “Relativity, The General Theory,” North-Holland (1960).
Taub, A. H. : i
[1} On Hamilton’s Principle for Perfect Compressible Fluids, Proc. Symp.
Appl. Math. I, Amer. Math. Soc. (1949) 148-157.
Taylor, E. F., and Wheeler, A, :
[1] “Spacetime Physics,” W. H. Freeman, San Francisco (1966).
Taylor, G. L. .

[1] Statistical Theory of Turbulence, parts 1-4, Proc. Roy. Soc. 151 (1935)

421.
Temam, R.

[1] Une méthode d’approximation de la solution des équation de Navier-Stokes
Equations, Bull. Soc. Math. France (1970).

[2] Quelques méthodes de décomposition en analyse numerique, Actes Congrés
Intern. Math. (1970) tome 3, 311-319,

Tomonaga, S.
[1] Prog. Theoret. Phys. 1 (1946) 27.
Ton, B. A.
[11 Strongly Nonlinear Parabolic Equations, J. Funct. Anal. 7 (1971) 147-155.
Trotter, H. F.
{11 On the Product of Semi-groups of Operators, Proc. Amer. Math. Soc. 10
(1959) 545-551. '
Turing, A. M.

(1] The Chemical Basis of Morphogenesis, Phil. Trans. Roy. Soc. (B) 237

(1952) 37-72.
Velte, W.

(11 Uber ein Stabilitatskiterium der Hydrodynamik, Arch. Rat. Mech. Anal.
9 (1962) 9-20.

[2] Stabilitats verhalten und Verzweigung stationaret Losungen der Navier
Stokesschen Gleichungen, Arch, Rat. Mech. An. 16 (1964) 97-125,

[3] Stabilitat und verzweigung stationaret Losungen der Navier-Stokesschen
Gleichungen beim Taylorproblem, Arch. Rat, Mech. Anal. 22 (1966) 1-14.

Warner, F.
{1] “Foundations of Differentiable Manifolds and Lie Groups,” Scott,
Foresman (1971). . . ~
Williams, R. F. _ ;
(11 One Dimensional Non-Wandering Sets, Topology 6 (1967) 473-487.
Weyl, H. , ) '

[1)5 The Method of Orthogonal Projection in Potential Theory, Duke Math. J,

7 (1940) 411-444. o

DIFFEOMORPHISM, HYDRODYNAMICS AND RELATIVITY 279

Weinstein, A.
(11 Symplectic Manifolds and Their Lagrangian Submanifolds, Advances in
Math. 6 (1971) 329-346.
Wheeler, J. A.
[1]1 Geometrodynamics and the Issue of the Final State, in “‘Relativity, Groups
and Topology”, ed. DeWitt and DeWitt, Gordon and Breach, New York,
1964.

Wolibner, W.
[11 Un théoréme sur I existence du mouvement plan d’un fluide parfait homogéne,
incompressible, pendant un temps infiniment longue, Math, Z, 37 (1933)

698-726.

Yano, K.
[1] “Integral Formulas in Riemannian Geometry,” Marcel Dekker, N.Y.
(1971).
Yosida, K.
[1] “Functional Analysis,” Springer, 19635,
Zarantonello, E. H. (ed.)
[1] “Contributions to Non-linear Functional Analysis® Academic Press, N.Y.
(1971).

Remarks added in proof: (1) The simplicity of 2(M) mentioned on page 166 has
just been announced in the general case by B. Thurston (Berkeley graduate
student).

(2) Marsden [3] shows that the ideas in Ruelle-Takens [1] can be applied to
the Navier-Stokes equations. This provides an alternative to the power series
methods used in Joseph and Sattinger [1].

(3) A useful general reference for bifurcation problems in Banach spaces is
M. Crandall and P. Rabinowitz, Bifurcation from Simple Eigenvalues, Journ.
Funct. An. 8 (1971) 321-340. Their theorem 1.7 seems to be more general than
theorem 3.3.1, p. 175.

(4) Some recent work on bifurcations in biological and chemical systems has
been done by S. Smale and N. Kopell. Smale has an example of an attracting
closed orbit for a coupled system which have, separately, only an attracting
fixed point. Kopell has used the Hopf bifurcation to study oscillations occurring
in certain chemical systems related to the now celebrated “‘Jabotinsky reaction”;
cf, Sel’kov [1].

(5) A proof of 1.37, p. 189 using similar ideas, but without the use of infinite
dimensional manifolds has been given by H. Brezis and J. Bourgilignon (pre-

rint).

(6) Results on non-singular asymptotically flat spacetimes, as mentioned on
p. 248 have recently been discussed, independently, by L. Marder, Nature,
235 (1972) 379.






