1 The Stable Manifold Theorem

\[\dot{x} = f(x) \]
\[\dot{x} = Df(x_0)x \]

We assume that the equilibrium point \(x_0 \) is located at the origin.

1.1 Some Examples

1.1.1 Example 1

Consider the linear system

\[\dot{x}_1 = -x_1 \]
\[\dot{x}_2 = 2x_2 \]

Clearly we have \(x_1(t) = a_1 e^{-t} \) and \(x_2(t) = a_2 e^{2t} \), with stable subspace \(E^s = span\{(1, 0)\} \) and unstable subspace \(E^u = span\{(0, 1)\} \). So \(\lim_{t \to \infty} \phi_t(a) = 0 \) only if \(a \in \mathbb{R}^s \). Consider a small perturbation of this linear system:

\[\dot{x}_1 = -x_1 \]
\[\dot{x}_2 = 2x_2 - 5\epsilon x_3^1 \]

The solution is given by \(x_1(t) = a_1 e^{-t} \) and \(x_2(t) = a_2 e^{2t} + a_2^3 \epsilon \left(e^{-3t} - e^{-2t} \right) = (a_2 - \epsilon a_1^3) e^{2t} + \epsilon a_1^3 e^{-3t} \). Clearly \(\lim_{t \to \infty} \phi_t(a) = 0 \) only if \(a_2 = \epsilon a_1^3 \). Indeed we can show that the set

\[S = \{ x \in \mathbb{R}^2 \mid x_2 = \epsilon x_1^3 \} \]

is invariant with respect to the flow. It easy to see that \(a_2 = \epsilon a_1^3 \) leads to

\[\phi_t(S) = \left[\begin{array}{c}
 a_1 e^{-t} \\
 (a_2 - \epsilon a_1^3) e^{2t} + \epsilon a_1^3 e^{-3t}
\end{array} \right] \in S \]

So \(S \) is an invariant set (curve), and the flow on this curve is stable. So it seems that \(S \) is some nonlinear analog of \(E^s \). Furthermore, notice that \(S \) is tangent to the stable subspace of the linear system, and as \(\epsilon \to 0 \), the curve \(S \) becomes \(E^s \).

1.1.2 Example 2 (Perko 2.7 Example 1)

Consider

\[\dot{x}_1 = -x_1 \]
\[\dot{x}_2 = -x_2 + x_1^2 \]
\[\dot{x}_3 = x_3 + x_1^2 \]

which we can rewrite as

\[\dot{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ x_2^1 \\ x_1^2 \end{bmatrix} \]
The flow is given by

\[\phi_t(S) = \begin{bmatrix} a_1 e^{-t} \\ a_2 e^{-t} + a_3^2 \left(e^{-t} + e^{-2t} \right) \\ a_3 e^t + a_4^2 \left(e^t - e^{-2t} \right) \end{bmatrix} \]

where \(a = (a_1, a_2, a_3) = x(0) \). Clearly \(\lim_{t \to \infty} \phi_t(a) = 0 \) only if \(a_3 = -a_1^2/3 \). So

\[S = \{ a \in \mathbb{R}^3 | a_3 = -a_1^2/3 \} \]

and similarly

\[U = \{ a \in \mathbb{R}^3 | a_1 = a_2 = 0 \}. \]

Again it seems that \(S \) is some nonlinear analog of \(E^s \) and \(U \) is some nonlinear analog of \(E^u \). Furthermore, notice that \(S \) is tangent to the stable subspace of the linear system. We call \(S \) the stable manifold, and \(U \) the unstable manifold.

We are going to see how we can compute \(S \) and \(U \) in general.

1.2 Manifolds and stable manifold theorem

But first here is a “working” definition of a k-dimensional differential manifold. For more precise definition, there is a small section in the book, and CDS202 deals with differentiable manifolds in great details.

In this class, by **k-dimensional differential manifold** (or manifold of class \(C^m \)) we mean any “smooth” (of order \(C^m \)) k-dimensional surface in an n-dimensional space.

For example \(S = \{ a \in \mathbb{R}^3 | a_3 = -a_1^2/3 \} \) is 2-dimensional differentiable manifold.

Theorem (The Stable Manifold Theorem): Let \(E \) be an open subset of \(\mathbb{R}^n \) containing the origin, let \(f \in C^1(E) \), and let \(\phi_t \) be the flow of the non-linear system (1). Suppose that \(f(0) = 0 \) and that \(Df(0) \) has \(k \) eigenvalues with negative real part and \(n - k \) eigenvalues with positive real part. Then there exists a \(k \)-dimensional manifold \(S \) tangent to the stable subspace \(E^s \)of the linear system (2)at 0 such that for all \(t \geq 0 \), \(\phi_t(S) \subset S \) and for all \(x_0 \in S \),

\[\lim_{t \to \infty} \phi_t(x_0) = 0; \]

and there exists an \(n - k \) differentiable manifold \(U \) tangent to the unstable subspace \(E^u \) of (2) at 0 such that for all \(t \leq 0 \), \(\phi_t(U) \subset U \) and for all \(x_0 \in U \),

\[\lim_{t \to -\infty} \phi_t(x_0) = 0. \]

Note: As in the examples, since \(f \in C^1(E) \) and \(f(0) = 0 \), then system (1) can be written as

\[\dot{x} = Ax + F(x) \]

where \(A = Df(0), F(x) = f(x) - Ax, F \in C^1(E), F(0) = 0 \) and \(DF(0) = 0 \).

Furthermore, we want to separate the stable and unstable parts of the matrix, i.e., choose a matrix \(C \) such that

\[B = C^{-1}AC = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} \]

where the eigenvalues of the \(k \times k \) matrix \(P \) have negative real part, and the eigenvalues of the \((n-k) \times (n-k) \) matrix \(Q \) have positive real part. The transformed system \((y = C^{-1}x) \) has the form

\[\begin{align*}
\dot{y} &= By + C^{-1}F(Cy) \\
\dot{y} &= By + G(y)
\end{align*} \tag{3} \]
1.2.1 Calculating the stable manifold (Perko Method):

Perko shows that the solutions of the integral equation

\[
 u(t, a) = U(t)a + \int_0^t U(t-s)G(u(s, a))ds - \int_t^\infty V(t-s)G(u(s, a))ds
\]

satisfy (3) and \(\lim_{t \to \infty} u(t, a) = 0 \). Furthermore, it gives an iterative scheme for computing the solution:

\[
 u(t, a) = 0
\]

\[
 u^{(k+1)}(t, a) = U(t)a + \int_0^t U(t-s)G(u^{(k)}(s, a))ds - \int_t^\infty V(t-s)G(u^{(k)}(s, a))ds
\]

Remark Here is some intuition on why the particular integral equation is chosen. We basically want to remove the parts that blow up as \(t \to \infty \). In general, the solution of this system satisfies

\[
 u(t, a) = \left[\begin{array}{cc}
 e^{P_t} & 0 \\
 0 & e^{Q_t}
 \end{array} \right] a + \int_0^t \left[\begin{array}{cc}
 e^{P(t-s)} & 0 \\
 0 & e^{Q(t-s)}
 \end{array} \right] G(u(s, a))ds.
\]

Separate the convergent and non-convergent parts

\[
 u(t, a) = \left[\begin{array}{cc}
 e^{P_t} & 0 \\
 0 & e^{Q_t}
 \end{array} \right] a + \int_0^t \left[\begin{array}{cc}
 e^{P(t-s)} & 0 \\
 0 & e^{Q(t-s)}
 \end{array} \right] G(u(s, a))ds + \int_0^t \left[\begin{array}{cc}
 0 & 0 \\
 0 & e^{Q(t-s)}
 \end{array} \right] G(u(s, a))ds
\]

Remove contributions that will cause it not to converge to the origin

\[
 u(t, a) = \left[\begin{array}{cc}
 e^{P_t} & 0 \\
 0 & e^{Q_t}
 \end{array} \right] a + \int_0^t \left[\begin{array}{cc}
 e^{P(t-s)} & 0 \\
 0 & e^{Q(t-s)}
 \end{array} \right] G(u(s, a))ds - \int_t^\infty \left[\begin{array}{cc}
 0 & 0 \\
 0 & e^{Q(t-s)}
 \end{array} \right] G(u(s, a))ds
\]

Notice that last \(n-k \) components of \(a \) do not enter the computation, we can take them to be zero. Next we take the specific solution \(u(t, a) \)

\[
 u(t, a) = U(t)a + \int_0^t U(t-s)G(u(s, a))ds - \int_t^\infty V(t-s)G(u(s, a))ds
\]

and see what it implies for the initial conditions \(u(0, a) \). Notice that

\[
 u_j(0, a) = a_j, \quad j = 1, \ldots, k
\]

\[
 u_j(0, a) = -\left(\int_0^\infty V(-s)G(u(s, a))ds \right)_j, \quad j = k+1, \ldots, n
\]

So the last \(n-k \) components of the initial conditions satisfy

\[
 a_j = \psi_j(a_1, \ldots, a_k) := u_j(0, a_1, \ldots, a_k, 0, \ldots, 0), \quad j = k+1, \ldots, n.
\]

Therefore, the stable manifold is defined by

\[
 S = \{(y_1, \ldots, y_n) | y_j = \psi_j(y_1, \ldots, y_k), \quad j = k+1, \ldots, n\}.
\]
• The iterative scheme for calculating an approximation to S:

 - Calculate the approximate solution $u^{(m)}(t, a)$
 - For each $j = k + 1, \ldots, n$, $\psi_j(a_1, \ldots, a_k)$ is given by the j-th component of $u^{(m)}(0, a)$.

Note: Similarly can calculate U by taking $t = -t$.

• Example:

$$\dot{x}_1 = -x_1 - x_2^2$$
$$\dot{x}_2 = x_2 + x_1^2$$

$$A = B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad F(x) = G(x) = \begin{bmatrix} -x_2^2 \\ x_1^2 \end{bmatrix}$$

$$U = \begin{bmatrix} e^{-t} & 0 \\ 0 & 0 \end{bmatrix}, V = \begin{bmatrix} 0 & 0 & e^t \\ 0 & 0 \end{bmatrix}, a = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Then

$$u^{(0)}(t, a) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u^{(1)}(t, a) = \begin{bmatrix} e^{-t}a_1 \\ 0 \end{bmatrix}$$

$$u^{(2)}(t, a) = \begin{bmatrix} e^{-t}a_1 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix} e^{(t-s)} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ e^{-2s}a_2^2 \end{bmatrix} \, ds - \int_{-\infty}^0 \begin{bmatrix} 0 \\ 0 \\ e^{(t-s)} \end{bmatrix} \begin{bmatrix} 0 \\ e^{-2s}a_2^2 \end{bmatrix} \, ds = \begin{bmatrix} e^{-t}a_1 \\ -\frac{e^{-2t}}{3}a_2^2 \end{bmatrix}$$

$$u^{(3)}(t, a) = \begin{bmatrix} e^{-t}a_1 + \frac{1}{27}(e^{-4t} - e^{-t})a_1^3 \\ -\frac{e^{-2t}}{3}a_2^2 \end{bmatrix}$$

Next can show that $u^{(4)}(t, a) - u^{(3)}(t, a) = O(a_1^5)$ and therefore we can approximate by $\psi_2(a_1) = -\frac{1}{3}a_1^2 + O(a_1^5)$ and the stable manifold can be approximated by

$$S : x_2 = -\frac{1}{3}x_1^2 + O(x_1^3)$$

as $x_1 \to 0$. Similarly get

$$U : x_1 = -\frac{1}{3}x_2^2 + O(x_2^3)$$

1.2.2 **Note on invariant manifolds:**

Notice that if a manifold is specified by a constraint equation

$$y = h(x), \quad x \in \mathbb{R}^k, y \in \mathbb{R}^{n-k}$$

and the dynamics given by

$$\dot{x} = f(x, y)$$
$$\dot{y} = g(x, y)$$

then condition

$$Dh(x)\dot{x} = \dot{y}$$

$$Dh(x)f(x, h(x)) = g(x, h(x))$$

suffices to show invariance. We’ll call this tangency condition. **Exercise:** Show that this is the case. If you’re going to use this in the homework this week, you should prove it first.
• Example:

\[
\begin{align*}
\dot{x}_1 &= -x_1 \\
\dot{x}_2 &= 2x_2 - 5\epsilon x_1^3
\end{align*}
\]

Show that the set

\[S = \{ x \in \mathbb{R}^2 | x_2 = \epsilon x_1^3 \}\]

is invariant. We have

\[3\epsilon x_1^2(-x_1) = 2\epsilon x_1^3 - 5\epsilon x_1^3.\]

1.2.3 Calculating the stable manifold (Alternative Method - Taylor expansion):

Let

\[y = h(x) = ax^2 + bx^3 + cx^4 + \ldots\]

Since invariant manifold we have:

\[Dh(x)\dot{x} - \dot{y} = 0\]

we can match coefficients. For example

\[
\begin{align*}
\dot{x}_1 &= -x_1 \\
\dot{x}_2 &= 2x_2 - 5\epsilon x_1^3
\end{align*}
\]

we get

\[x_2 = h(x_1) = ax_1^2 + bx_1^3 + O(x_1^4)\]

we get

\[f(x_1, h(x_1)) = -x_1, g(x_1, h(x_1)) \approx 2(ax_1^3 + bx_1^3) - 5\epsilon x_1^3\]

\[Dh(x)f(x, h(x)) = g(x, h(x))\]

\[\downarrow\]

\[(2ax_1 + 3bx_1^2 + \cdots)(-x_1) = 2ax_1^2 + 2bx_1^3 - 5\epsilon x_1^3 + \]

Matching terms we get

\[-2a = 2a \Rightarrow a = 0, -3b = 2b - 5\epsilon \Rightarrow b = \epsilon.\]
1.2.4 Example

\[\dot{x}_1 = -x_1 \]
\[\dot{x}_2 = 2x_2 + x_1^2 \]

Perko method:

\[
A = B = \begin{bmatrix}
-1 & 0 \\ 0 & 2
\end{bmatrix}, \quad F(x) = G(x) = \begin{bmatrix}
0 \\ x_1^2
\end{bmatrix}
\]

\[
U = \begin{bmatrix}
e^{-t} & 0 \\ 0 & 0
\end{bmatrix}, \quad V = \begin{bmatrix}
0 & 0 & e^{2t} \\ 0 & e^{2t}
\end{bmatrix}, \quad a = \begin{bmatrix}
a_1 \\ 0
\end{bmatrix}
\]

Then

\[u^{(0)}(t,a) = \begin{bmatrix}
0 \\ 0
\end{bmatrix} \]
\[u^{(1)}(t,a) = \begin{bmatrix}
e^{-t}a_1 \\ 0
\end{bmatrix} \]
\[u^{(2)}(t,a) = \begin{bmatrix}
e^{-t}a_1 \\ 0
\end{bmatrix} + \int_0^t \begin{bmatrix}
e^{-(t-s)}a_1 \\ 0
\end{bmatrix} ds - \int_t^\infty \begin{bmatrix}
e^{-2s}a_1^2 \\ 0
\end{bmatrix} ds - \begin{bmatrix}
e^{-t}a_1 \\ -\frac{1}{4}e^{-2t}a_1^2
\end{bmatrix} \]
\[u^{(3)}(t,a) = \begin{bmatrix}
e^{-t}a_1 \\ -\frac{1}{4}e^{-2t}a_1^2
\end{bmatrix} \]

So \[u^{(m)}(t,a) = \begin{bmatrix}
e^{-t}a_1 \\ -\frac{1}{4}e^{-2t}a_1^2
\end{bmatrix}, m \geq 2 \Rightarrow u(t,a) = \begin{bmatrix}
e^{-t}a_1 \\ -\frac{1}{4}e^{-2t}a_1^2
\end{bmatrix} \]

and therefore we get \(\psi_2(a_1) = (u(0,a))_2 = -\frac{1}{4}a_1^2 \) and the stable manifold is given by

\[S : \quad x_2 = -\frac{1}{4}x_1^2 \]

as \(x_1 \to 0 \). What is the unstable manifold?

Taylor expansion:

\[x_2 = h(x_1) = ax_1^2 + bx_1^3 + \cdots \]
\[Dh(x_1) = 2ax_1 + 3bx_1^2 + \cdots \]
\[f(x_1,h(x_1)) = -x_1 \]
\[g(x_1,h(x_1)) = 2(ax_1^2 + bx_1^3 + \cdots) + x_1^2 \]

then

\[Dh(x)f(x,h(x)) = g(x,h(x)) \]

\[(2ax_1 + 3bx_1^2 + \cdots)(-x_1) = 2ax_1^2 + x_1^2 + 2bx_1^3 + \cdots \]

\[-2a = 2a + 1 \Rightarrow a = -\frac{1}{4} \]
\[-3b = 2b \Rightarrow b = 0 \]

...
and so
\[S : x_2 = -\frac{1}{4}a_1^2. \]

Direct Solution:
\[\phi_t = \left[-\frac{1}{4}a_1^2 \left(e^{-t}a_1 - e^{2t} - a_2 e^{2t} \right) \right] \]

1.2.5 Global Manifolds

- In the proof \(S \) and \(U \) are defined in a small neighborhood of the origin, and are referred to as the *local* stable and unstable manifolds of the origin.

Definition: Let \(\phi_t \) be the flow of (1). The *global stable* and *unstable manifolds* of (1) at 0 are defined by
\[W^s(0) = \cup_{t \leq 0} \phi_t(S) \]
and
\[W^u(0) = \cup_{t \geq 0} \phi_t(S) \]
respectively.

The global stable and unstable manifold \(W^s(0) \) and \(W^u(0) \) are unique and invariant with respect to the flow. Furthermore, for all \(x \in W^s(0) \), \(\lim_{t \to \infty} \phi_t(x) = 0 \) and for all \(x \in W^u(0) \), \(\lim_{t \to -\infty} \phi_t(x) = 0 \).

Corollary: Under the hypothesis of the Stable Manifold theorem, if \(\Re(\lambda_j) < -\alpha < 0 < \beta < \Re(\lambda_m) \) for \(j = 1, \ldots, k \) and \(m = k + 1, \ldots, n \) then given \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that if \(x_0 \in N_{\delta}(0) \cap S \) then
\[|\phi_t(x_0)| \leq \epsilon e^{-\alpha t} \]
for all \(t \geq 0 \) and if \(x_0 \in N_{\delta}(0) \cap U \) then
\[|\phi_t(x_0)| \leq \epsilon e^{\beta t} \]
for all \(t \leq 0 \).

This shows that solutions starting in \(S \) sufficiently near the origin, approach the origin exponentially fast as \(t \to \infty \).

1.3 Center Manifold Theorem

Theorem (The Center Manifold Theorem) Let \(f \in C^r(E) \) where \(E \) is an open subset of \(\mathbb{R}^n \) containing the origin and \(r \geq 1 \). Suppose that \(f(0) = 0 \) and that \(Df(0) \) has \(k \) eigenvalues with negative real part, \(j \) eigenvalues with positive real part, and \(m = n - k - j \) eigenvalues with zero real part. Then there exists an \(m \)-dimensional center manifold \(W^c(0) \) of class \(C^r \) tangent to the center subspace \(E^c \) of (2) at 0, there exists an \(k \)-dimensional center manifold \(W^s(0) \) of class \(C^r \) tangent to the stable subspace \(E^s \) of (2) at 0, and there exists an \(j \)-dimensional center manifold \(W^u(0) \) of class \(C^r \) tangent to the unstable subspace \(E^u \) of (2) at 0; furthermore, \(W^c(0) \), \(W^s(0) \) and \(W^u(0) \) are invariant under the flow \(\phi_t \) of (1).

2 The Hartman-Grobman Theorem

Definition:
- Let \(X \) be a metric space (such as \(\mathbb{R}^n \)) and let \(A \) and \(B \) be subsets of \(X \). A *homeomorphism* of \(A \) onto \(B \) is a continuous one-to-one map of \(A \) onto \(B \), \(h : A \to B \), such that \(h^{-1} : B \to A \) is continuous.
- The sets \(A \) and \(B \) are called *homeomorphic* or *topologically equivalent* if there is a homeomorphism of \(A \) onto \(B \).
• Two autonomous systems of differential equations such as (1) and (2) are said to be \textit{topologically equivalent} in a neighborhood of the origin, or to have the \textit{same qualitative structure near the origin} if there is a homeomorphism \(H \) mapping an open set \(U \) containing the origin onto a set \(V \) containing the origin, which maps trajectories of (1) in \(U \) onto trajectories of (2) in \(V \) and preserves their orientation by time.

Theorem (The Hartman-Grobman Theorem) Let \(f \in C^1(E) \) where \(E \) is an open subset of \(\mathbb{R}^n \) containing the origin, and \(\phi \), the flow of (1). Suppose that \(f(0) = 0 \) and that \(Df(0) \) has no eigenvalues with zero real part. Then there is a homeomorphism \(H \) of an open set \(U \) containing the origin onto a set \(V \) containing the origin such that for each \(x_0 \in U \), there is an open interval \(I_0 \subset \mathbb{R} \) containing zero such that for all \(x_0 \in U \) and \(t \in I_0 \)

\[
H \circ \phi_t(x_0) = e^{At}H(x_0);
\]
i.e., (1) and (2) are topologically equivalent in a neighborhood of the origin.

Example: The systems

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-x_1 \\
x_2 + x_1^2
\end{bmatrix}
\text{ and }
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

are topologically equivalent. Let \(x_0 = (a_1, a_2) \)

\[
H(x) = \begin{bmatrix}
-x_1 \\
x_2 + \frac{1}{3}x_1^2
\end{bmatrix}
\]

Then

\[
e^{At}H(x_0) = \begin{bmatrix}
e^{-t} & 0 \\
0 & e^t
\end{bmatrix} \begin{bmatrix}
-a_1 & -a_1 e^{-t} \\
a_2 + \frac{1}{3}a_1^2 & (a_2 + \frac{1}{3}a_1^2) e^t
\end{bmatrix} = \begin{bmatrix}
-a_1 e^{-t} & -a_1 e^{-t} \\
a_2 + \frac{1}{3}a_1^2 & (a_2 + \frac{1}{3}a_1^2) e^t
\end{bmatrix}
\]

\[
H \circ \phi_t(x_0) = H\left(\begin{bmatrix}
-a_1 e^{-t} \\
a_2 + \frac{1}{3}a_1^2
\end{bmatrix} \right) = \begin{bmatrix}
-a_1 e^{-t} \\
a_2 + \frac{1}{3}a_1^2
\end{bmatrix} \begin{bmatrix}
-e^t - \frac{1}{3}a_1^2 e^{-2t} + \frac{1}{3}a_1^2 e^{-2t} \\
\end{bmatrix} = \begin{bmatrix}
-a_1 e^{-t} \\
a_2 + \frac{1}{3}a_1^2
\end{bmatrix}
\]

Remarks:

• Perko gives an outline of the proof and gives a method using successive approximations for calculating \(H \).

• However, computationally not very useful since to compute \(H \) by this method requires solving for the flow \(\phi_t \) first.

• Conceptually, it is extremely useful since knowing that such \(H \) exists (without needing to compute it), allows us to determine the qualitative behavior of nonlinear systems near a hyperbolic equilibrium point by simply looking at the linearization (without solving it).

3 Stability and Lyapunov Functions

Definition:

• An equilibrium point \(x_0 \) of (1) is \textit{stable} if for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that for all \(x \in N_\delta(x_0) \) and \(t \geq 0 \), we have \(\phi_t(x) \in N_\epsilon(x_0) \).

• An equilibrium point \(x_0 \) of (1) is \textit{unstable} if it is not stable.

• An equilibrium point \(x_0 \) of (1) is \textit{asymptotically stable} if it is stable and if there exists a \(\delta > 0 \) such that for all \(x \in N_\delta(x_0) \) we have \(\lim_{t \to \infty} \phi_t(x) = x_0 \).

Remarks:

• The about limit being satisfied does not imply that \(x_0 \) is stable (why?).
• From H-G theorem and Stable manifold theorem, it follows that hyperbolic equilibrium points are either asymptotically stable (sinks) or unstable (sources or saddles).

• If \(x_0 \) is stable then no eigenvalue of \(Df(x_0) \) has positive real part (why?)

• \(x_0 \) is stable but not asymptotically stable, then \(x_0 \) is a non-hyperbolic equilibrium point

Example: Perko 2.9.2 (c) Determine stability of the equilibrium points of:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-4x_1 - 2x_2 + 4 \\
x_1 x_2
\end{bmatrix}
\]

Equilibrium points are \((0, 2), (1, 0)\).

\[
Df(x) = \begin{bmatrix}
-4 & -2 \\
x_2 & x_1
\end{bmatrix}
\]

\[
Df(0, 2) = \begin{bmatrix}
-4 & -2 \\
2 & 0
\end{bmatrix}
\]

\[
Df(1, 0) = \begin{bmatrix}
-4 & -2 \\
0 & 1
\end{bmatrix}
\]

What can we say in general about the stability of non-hyperbolic equilibrium points?

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
-x_2 - x_1 x_2 \\
x_1 + x_1^2
\end{bmatrix}
\]