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CDS 101/110a: Lecture 1.2
System Modeling
Douglas G. MacMartin
Goals:
¢ Define a “model” and its use in answering questions about a system
¢ Introduce the concepts of state, dynamics, inputs and outputs
¢ Review modeling using ordinary differential equations (ODEs)
Reading:
e Astrém and Murray, Feedback Systems, Sections 2.1-2.3, [40 min]
e Advanced: Lewis, A Mathematical Approach to Classical Control, Ch. 1
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ﬂe Model-Based Analysis

Of Feedback SYSTemS Weather Forecasting

Analysis and design based on models

— A model provides a prediction of how the
system will behave

— Feedback can give counter-intuitive behavior;
models help sort out what is going on

— For control design, models don’t have to be
exact: feedback provides robustness

The model you use depends on the questions

you want to answer e Question 1: how much will it
— Asingle system may have many models rain tomorrow?
— Time and spatial scale must be chosen to suit  |* Question 2: will it rain in the
the questions you want to answer next 5-10 days?
— Formulate questions before building a model * Question 3: will we have a
Control-oriented models: inputs and outputs drought next summer?

— Capture input/output behaviour “sufficiently”

Different questions lead to
different models
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Example #0: Combustion Instability

e Thermoacoustic coupling in combustion chamber

e Approach: Modulate fuel supply (rapidly) in response to measured
pressure oscillations

e “Standard” combustion model:
— High-resolution coupled fluid-chemistry computational model
e “Controls” model:

— Input/output
— Simple block- _
diagram model [ W _ S i 3 --...’

that describes
macroscopic
heat release
and coupling
to acoustics...

i Pratt & Whitney D. MacMartin cds101/110 2014 i United 3
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T/ Example #1: Spring Mass System
A u() | .
i ¢ Applications
f % — Flexible structures (many apps)
; il i — Suspension systems (e.g., “Bob”)
: m m, — Molecular and quantum dynamics
Ky k, ks * Questions we want to answer
ﬂ—é — How much do masses move as a
function of the forcing frequency?

= — What happens if | change the values
of the masses?

— Will Bob fly into the air if | take that
speed bump at 25 mph?

¢ Modeling assumptions

— Mass, spring, and damper constants
are fixed and known

— Springs satisfy Hooke’s law

— Damper is (linear) viscous force,
proportional to velocity
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“1+/  Modeling a Spring Mass System
] u(t) |
g 9
5 G |
§ my | m,
ks k; ks E
c

¢ Model: rigid body physics (Ph 1)
— Sum of forces = mass * acceleration
— Hooke’s law: F = K(X — Xyest)

Can always re-write in first-order form:
z = f(z,u) y = h(z)

— Viscous friction: F=cv )

3| 5 |
m1d1 = ka(q2 — q1) — k101 = ko k1
modo = k3(u — q2) — ko(g2 — q1) — cio d |91 k3 i (42 _kql) Tmdl

q2 (u—q2) — 22 —q1) — 562
-l
92 “State space form”
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Simulation of a Mass Spring System
u(t) |

 Steady state frequency response
— Force the system with a sinusoid

HEHAHH]

9,
qu |
m, | m,

HHAHHHE

— Plot the “steady state” response, after
transients have died out

— Plot relative magnitude and phase of
ks k, ks

g output versus input (more later)
c

Frequency Response Matlab simulation (see handout)
function dydt = f(t, y, ...)

. u = 0.00315*cos(omega*t);

dydt = [

0.01 y(3);

y(4);

0 -(k1+k2)/m1*y(1) + k2/ml*y(2);
%0 k2/m2*y(1) - (k2+k3)/m2*y(2)
-180 - c/m2*y(4) + k3/m2*u ];

Gain (log scale)
o

Phase [deg]

[t.y] = ode45(dydt,tspan,yO0,[],
0 ki, k2, k3, ml1, m2, c, omega);
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Simulation of a Mass Spring System

¢ Prelude... (we will revisit this
in week 3)
System resonances are

described by eigenvalues and
eigenvectors of “A” matrix

q1

— Inputs are extrinsic to the system
dynamics (externally specified)

— Disturbances & control inputs

¢ Dynamics describes state evolution
— Update rule for system state
— Function of current state and any

external inputs

e Qutputs describe measured

quantities

— Outputs are function of state and
inputs; not independent variables

— Outputs are often subset of state

10/2/2014

Frequency Response d Z; q2
10 — |7 = ko _ _ Kk
% dt |1 \ 2(q2 k‘h) =
2 ! a2 :;?(H—qz)—r,?(qz—fn) — Lo
g™ 001 0][n 0
£ o _ 10 0 0 1} |g2 0
© pon T |x %« 0 0] |g3 + 6] “
0 lx = 0 x| |qa ks/m
g = Ax + Bu
O,
'; -180
@
i -270
-360
0.1 1 10
Frequency [rad/sec]
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Y : : & = f(z,u)
Modeling Terminology
= h(z,u)
e State captures effects of the past
— Independent physical quantities that
determines future evolution (absent u(t)
external excitation) g
¢ Inputs describe external excitation i g |
o] -

Example: spring mass system
« State: position and velocity of each

mass: q1, 42, 41, 42

Input: position of spring at right end of

chain: u(t)

*Dynamics: basic mechanics
*Qutput: measured positions of the

masses: 91; 92
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Modeling Properties

¢ Choice of state is not unique

— There may be many choices of variables that can act as the state

— Trivial example: different choices of units (scaling factor)

— Slightly less trivial example: sums and differences of the mass positions
e Choice of inputs and outputs depends on point of view

— Inputs: what factors are external to the model that you are building

— Inputs in one model might be outputs of another model (e.g., the output of a
cruise controller provides the input to the vehicle model)

— Outputs: what physical variables (often states) can you measure

— Choice of outputs depends on what you can sense and what parts of the
component model interact with other component models

e Can also have different types of models
— Ordinary differential equations for rigid body mechanics
— Difference equations
— Finite state machines for manufacturing, Internet, information flow
— Partial differential equations for fluid flow, solid mechanics, etc.
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Linear Systems

u t = Az+Bu |y * A system is linear if the response is
__Jy = Cz+Du |, linear in initial condition & inputs:
— y(t) obtained with x(0)=x, and
z(0) =0 u(t)=u, (t)+u,(t)
1
! — Equals y(t) due to
u
g —_— « x(0)=x, (with u(t)=0) plus
, e y(t) due to u,(t) (with x(0)=0) plus
T N 0 T 5 10 * y(t) due to u,(t) (with x(0)=0
1 0. Vi 2 =
u y * General form for nonlinear system:
2 9 _— '’ o .
= f(z,u)
) 5 10 0 5 10 Yy = h(a?, 'LL)‘
2 ¢ General form for linear system:
3 — < OW ¢ = Az+ Bu
* + y = Cz+ Du
> - .
“o 5 10 = % 5 10 x € Rn’ A€ RX"1
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State Transformation

* More generally, given
r = Ax -+ Bu

y = Czx+ Du

* And an invertible state transformation: (if = € R, V € R™*")

z=Vzx =V 1z

* Then the system can also be written as
;= (VAV Dz 4+ (VB)u
y = (CV " Y2+ Du

¢ Which has the same input-output properties, though a different state
vector

10/2/2014 D. MacMartin cds101/110 2014 11

% More General Forms of
Differential Equations
Z—f:_f(m,u) z—::Am+Bu zeR", ueRP
y = h(z,u) y=Cz+ Du yeR

Linear system x = state; nt" order
u =input; in 101/110a, usually p=1

y = output; in 101/110a, usually q = 1

General form

dnq dn—lq
gt Mgt T e =
n—lq .
y:bldtn_l + o+ bpo1d + bng
Ty —a; —Q3 ... —Qp—1 —0p 1
1 d"~lg/dt"! o 1 0 ... 0 0 0
9 d—2q/dt"? dizl_ o 1 0 0 g4 0
z=| - | = : dt
Tn1 dq/dt T, 0 0 1 0 0
Tn q
y:[bl by ... bn]w
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Difference Equations

« Difference equations model discrete transitions between continuous variables

— “Discrete time” description (clocked transitions _

ime” description ( nsitions) zlk 4+ 1] = f(x[k], ulk])
— New state is function of current state + inputs [k] h( [k])
— State is represented as a continuous variable Y - z
Example: predator prey dynamics Ques“ons we want to answer

*“ Given the current population of hares and

lynxes, what will it be next year?

If we hunt down lots of lynx in a given year,
how will the populations be affected?

How do long term changes in the amount of
food available affect the populations?

Modellng assumptions

Track population annual (discrete time)

The predator species is totally dependent on
the prey species as its only food supply

The prey species has an external food supply
and no threat to its growth other than the

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935 specific predator.
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Example #2: Predator Prey Modeling

¢ Discrete Lotka-Volterra model MATLAB simulation (see handout)
— State * Discrete time model, “simulated” through
ted additi
i H[k] # of hares in period K »Nrepea ed adartion
e L[K] # of lynxin period k 2 T s |

Inputs (optional)

* U[K] amount of hares’ food
Outputs: # of hares and lynx ) ; o
— Dynamics: Lotka-Volterra eqs o 1m0 w0 0 m0 0 w0 19

Population

Hk + 1] = H[k] + by (u) H[k] — aL[k] H[K]
L[k + 1] = L[k] + cL[k]H[k] — de[k]
— Parameters/functions

. br(u) hare birth rate (per period);
depends on food supply

* df lynx mortality rate (per period)

W, WY L W Y
® a, Cinteraction terms 1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
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e Summary: System Modeling

¢ Model = state, inputs, outputs, dynamics

T—
L alk+ 11 = [ (alk], ulk)
_ ylk] = h(a[k)

* Principle: Choice of model depends on the questions you want to answer

g u(t) | function dydt = f(t,y, ki1, k2,
o k3, ml, m2, c, omega)
g 9 u = 0.00315*cos(omega*t);

—%—.l dydt = [
: m M2 VOE
AVAVAAYAVAY, AVAVAVAVAAY. AVATATAYAYAS y(a):

K, k, Ks —(K1+k2)/mi*y(1) +

i K2/mi*y(2);
k2/m2*y(1) - (k2+k3)/m2*y(2)

- b/m2*y(4) + k3/m2*u ];
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% L1 2 modeling.m - Lecture 1.2 MATLAB calculations
% RMM, 6 Oct 03

%
% Spring mass system

% Spring mass system parameters

m = 250; ml=m; m2=m; % masses (all equal)
k = 50; kl=k; k2=k; k3=k; % spring constants

b = 10; % damping

A = 0.00315; omega = 0.75; % forcing function

% Call ode45 routine (MATLAB 6 format; help ode45 for details)

tspan=[0 500]; % time range for simulation

y0 = [0; 0; 0; 0]; % initial conditions

[t,y] = oded45(@springmass, tspan, yO, [1, ki1, k2, k3, ml, m2, b, A, omega);

% Plot the input and outputs over entire period
figure(l); clf
plot(t, A*cos(omega*t), t, y(:,1), t, y(:,2));

% Now plot the data for the final 10% (assuming this is long enough...)
endlen = round(length(t)/10); % last 10% of data record

range = [length(t)-endlen:length(t)]"; % create vector of indices (note ")
tend = t(range);

figure(2); clIf
plot(tend, A*cos(omega*tend), tend, y(range,l), tend, y(range,2));

% Compute the relative phase and amplitude of the signals

%

% We make use of the fact that we have a sinusoid in steady state,

% as well as its derivative. This allows us to compute the magnitude
% of the sinusoid using simple trigonometry ( sin”™2 + cos™2 = 1).

u = A*cos(omega*tend); udot = -A*omega*sin(omega*tend);
ampu = mean( sqrt((u .* u) + (udot/omega .* udot/omega)) );
fprintf(1, “Amplitude = %0.5e cm®, ampu*100);

%
% Predator prey system
%

X

6 Set up the initial state
clear H L year
H(1) = 10; L(1) = 10;

% For simplicity, keep track of the year as well
year(1l) = 1845;

% Set up parameters (note that c = a in the model below)

1 of 2



10/1/09 1:30 PM C:\Documents and Settings\Douglas MacMynowski\..._.\L1 2 modeling.m

br = 0.6; df = 0.7; a = 0.014;
nperiods = 365; % simulate each day
duration = 90; % number of years for simulation

% lterate the model
for k = 1:duration*nperiods
b = br; % constant food supply
% b = br*(1+0.5*sin(2*pi*k/(4*nperiods))); % varying food supply (try it!)
H(k+1) = H(k) + (b*H(K) - a*L(k)*H(k))/nperiods;
L(k+1) = L(k) + (@*L(k)*H(k) - df*L(k))/nperiods;
year(k+1) = year(k) + 1/nperiods;

it (mod(k, nperiods) == 1)
% Store the annual population
Ha((k-1)/nperiods + 1) = H(K);
La((k-1)/nperiods + 1) = L(kK);
end;
end;

% Store the final population
Ha(duration) = H(duration*nperiods+1);
La(duration) = L(duration*nperiods+1);

% Plot the populations of rabbits and foxes versus time

figure(3); clf;

plot(1845 + [1:duration], Ha, ".-", 1845 + [1:duration], La, ".--7);
% Adjust the parameters of the plot

axis([1845 1925 0 250]);

xlabel ("Year");

ylabel ("Population®);

% Now reset the parameters to look like we want

Igh = legend(gca, “hares®, “lynxes®, "Location®, "NorthEast®, ...
"Orientation®, "Horizontal*);

legend(lgh, “boxoff®);
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# L1-3_modeling.py - Lecture 1.2 MATLAB calculations
# RMM, 23 Sep 2012

import numpy as np

import matplotlib.pyplot as mpl

from scipy.integrate import odeint

# Spring mass system
def springmass(y, t, A, omega):
# Set the parameters
k1 =50.; k2 = 50.; k3 = 50. # spring constants
m1 = 250.; m2 = 250. # masses
b=10. # damping

# compute the input to drive the system
u = A* np.cos(omega*t)

# compute the time derivative of the state vector
dydt = (y[2], y[3],

-(k1+k2)/m1*y[0] + k2/m1*y[1],

k2/m2*y[0] - (k2+k3)/m2*y[1] - b/m2*y[3] + k3/m2*u)
return dydt

# Call ode45 routine (MATLAB 6 format; help ode45 for details)
tspan = np.linspace(0, 500, 1000) # time range for simulation
y0 = (0, 0, 0, 0); # initial conditions

A =0.00315; omega = 0.75 # amplitude of forcing

sol = odeint(springmass, y0, tspan, (A, omega))

t = tspan

# Plot the input and outputs over entire period
mpl.figure(1); mpl.clf()

mpl.plot(t, A*np.cos(omega*t), t, sol[:,0], t, sol[:,1]);
mpl.show()

CDS 101/110,5 Oct 2012

Python code

# Predator prey system
# Set up parameters (note that ¢ = a in the model below)
br=0.6; df = 0.7; a = 0.014;
nperiods = 365;

duration = 90;

# simulate each day
# number of years for simulation

# Set up the initial state
H = np.zeros(duration*nperiods); H[0] = 10;
L = np.zeros(duration*nperiods); L[0] = 10;

# For simplicity, keep track of the year as well
year = np.zeros(duration*nperiods); year[0] = 1845;

# Iterate the model
Ha = np.zeros(duration); La = np.zeros(duration);
for k in range(duration*nperiods-1):
b =br; # constant food supply
# b = br*(1+0.5%sin(2*pi*k/(4*nperiods))); # varying food supply (try it!)
Hk+1] = H[K] + (b*H[K] - a*L[K]*H[k])/nperiods;
L[k+1] = L[k] + (@*L[K]*H[K] - df*L[k])/nperiods;
year[k+1] = year[k] + 1/nperiods;

if (np.mod(k, nperiods) == 1):
# Store the annual population
Ha[k/nperiods] = H[K];
La[k/nperiods] = L[K];

# Store the final population
Ha[duration-1] = H[duration*nperiods-1];
La[duration-1] = L[duration*nperiods-1];

mpl.plot(range(1845, 1845 + duration), Ha, .-, \
range(1845, 1845 + duration), La, '.--');

Richard M. Murray, Caltech CDS






