CDS 101/110a: Lecture 3.1
Linear Systems

Douglas G. MacMartin

Goals:
Describe linear system models: properties, examples, and tools

.
- Convolution equation describing solution in response to an input

- Step response, impulse response

Frequency response

Reading:
Astrom and Murray, Analysis and Design of Feedback Systems, Ch 5
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* Key topics
— Stability of equilibrium points

Summary: Stability and Performance

— Eigenvalues determine stability
for linear systems

— Local versus global behavior
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Linear Systems

u ¢ o= AvtBu |y * Input/output linearity at x(0) =
y = Czx+ Du . . :
— — — Linear systems are linear in
#(0) =0 initial condition and input
= need to use x(0) = 0 to add
) outputs together
]
u — For different initial conditions,
1o —) Vi 0 you need to be more careful
+ o4 . * Linear system = step response
. ° 10 oL 5 10 and frequency response scale
with input amplitude
u V2 .
— o — 2Xinput = 2X output
s s o 04 — Allows us to use ratios and
° 0 percentages in step or frequency
2 response. These are
o o~ . . .
S b\ independent of input amplitude
N _>+OW dependent of input amp
3 < — Limitation: input saturation
2 . ~ N = only holds up to certain input
amplitude
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i Why are Linear Systems Important?

Many important examples Many important tools

* Electronic circuits * Frequency and step response,
— Traditional tools of control theory

T — Developed in 1930’s at Bell Labs

* Classical control design toolbox
— Nyquist plots, gain/phase margin
— Loop shaping

- Espectallyitrue after feedback

- Frequency response is key
performance specification

* Optimal control and estimators
— Linear quadratic regulators

* Many mechanical systems

u(t) | .
q | — Kalman estimators
[¢[]
myl m,
* Robust control design
k k k .
! ? 3 — H,, control design
< — wanalysis for structured
uncertainty
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£3 Solutions of Linear Systems:
The Matrix Exponential
rz = Ax+ Bu
y = Cz—+ Du
* Scalar linear system, with no input

(1) =227

X =ax
x(0)=x, — x(t)=e"x, —— y(t)=ce"x,
y=cx

* Matrix version, with no input

x(0)=x, — x(1)= eAtxo — | y(t)=Ce txo

y=Cx

o - - sys=ss(A,B,C,D);
Matrix exponential initial(sys,x0);
— Analog to the scalar case; defined by series expansion:

) 1 1
M _ ) 7210 a3 ...
M =T+ M4 M2+ M3 P = expm(M)
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“i+ Response to inputs: Discrete-time

. Firs.t, with alk + 1] = Age[k] . Respons..e due to input
no input: u[0] at time zero is
z[1] = Aqz[0] z[1] By
z[2] = Aﬁa:[O] x[2]| _ |AqBa
. x[3] AZBy

z[k] = Akz[0]
* Response at time k is
* Now, with an input: the sum of response to

Il previous controls:
a[k 4 1] = Agz[k] + Byulk alp
zlk + 1] = Agzlk] + Byulk] AN

then: +Bgulk]
z[1] = Ayz[0] + Byul0] +AygBgulk — 1]
z[2] = AZx[0] + AyB,ul0] + Byu(1] +A2Bulk — 2]

z[3] = A3z[0] + AZB,u[0] + AyBgull] + Byu[2]
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3] Back to continuous time...
r = Az -+ Bu

— yt) = Ce™Mz(0) 4 777
= Cx+ Du

_—
homogeneous

*  What is the “impulse response” due to u(t)=95(t)?
take limit as dt— 0 but keep unit area
0
1/dt
v

Skt

dt

*  Apply this unit impulse to the system (with x(0)=0):
ot
z(0h) = ]O— (Az + Bu)dt =B

= a2(t) =MB

* Analogous to discrete-time response to input at time zero
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i-% ] Response to inputs: Convolution
r = Ax+ Bu

oot b _ y(t) = CeMz(0) 4+ 777
y = Czx U

-
homogeneous

* Impulse response, h(t) = Ce'B
— Response to input “impulse” [ - f \
— Equivalent to “Green’s function”

* Linearity = compose response to arbitrary u(t) using convolution
— Decompose input into “sum” of

shifted impulse functions
— Compute impulse response for each
— “Sum” impulse response to find y(t)

— Take limit as dt— 0

* Complete solution: use integral instead of “sum” . . L

* linear with respect to initial
At t A(t—7) condition and input

y(t) =Ce $(O)+L70 Ce’ Bu(7)dr+Du(t) | « 2x input = 2X output when

N x(0)=0
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- MaTlab/PyThon Tools for Linear Systems

y(t) = Celz(0)+

OCe-“f‘—f)Bu(T)dT+Du(t)

_

Initial Condition Results

Linear Simulation Results

A=1[-11; 0 -1];
= [1 0]; D = [0]; Lo
= [1; 0.5]; z o
] © 5
sys = ss(A,B,C,D); -
initial(sys, x0); % !
impulse(sys);
t = 0:0.1:10; § 0
u = 0.2*sin(5*t) + cos(2Ft); 'EQ;U
Isim(sys, u, t, x0);
-0.
0 1 2

* Other MATLAB commands

gensig, square, sawtooth — produce signals of diff. types
step, impulse, initial, Isim — time domain analysis

bode, fregresp, evalfr — frequency domain analysis
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Input/Output Performance

* Return to system with inputs

— How does system respond to
changes in input values?

— Transient response:
— Steady state response:
* Characterize response in terms of
— Impulse response
— Step response
— Frequency response J\[v ]|J
il
* Stability vs input/output performance M
— Systems that are close to instability

LD waw
EF\J LJJJ.uJJIl.HJ-IJHLJHJiHrHl |

o Transient _ Steady State
i /—/% K—A_ﬁ

il
".I||u| Wi

Mass spring system (L1.2)

typically exhibit poor input/output ' "
performance (slow convergence and/or

“ringing” — a highly oscillatory response to
[non-periodic] inputs)
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Step Response

* Qutput characteristics in response to a “step” input
— Rise time: time required to move from
5% to 95% of final value
— Overshoot: ratio between amplitude of
first peak and steady state value

— Settling time: time required to remain
w/in p% (usually 2%) of final value

— Steady state value: final value at t = oo

15
; :]Overshoot

[0} 1 .4
©
2
.‘_é- Steady state value
<

05 Rise time

Settling time
0
0 5 10 15 20 25
Time (sec.)
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Second Order Systems

* If you understand response of first and second order systems, you understand
the response for any order (eigenvalues of A are either real or complex)
— Exception is non-diagonalizable A (non-trivial Jordan form)

. . d 0 1 0
, GH20woqtugg = u dt L:J —w§ —QCwo} =+ {1} v
18 -— For C <1, eigenvalues at
16 =211/ W,

14 A C:l:j\/lf

1.2

1
> 1
0.8 0<C<1
0.6 4 1 0.5
0.4 —
<
02 5 o
0 - . : E
0 5 10 15 20 25
time (sec) 0.5 O<C_,<1
— Analytical formulas exist for
overshoot, rise time, settling time, etc R
Real(x)
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Real e-values oz X .\

Re(L) <0 o>

iy 7 Real e-values
/. Re(1) <0
= ,..__..g ol Re(A;) >0

A

Complex e-values 2|,

Re(h)=0 o

Re(A;) <0

10/14/2013

D. MacMartin, cds101/110 2013

Complex e-values '
o8

Eigenstructure of Linear S

1

oaf

|

ystems

I 3 4 & & E N & LR

05 [ [ 1

13

e

O
i

7 )

ST

* Measure the steady state response of the system to sinusoidal input

Frequency Response

— Example: audio amplifier — would like consistent

(“flat”) amplification between 20 Hz & 20,000 Hz

— Individual sinusoids are good test signals for
measuring performance in many systems
(e.g., seasonal cycles in temperature)

* Approach: plot input and output, measure relative amplitude and phase

WV

—_—

— Use MATLAB or SIMULINK to generate 1.5
response of system to sinusoidal output N
— Gain=A/A, 3 09
— Phase =2m - AT/T 2 ,
g.
<C -0.5]
* May not work for nonlinear systems -1
— System nonlinearities can cause A% -

harmonics to appear in the output

— Amplitude and phase may not be well-defined
— For linear systems, frequency response is always well defined

10/14/2013
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Computing Frequency Responses

* Technique #1: plot input and output, measure relative amplitude and phase

— Generate response of system to 9 —u
sinusoidal output ! —
- Gain=A/A, o9
— Phase =21+ AT/T ° o \
-0.5]
— For linear system, gain and phase ) * 7-‘\\
don’t depend on the input amplitude
1% 5 10 15 20
* Technique #2 (linear systems): use bode (or freqresp) command
— Assumes linear dynamics in state % 3§ bode(ss(A.B,C.D))
space form: R
& = Az + Bu § bt
y=Cz+ Du ¢5§

— Gain plotted on log-log scale
* dB =20 logy, (gain)

Phase (deg)
2

— Phase plotted on linear-log scale 450

0.1 1
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i Calculating Frequency Response from
convolution equation... (more later)

* Convolution equation describes response to any input; use this to look at
response to sinusoidal input: ¢y = Asin (wt) = 2 (et — et
2i

u(t)
t -
2(t) = eM2(0) + [ AT RS
t .
=eAtm(O) +6At-/0 e(zwffA)'rBd,r
— eAt:B(O) + eAt(iwI— A)fle(iwlfA)Tﬁ_OB
= ez (0) + eAl(iwl — A)~L (e(i“"I_A)t — I) B
At : -1 . -1 iwt
=" (2(0) — (iwl — A)""B) + (iwl — A)""Be
N ( ) N J
Y
Transient (decays if stable) Ratio of response/input

y(t) = Cz(t) + Du(t)
= Ce™ (2(0) — (iwl — A) ' B) +|(CGiwl — A) "' B + D)™

“Frequency response”
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£ . Frequency
Sy Spring Mass System response:
. C(jwl-A)1B+D
Eigenvalues of A: (jol-A)
ut) * For zero damping, &+ jo, and £jm,
ol q
e ‘ * m, and o, correspond to the two
m my peaks in the frequency response
* The eigenvectors for these
i ke ks eigenvalues give the mode shape:
ﬂ—g — In-phase motion for the lower frequency
C . .
0 0 1 07 Out-of phase motion for the higher
a1 q1 frequency
d g 0 0 0 1 g Frequency Response
— |25 = | _kitk k .
dat lan| — |- 20 0 a )
a2 ka o _kaths g _c||go

m

With ki =kp =1, m=1,c=0

Gain (log scale)

1 1 -
_ |1 _ | -1 g
Y127 1415 Y34 = 1 /2i g
+1i :F\/E'i £ 2
- -360
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s Summary: Linear Systems
u r = Ax+4 Bu y
= Cxz+ Du
z(0) =0
|
% 5 10 *-h 5 10
] 0.
q q
0 5 0 5 10 * Properties of linear systems
— Linearity with respect to initial condition
UWWV\/\/VW 9 and inputs
K 5 10 D 5 10 — Stability characterized by eigenvalues

y(t) = Ce’“a:(O)-I—[;O CeM=7) Bu(r)dr+Du(t)

10/14/2013

— Many applications and tools available

— Provide local description for nonlinear
systems
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