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CDS 101/110a: Lecture 7-1
Loop Analysis of Feedback Systems

Douglas G. MacMynowski

Goals:
* Compute closed loop stability from open loop properties:
- Nyquist stability criterion for stability of feedback systems
* Define gain and phase margin and determine it from Nyquist and Bode plots

Reading:
e Astrém and Murray, Feedback Systems, Ch 9.1-9.4
* Advanced: Lewis, Chapters 7
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Review From Last Week
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G OF , Closed Loop Stability
Q: how do open loop dynamics affect the
r : C(s) _,éﬂ, PGs) ==Y closed loop stability?

— Given open loop transfer function C(S)P(s)
determine when system is stable

-1

Brute force answer: compute poles of closed loop transfer function

rPC nphe * Poles of H,, = zeros of 1 + PC
1+ PC - dpde + npne » Easy to compute, but not so good for design

Hyy =

Alternative: look for conditions on PC
that lead to instability

* Example: if PC(s) = -1 for some s = i@,
then system is not asymptotically stable

Magnitude (dB)

¢ Condition on PCis much nicer because
we can design PC(s) by choice of C(s)

Phase (deg)

* However, checking PC(s) =-1is not
enough; need more sophisticated check 04

4
Frequency (rad/sec)
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.1/ Game Plan: Frequency Domain Design

* Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get
good performance

DN
o
TonM

3

o — PC * Poles of Hy, = zeros of 1 + PC
T + PC * Would also like to “shape” Hy, to specify
performance at different frequencies
Bode Diagram
wl ‘ | * Low frequency range:
_ PC>1 pC s
g 1 PC>»1 = — - ~1
2 o > 1+ PC
| i (good tracking)
40 * Bandwidth: frequency at which
’ : ‘ ‘ closed loop response = 1/42
s i = open loop gain = 1
E %0 1 * |dea: use C(s) to shape PC
£ i 1 (under certain constraints)
180k L " ‘ * Need tools to analyze stability
10 10’ 10° 10’ 1’ ' and performance for closed

Frequency (rad/sec)

loop given PC
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“1+ Game Plan: Frequency Domain Design
* Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get
good performance

>
010w

oo — PC * Poles of Hy, = zeros of 1 + PC
14 pPC + Would also like to “shape” H, to specify
performance at different frequencies

20 BodeD‘iagram

10 * Low frequency range:
. ’ PC>1= < ~1
L PC | 1+PC
. 1+ PC | (good tracking)

: : » Bandwidth: frequency at which
0 ‘ closed loop response = 1/42
= open loop gain =1

* |dea: use C(s) to shape PC
(under certain constraints)

Phase (deg)
8

‘ ‘ ‘ * Need tools to analyze stability
10 10 10 10 10 and performance for closed
Frequency (rad/sec) |00p given PC

11/6/2011 D. MacMynowski, CDS 101/110a 2011 5

. Nyquist Criterion

g Imag
e u Y S
r C(s) '*é)—’ P(s) y oo RN « Nyquist “D”
R contour
« Take limit as
-1 | r-0,R—
- Real| * Trace from —co to
Determine stability from (open) loop k3 ; +00 along
transfer function, L(S) = P(S)C(s). imaginary axis
— Use “principle of the argument”
from complex variable theory oo f---7
Thm (NquISt) ConSideI' the NyQUISt /_///’)_‘\\\ * Trace frequency
plot for loop transfer function L(s). Let e in<0 AN response for L(s)
P # RHP poles of L(s) along the Nyquist
N # clockwise encirclements of -1 D" contour
Z # RHP zeros of 1 + L(s) * Count net # of
clockwise
Then encirclements of
Z=N+P the -1 point
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i Simple Interpretation of Nyquist

d * Basic idea: avoid positive feedback

e u — If L(S) has 180° phase (or greater) and
r C(s) -’é)-’ P(s) y gain greater than 1, then signals are

amplified around loop

LT

1 — Use when phase is monotonic

— General case requires Nyquist

Can generate Nyquist plot from Bode plot + reflection around real axis

Bode Diagrams Nyauist Diagrams

From: U(1)

N
8

£ L@ =-0 ,’/
. =0

Phase (deg); Magnitude (d8)
Imaginary A

Frequency (rad/sec) Real Axis

ambode(sys) [or bode(sys) in dB] amnyquist(sys)
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¢ Example: Proportional + Integral* speed
S controller y
e u
C(s) —>(%)—> P(s) y
-1
_1/m r
P(s) _s—l—b/m % s+a
K;
g CO=8t oo
: * Remarks

— N=0,P=0=Z=0(stable)
— Need to zoom in to make sure
there are no net encirclements

— Note that we don’t have to
compute closed loop response

Real Axis
* slightly modified; more on the design of this compensator in next week’s lecture
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More complicated systems

* What happens when open loop plant has RHP poles?

— 1+ PC has singularities inside D contour = these must be taken into account

Pole-zero map Nyqu\srt Diagrams

FEER 2
g © <
E g
Real Axis
1 1 ; =

Lis)="T1

s—05 s24s+1 Real Axis

N=-1,P=1=Z=N+P=0 (stable)
unstable pole
1 s+1

1+ L = (s 4 0.35)(s + 0.07 + 1.2i)(s + 0.07 — 1.2i) v
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o) Comments and cautions
* Why is the Nyquist plot useful?
— Old answer: easy way to compute stability (before computers and MATLAB)

— Real answer: gives insight into stability and robustness; very useful for reasoning about
stability

1

H(s) =——
* Nyquist plots for systems with poles on the jw axis s(s+1)
r'S

—— =0" y

. * chose contour to

\ avoid poles on axis
\ * need to carefully \ . \

< — —>  compute Nyquist h a’:f'w .
! plot at these points s e

+, « evaluate H(e+0i) to

determine direction

w=0"*
* Cautions with using MATLAB
— MATLAB doesn’t generate portion of plot for poles on imaginary axis
— These must be drawn in by hand (make sure to get the orientation right!)
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,;;‘r_;- J Robust stability: gain and phase margins

Nyquist Diagram

SO

* Nyquist plot tells us if closed loop is
stable, but not how stable

* Gain margin
— How much we can modify the loop gain
and still have the system be stable
— Determined by the location where the
loop transfer function crosses 180° phase

* Phase margin
Bode Diagram
— How much we can add “phase delay” and GM=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853

still have the system be stable _
Q GM
— Determined by the phase at which the 2 0 2
loop transfer function has unity gain 2 \
_g 100
* Bode plot interpretation g
— Look for gain = 1, 180° phase crossings £ o m
— MATLAB: margin(sys) 20
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Example: cruise control
1/m r
% P(s) = ———x ——
r e u
CGs) P(s) y' s+b/m s+a
K;
C(s)=Kp+—1—
() pt s+ 0.01
-G(s) 10
* Effect of additional sensor dynamics G(s) = s+ 10

— New speedometer has pole at s = -10 (very fast); problems develop in the field
— What’s the problem? A: insufficient phase margin in original design (not robust)

Bode Diagram

Nyquist plots

Magnitude (dB)

Phase (deg)

10* 10° 10° 10 10° 10 10° 10
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% Preview: control design
[ - 1/m r

P(s)=———x
r e u y s+b/m s+a
ce) *é%»Pm X,
o) ‘("’Jr s+0.01

-G(s 10
. © G(s) =

* Approach: Increase phase margin s+ 10
— Increase phase margin by reducing gain = can accommodate new sensor dynamics

— Tradeoff: lower gain at low frequencies = less bandwidth, larger steady state error

Bode Diagram

Nyquist plots
g A’\ O VVVVVV -
oot/
4
3
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7 /Summary: Loop Analysis of Feedback Systems
) »
d Nyquist Diagram
e u
r C(s) P(s) > Y
-1
— Nyquist criteria for loop stability
— Gain, phase margin for robustness
15 1 05 0 0.5 1 15
Fico u__‘\ = Bode Diagram
J \‘\\ Thm (NquISt) Gm=7.005 dB (at 0.34641 rad/sec), Pm=18.754 deg. (at 0.26853
R P # RHP poles of L(s) | _ °
\ . [2a]
V[N # CW encirclements |2 ¢ GM
»|Z # RHP zeros = \
b /‘ % 10
Z=N+P g
,/ z -10
& PM
_jeo -~ -20
30 ¢ d
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