Stable (& Unstable) Manifolds

Idea:

- Initial conditions converge to origin
 - Locally: get subspace from linearization, can get successively better approx.

For hyperbolic equilibrium points,

Flow of non-linear system is topologically equivalent to the linearization (Hartman - Grobman)

- Flow along stable & unstable manifolds

For non-hyperbolic, divide into stable, unstable, and center

\[\dot{x} = f(x) \Rightarrow \dot{x} = Ax + F(x) \]

Higher order

Change of variables to \(y = Cx \) so that

\[y' = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} y + (4t) \] & eigenvalues of \(P \) have

- Real part < 0,
- \(\text{eig of } Q, \text{ real part } > 0 \)

For any eigenvalues of \(A = 0 \) (or Real part = 0), local behavior determined entirely by non-linear terms.

Questions

1. Prove stable manifold exists.
2. Tools to calculate it
3. Prove flow is topologically equivalent
4. Revisit stability
5. Behavior on center manifold

Today

- 1. Prove stable manifold exists.
- 2. Tools to calculate it

Thursday

- 3. Prove flow is topologically equivalent
- 4. Revisit stability

Next week

- 5. Behavior on center manifold
Stable manifold Theorem

Example

\[
\begin{align*}
\dot{x}_1 &= -x_1 \\
\dot{x}_2 &= 2x_2 - 5\varepsilon x_1^3
\end{align*}
\]

\[
\begin{bmatrix}
-1 & 0 \\
0 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
0 \\
-5\varepsilon x_1^3
\end{bmatrix}
\]

- From linearization, origin is saddle node
- Already diagonalized linearization
- For linear system \(E^s = \text{span} \{ [0] \} = \text{stable subspace} \)
 \(E^u = \text{span} \{ [0] \} = \text{unstable subspace} \)
- Can show that \(S = \{ x \in \mathbb{R}^2 \mid x_2 = \varepsilon x_1^3 \} \) is invariant with the flow

\[
\begin{bmatrix}
a \\
\varepsilon a^3
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 \\
-3\varepsilon a^2
\end{bmatrix}
\]

which is tangent to \(S \)

\(S \) can solve for flow, \(\Phi_t \left(\begin{bmatrix} a \\ \varepsilon a^3 \end{bmatrix} \right) =
\begin{bmatrix}
a e^{-t} \\
\frac{(\varepsilon a^3 - a^3) e^{2t} + \varepsilon a^3 e^{-3t}}{\varepsilon^3}
\end{bmatrix}
\)

\(E^s \)

\[
\begin{bmatrix}
a e^{-t} \\
\varepsilon^3 e^{-3t}
\end{bmatrix}
\] \(\in \mathbb{R}^2 \)

- \(S \) is the stable manifold

For this system, \((\text{trajectories} \to 0 \text{ as } t \to \infty) \)
- \(S \) is tangent to \(E^s \) at the origin
- \(U = \{ x \in \mathbb{R}^2 \mid x_1 = 0 \} \) is the unstable manifold

(trajectories \(\to 0 \text{ as } t \to -\infty \), and invariant with flow)

Definition (see Text for more formal or precise def'-)

A \(k \)-dimensional differentiable manifold is a "smooth" \(k \)-dimensional
surface in an \(n \)-dimensional space of order \(C^m \)

\(\text{manifold of class } C^m \)
Theorem: Let E be an open subset of \mathbb{R}^n containing the origin $0 \in E$, and let ϕ_t be the flow of $\dot{x} = F(x)$. Suppose $F(0) = 0$ and $DF(0)$ has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part. Then there exists a k-dimensional manifold S tangent to the stable subspace E^s of $\dot{x} = DF(0)x$ at the origin such that $\forall t \geq 0$, $\phi_t(0) \in S$ and $\forall x_0 \in S$, $\lim_{t \to \infty} \phi_t(x_0) = 0$.

And, \exists $(n-k)$-dimensional differentiable manifold U tangent to the unstable subspace E^u of $\dot{x} = DF(0)x$, such that $\forall t \leq 0$, $\phi_t(0) \in U$ and $\forall x_0 \in U$, $\lim_{t \to -\infty} \phi_t(x_0) = 0$.

(Aside: S and U may overlap, e.g. ϕ_t)

Proof:

1. First note, can write $\dot{x} = F(x)$ as $\dot{x} = Ax + F(x)$ or $\dot{y} = By + G(y)$, where $B = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix}$, $P, Q \in \mathbb{R}^{k \times k}$, $G(y) = \begin{bmatrix} y_1 \\ \vdots \\ y_{n-k} \end{bmatrix}$, $y(t) = e^{Bt}y(0) + \int_0^t e^{B(t-s)}G(y(s))\,ds$.

2. General form of solution satisfies $Q \in \mathbb{R}^{(n-k) \times (n-k)}$ positive.

3. Choose $\|y_0\|_\infty = 0 \Rightarrow y(t) \to 0$ as $t \to \infty$.

Work backwards: Find specific soln $u(t, 0) \to 0$. The flow ϕ_t
General Idea:

Define $U = \begin{bmatrix} e^{Pt} & 0 \\ 0 & 0 \end{bmatrix}$, $V = \begin{bmatrix} 0 & 0 \\ 0 & e^{Qt} \end{bmatrix}$

and $a \in E^3 = \begin{bmatrix} a_1 \\ a_2 \\ 0 \end{bmatrix}$

For the initial condition $y(0) = \begin{bmatrix} a_1 \\ a_2 \\ \phi \end{bmatrix}$, then define

$\psi(t,a) = y(t)$, and

$u(t,a) = U(t)y(0) + V(t)y(0) + \int_0^t U(t-s) G(u(s,a)) ds$ + $\int_0^t V(t-s) G(\psi(s,a)) ds - \int_0^t V(t-s) G(\phi(s,a)) ds$

is a solution to $\dot{y} = By + G(y)$.

These terms do not converge for $t \to \infty$.

5. If we choose ψ_k so that these terms cancel, then $u(t,a) \to 0$.

Thus

$\psi_k(t,a) = -\int_0^t V(t-s) G(u(s,a)) ds$

and

$u(t,a) = U(t)a + \int_0^t U(t-s) G(u(s,a)) ds - \int_t^\infty V(t-s) G(u(s,a)) ds$

satisfies $\dot{y} = By + G(y)$ and $\lim_{t \to \infty} u(t,a) = 0$.

The stable manifold is $S = \{ (y_1, \ldots, y_n) | y_k = \psi_k(y_1, \ldots, y_n), i = k+1 \ldots n \}$.
Finding Stable Manifold

Perko: Find successive approximate solutions to integral equation
(Note proof requires showing these converge)

Alternate: Taylor series, add quadratic term, then...

\[U^0(t,a) = 0 \]
\[U^{n+1}(t,a) = U(t) a_t + \int_0^t U(t-s) G(U^s, a) ds - \int_0^\infty V(t-s) G(a(s), a) ds \]

(Aside: Full proof in Perko shows this converges)

Example (in Perko)

\[\dot{x}_1 = -x_1 - x_2^2 \quad \text{so} \quad A = B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[\dot{x}_2 = x_2 + x_1^2 \quad \text{(already diagonalized)} \]

and \(G(x) = \begin{bmatrix} -x_2^2 \\ x_1^2 \end{bmatrix} \)

\[a = \begin{bmatrix} a_1 \\ 0 \end{bmatrix} \]

\[U^0(t,a) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad U^{(1)}(t,a) = \begin{bmatrix} e^{-t} a_1 \\ 0 \end{bmatrix} \implies \text{gives } E^3 \text{ for linear system} \]

\[U^{(2)}(t,a) = \begin{bmatrix} e^{-t} a_1 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix} e^{-(t-s)} 0 \\ 0 e^{-(t-s)} \end{bmatrix} \begin{bmatrix} 0 & -2 s a_1 \\ 0 & e^{2 s} a_1^2 \end{bmatrix} ds - \int_0^\infty \begin{bmatrix} 0 & 0 \\ 0 & e^{(t-s)} \end{bmatrix} \begin{bmatrix} 0 \\ e^{2 s} a_1^2 \end{bmatrix} ds \]

\[= \begin{bmatrix} e^{-t} a_1 \\ -\frac{e^{-t} a_1^2}{3} \end{bmatrix} \]

This would give approximation

\[y_2(a) = -\int_0^\infty e^{-s} e^{-2 s} a_1^2 ds = -\frac{1}{3} a_1^2 \]

\[= U^{(2)}(0, a_1) \]

So \(S \approx \{ x \in \mathbb{R}^2 \mid x_2 = -\frac{x_1^2}{3} \} \quad \text{or} \quad X_2 = -\frac{x_1}{3} + O(x_1^3) \)

Similarly, get \(U \) as the stable manifold of \(\dot{x}_1 = x_1 + x_2 \)

(Remember to choose \(y = \begin{bmatrix} 0 & 1 \end{bmatrix} x \), and also...)

\(\dot{x}_2 = -x_2 - x_1^2 \)
Before looking at Taylor expansion...

\textbf{Remark (\textit{o-invariant manifold})}

If \(x = F(x,y), \, x \in \mathbb{R}^k \)
\[y = g(x,y), \, y \in \mathbb{R}^m \quad (m = n-k) \]

and
\[S = \{ (x,y) \in \mathbb{R}^k \times \mathbb{R}^m \mid y = h(x) \} \]

manifold defined by constraint \(h(x) \)

Then if \(g(x, h(x)) = Dh(x)F(x, h(x)) \) then \(S \) is an invariant manifold of the system

\textbf{Proof:} Target vector to \(S \) at \((x, y) = (x, h(x))\) is \(\vec{\tau} = (1, Dh(x)) \)

normal \(\vec{n} = (-Dh(x), 1) \)

\[(\vec{\tau} \cdot \vec{n} = 0) \]

The vector field at this point is \((F(x, h(x)), g(x, h(x)))\)

So \(\vec{n} \cdot (F(x, h(x)), g(x, h(x))) = -Dh(x) F(x, h(x)) + g(x, h(x)) = 0 \)

Since vector field at any point on \(S \) is target to \(S \)

\(S \) is invariant wrt flow of the system

\textbf{Taylor expansion for finding} \(S \):

\[S = \{ (x,y) \in \mathbb{R}^k \times \mathbb{R}^m \mid y = h(x) \} \]

write \(y = h(x) \)

\[= ax^2 + bx^3 + \ldots \]

Since \(S \) is an invariant manifold

\[\text{then} \quad Dh(x) \dot{x} = \dot{y} \quad \text{or} \quad Dh(x) F(x, h(x)) = g(x, h(x)) \]
Example: \[x_1 = -x_1 - x_2 \leftarrow "F(x, y)" \]
\[x_2 = x_2 + x_1 \leftarrow "g(x, y)" \]

Write \(h(x) = a x_1^2 + b x_1^3 + O(x_4) \)

So \((2ax_1 + 3bx_1^2)(-x_1 - x_2) = x_1^2 + (ax_1^2 + bx_1^3) \uparrow = ax_1^2 + bx_1^3 \)

or \(-2ax_1 - 2bx_1^3 - 3bx_1^2 - 3bx_1^2 - 3bx_1^3 = x_1^2 (1+a) + bx_1^3 \)

\[x_1^2 : -2a = 1 + a \Rightarrow a = -\frac{1}{3} \]
\[x_1^3 : -2ab - 3b = b \Rightarrow b = 0 \]

e tc.

So \(S = \{ (x_1, x_2) : x_2 = -\frac{1}{3} x_1^2 \} \) which is the same as before.

Global Manifolds

Note that the proof only finds \(S, U \) locally.

The \underline{global} stable and unstable manifolds of \((1)\) will flow \(\phi_t \) at the origin \(x = 0 \) are defined by

\[W^s(0) = \bigcup_{t \leq 0} \phi_t(S) \]
\[W^u(0) = \bigcup_{t \geq 0} \phi_t(0) \]

These are unique and invariant with flow, and
\[\forall x \in W^s(0), \lim_{t \to 0^+} \phi_t(x) = 0, \forall x \in W^u(0), \lim_{t \to 0^-} \phi_t(x) = 0 \]

Also note exponential convergence/divergence near enough to origin.
Hartman–Grobman Thm

Let \(F \in C^1(E) \), where \(E \) is an open subset of \(\mathbb{R}^n \) containing the origin, let \(\phi_t \) be the flow of \(\dot{x} = F(x) \).

If \(F(0) = 0 \) and \(A = DF(0) \) has no eigenvalues with zero real part (hyperbolic equlibrium) then there exists a homeomorphism \(H : U \to V \), for open sets \(U, V \) containing the origin, such that \(H(x_0) \in U \) and \(\text{CR} \) containing zero so if \(x_0 \in U, t \in \mathbb{T} \),

\[
H_0 \phi_t(x_0) = e^{At} H(x_0)
\]

Translation: \(H \) maps trajectories of \(\dot{x} = F(x) \) onto trajectories of the linearization \(\dot{x} = DF(0)x \).

where

\[
H \text{ is a continuous, one to one, invertible map; } \quad \text{Definition of } H : U \to V \text{ and } H^{-1} : V \to U \text{ is also continuous } \quad \text{homeomorphism on a metric space.}
\]

i.e. close to equilibrium point \(x_0 \)

\[
\dot{x} = f(x) \text{ behaves like } \dot{x} = DF(0)(x - x_0)
\]

Remarks:

1. \(A \) & \(B \) are called homeomorphic or topologically equivalent if there is a homeomorphism of \(A \) onto \(B \).

2. Two autonomous systems of differential equations are said to be topologically equivalent if there is a homeomorphism \(H \) mapping open set \(U \) containing origin onto set \(V \) containing origin which maps trajectories of one system in \(U \) onto trajectories of the other system in \(V \).

3. Hartman–Grobman is most useful conceptually rather than any value it knowing \(H \) directly.
4. Actually follows from Stable Manifold Thm, but close enough to equilibrium, convergence/divergence is exponential:

\[\text{Re}(\lambda_j) < -\alpha < 0 < \beta < \text{Re}(\lambda_m) \text{ for } j = 1, \ldots, k, m = k + 1, \ldots, n \]

Then \(\forall \epsilon > 0 \exists \delta > 0 \exists x_0 \in N_\delta(0) \land S \Rightarrow \| \phi_t(x_0) \| < \epsilon e^{-\alpha t} \forall t > 0 \)

& \(x_0 \in N_\delta(0) \land U \Rightarrow \| \phi_t(x_0) \| < \epsilon e^{\beta t} \forall t > 0 \)

Example:

1. \(\frac{dx_1}{dt} = (-x_1) \quad \text{&} \quad \frac{dx_i}{dt} = (-1, 0) (x_i) \)

are topologically equivalent.

\[
\begin{bmatrix}
 e^{-t} & 0 \\
 0 & e^t
\end{bmatrix}, \quad \phi_t(x_0) = \begin{cases}
 a_1 e^{-t} \\
 (a_2 + \frac{1}{3} a_1^2) e^t - \frac{1}{3} a_1^2 e^{-2t}
\end{cases}
\]

\[a_0 = \frac{a_1}{a_2} \]

The homeomorphism

\[H(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 + \frac{1}{3} x_1^2 \end{bmatrix}, \quad H^{-1}(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 - \frac{1}{3} x_1^2 \end{bmatrix} \]

satisfies

\[e^{At} H(x_0) = \begin{bmatrix} a_1 e^{-t} \\
 (a_2 + \frac{1}{3} a_1^2) e^t - \frac{1}{3} a_1^2 e^{-2t}
\end{bmatrix} \]

\[H \circ \phi_t(x_0) = \begin{cases}
 a_1 e^{-t} \\
 (a_2 + \frac{1}{3} a_1^2) e^t - \frac{1}{3} a_1^2 e^{-2t} + \frac{1}{3} a_1^2 e^{-2t}
\end{cases} \]

\[\Rightarrow \text{So not only is there a "correct" unstable manifold, tangent to unstable subspace of linearization, but the flow can be (locally) mapped to the linearization.} \]
Lyapunov Functions

Idea: Find an energy-like function. If it is always decreasing, then the system must converge to the zero "energy" state.

Note:
For $F \in C(E)$ with flow ϕ, and function $V(x) \in C(E)$, then

$\dot{V}(x) = \frac{dV}{dt} = D(V(x)) \cdot F(x)$

Thus:
Let E be an open subset of \mathbb{R}^n containing x_0.
Suppose $F \in C(E)$, $F(x) = 0$, and $\exists V \in C^1(E)$ (real-valued) with $V(x_0) = 0$, $V(x) > 0$ if $x \neq x_0$.

Then:
1) if $\dot{V}(x) \leq 0 \ \forall x \in E$, x_0 is stable.
2) if $\dot{V}(x) < 0 \ \forall x \in E \setminus \{x_0\}$, x_0 is asymptotically stable.
3) if $\dot{V}(x) > 0 \ \forall x \in E \setminus \{x_0\}$, x_0 is unstable.

(Otherwise, no information \Rightarrow Try a different function V.)