Question: How do solns depend on θ (or µ)?
- Family of solns x(θ) w/ smooth dependence on θ
- Infinitesimal δθ \rightarrow complete change in soln

\[x = F(x, θ) \quad \text{for some parameter } θ \]
\[y = H(x, θ) \]

Equilibrium: \[F(x_e, θ) = 0 \]
\[\Rightarrow \frac{δF}{δx} \frac{dx_e}{δθ} + \frac{δF}{δθ} = 0 \]
\[\frac{dx_e}{δθ} = -\left(\frac{δF}{δx} \right)^{-1} \frac{δF}{δθ} \]

(Provided non-singular)

\[\frac{δx_e}{δθ} = \frac{1}{x_e} \frac{dx_e}{δθ} + \frac{δh}{δθ} \]
\[= \frac{1}{x_e} \left(-\frac{δF}{δx} \right) \frac{δF}{δθ} + \frac{δh}{δθ} \]

... compute numerically

Or look at relative changes:

\[\frac{δy_0}{δθ} = \frac{δx_e/xe}{δθ} = \frac{θ}{x_e} \frac{dx_e}{δθ} \]

(or multivariable)

\[\frac{δy_{θ_1, θ_2}}{δθ} \frac{θ_1}{θ_2} = \text{array} \]

\[\frac{δy_0}{δθ} \text{ [θ, θ_1]} \]
\[C' \text{ norm} \quad \|F\| = \sup_{x \in K} \|F(x)\| + \sup_{x \in K} \|\frac{\partial F(x)}{\partial x}\| \quad (\text{Eulerian}) \]

\(\text{Defn: } F \in C'(E) \text{ is structurally stable if } \exists \delta > 0 \text{ s.t. } \forall \epsilon \in C(E) \]

\[\|F - \epsilon\| < \delta \implies F \text{ and } \epsilon \text{ are topologically equivalent} \quad (\text{with positive time-scaling}) \]

Then let \(F \in C'(E) \) be hyperbolic at pt \(x_0 \). Then \(\exists \delta > 0 \text{ s.t.} \]

\[\|F - \epsilon\| < \delta \implies \exists \delta < \delta \text{ s.t.} \]

i) \(\delta(x) = 0 \), \(x_0 \) is hyperbolic
ii) \# +ve & -ve eig unchanged (but not Torbo for)

Remarks

1. If \(x_0 \) is a hyperbolic eq pt. Then any \(C' \text{ - nearby} \) dynamical system has the same \# of +ve and -ve eigenvalues.

(\# of \(F \text{ is structurally stable on } K \) containing a hyperbolic eq pt.)

Then all nearby vector fields must have \# of +ve & -ve eig.

\(\text{No eig go evn though } \Re(\lambda) = 0 \)

- Given \(F(x, \theta) \) \& \(F(x, 0) \) is structurally stable then \(F(x, \theta) \) will not change stability type for \(\theta \) small enough.

2. Can show that for a linear system \(x = Ax \) then

\(\text{struct stab } \iff x = 0 \) is hyperbolic

3. Lots of interesting behaviour for non-local behaviour. (Use \(\mu = 1 \rightarrow 0 \))

Example:

\[x_1 = -x_1 + \mu x_2^3 \quad \text{Q1: Is this system stable for } \mu = 0? \]
\[x_2 = -x_2 + \mu x_1^3 \quad \text{A1: Yes, } \lambda = -1, 1 \]

Q2: For any \(\mu \neq 0 \), is there an eq pt \& is it stable? (Hard to solve in general)

... if this \(\delta \)-s ball - some distance of linearization ...

Check distance: let \(K = B_\epsilon(0) \)

\[\|F - \epsilon\| = \sup_{x \in K} \left(\mu \sqrt{x_1^2 + x_2^2} \right) + \sup_{x \in K} \left(3 \mu x_2^3 x_1 \right) \]

For any \(x \) \& \(\delta \), \(\exists \delta > 0 \text{ s.t. } \|F - \epsilon\| < \delta \)

And since \(\epsilon \) is struct. stable \(\exists \epsilon > 0 \text{ s.t. } \)

\(x_0 \) is a stable eq pt. for \(F(x, \epsilon) \).
1. Stable Node Bifurcation
 \[x = x - x^2 \]

2. Transcritical Bifurcation
 \[x = x(x - x^2) \]

3. Pitchfork Bifurcation
 \[x = x(x - x^2) \]

Theorem (Sotomayor):
If \(a, b, c > 0 \) and \(\frac{\partial^2 F}{\partial x^2} (s, a, b, c) = 0 \) and \(\frac{\partial^2 F}{\partial x \partial y} (s, a, b, c) = 0 \), then \((s, a, b, c) \) is a saddle-node bifurcation point.

Let \(A \cdot x = 0 \) and \(\lambda \mathbf{A} = 0 \) define left eigenvectors \(\lambda \).

Assume \(K \) of remaining eigenvalues are stable and \(n - 1 \) are unstable.

Define
\[
\theta = C \quad \text{if} \quad \text{stable,} \quad \text{and} \quad \lambda \mathbf{A} = 0 \]
\[
\varphi = D \quad \text{if} \quad \text{unstable,} \quad \text{and} \quad \lambda \mathbf{A} = 0 \]

Then:
(i) \(\alpha = 0, \beta > 0 \)
 \[
 a = 0, b > 0, c > 0, d > 0
 \]
(ii) \(\alpha = 0, b = 0 \)
 \[
 a = 0, b > 0, c > 0, d > 0
 \]
Notes on Bifurcations

1. Bifurcation when any eigenvalue reaches $\text{Re}(\lambda) = 0$
 - One real eigenvalue
 - Pair of complex eigenvalue (Hopf)
 - Simultaneous crossing of more than one (higher order)
 - Note: Time constants get long as you approach bifurcation

2. Restrict attention to dimension of centre manifold...

3. For one real eigenvalue, potential function picture may be useful:

 a) Saddle-node
 \[\dot{x} = \mu - x^2 \]
 \[V(x) \text{ is cubic} \]

 \[\mu > 0 \quad \rightarrow \quad m = 0 \quad \rightarrow \quad \mu < 0 \]

 b) Transcritical
 \[\dot{x} = \mu x - x^2 \]
 \[V(x) \text{ cubic} \]
 \[m \text{ changes quadratic} \]

 \[m > 0 \quad \rightarrow \quad m = 0 \quad \rightarrow \quad m < 0 \]

 c) Pitchfork
 \[\dot{x} = \mu x - x^3 \]

 \[m > 0 \quad \rightarrow \quad m = 0 \quad \rightarrow \quad m < 0 \]
Bifurcations

Consider a C^1 dynamical system on $E \subset \mathbb{R}^n$ given by

$$\Sigma: \dot{x} = F(x, \mu), \quad x \in \mathbb{R}^n, \quad \mu \in \mathbb{R}^p, \quad (t = 1 \text{ for new})$$

Defn: The system Σ undergoes a bifurcation at $\mu = \mu_0$ if $F(x, \mu)$ is not struct. stable at $\mu = \mu_0$.

\Rightarrow As μ goes from $\mu < \mu_0$ to $\mu > \mu_0$ we might get a discrete change in solution.

Examples:

1. $\dot{x}_1 = x_2$
 $\dot{x}_2 = -kx_1 - mx_2$

 ![Diagram](image)

 No bifurcation
 (transformation to undist.)

2. $\dot{x}_1 = x_2$
 $\dot{x}_2 = m x_2 + x_1 - x_3$

 ![Diagram](image)

 $\mu < 0$ \Rightarrow No equilibria \Rightarrow continuity preserves limit

 ![Diagram](image)

 $\mu > 0$

 This is not a bifurcation for $x = 0 \Rightarrow$ always a saddle.

 $\mu = 0$

 This is bifurcation
 For $x_i = \pm 1$, $E = B_{\epsilon}(X_i)$

 This is also a global bifurcation.

Remark: Lots of specialized results for \mathbb{R}^2 - we will focus on \mathbb{R}^n, but can often restrict to \mathbb{R}^2 [explore a centre manifold bifurcation]

Common bifurcations:

Visualize using bifurcation diagram

$$x = F(x, \mu)$$

$$y = h(x)$$

![Diagram](image)

Dashed & solid = US S.
Let \(n = 1 \), saddle node: \(y^* = F(y; x) = 0 \) \(\Rightarrow \) \(y = \frac{\sqrt{F}}{\gamma} \).

From 0 \(\Rightarrow \) 0 we can use implicit function theorem. To write \(y = m(x) \), choose \(\mu_0 = 0 \).

To compute change in eigenvalues:
\[
\frac{\partial \lambda}{\partial \mu} = -\frac{\partial F}{\partial x} \frac{\partial x}{\partial \mu}
\]

For \(n > 1 \), choose projections as relevant eigenvalues (transpose).

Example: MG3 (Here-Greffe).

\(\text{State } \emptyset, y, J \)