Halo Orbit Mission Correction Maneuvers Using Optimal Control

Radu Serban and Linda Petzold (UCSB)
Wang Koon, Jerrold Marsden and Shane Ross (Caltech)
Martin Lo and Roby Wilson (JPL)

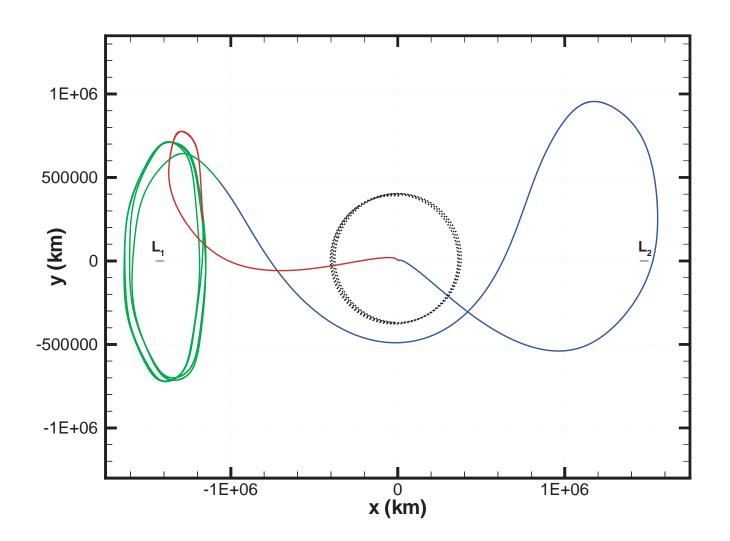
Wang Sang Koon

Control and Dynamical Systems, Caltech

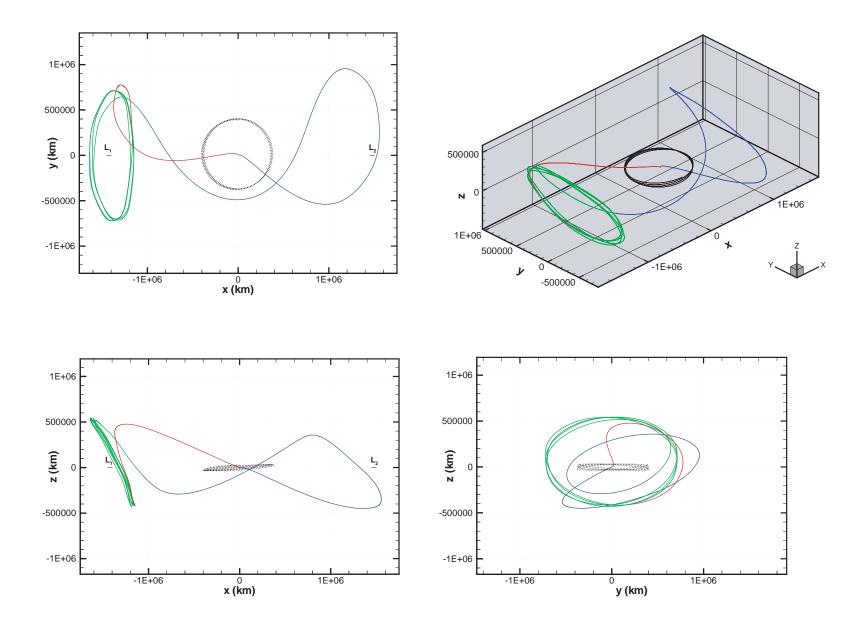
koon@cds.caltech.edu

■ Genesis Discovery Mission

- ► Solar wind sample return mission.
- ► Show Genesis **halo orbit**, the **transfer** and **return** trajectories in a rotating frame.

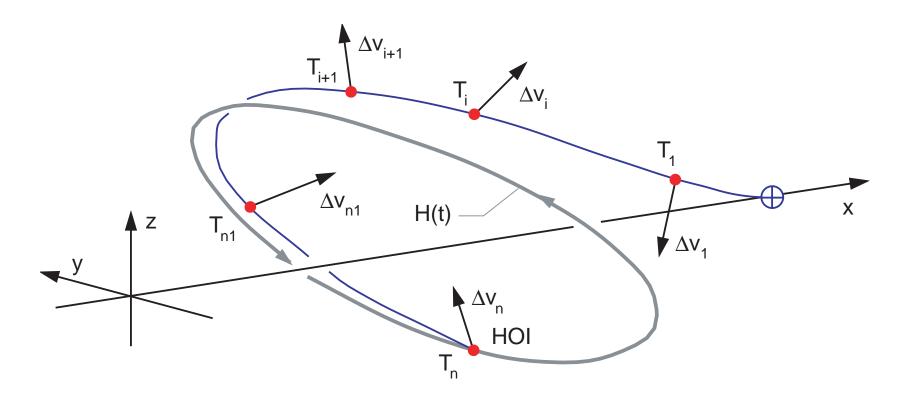


■ Genesis Discovery Mission



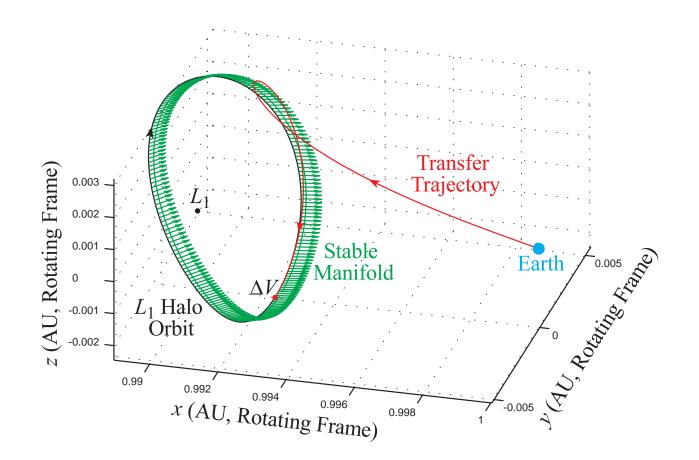
■ Trajectory Correction Maneuvers Problem (TCM)

- ▶ Before checkout completed, TCM1 is difficult and risky. Genesis prefers TCM1 at **2-7 days** after launch.
- ▶ Beyond **1** day, correction ΔV based on traditional linear analysis can become prohibitively high.
- The desire to delay TCM1 but to stay within ΔV budget drives us to use **nonlinear** approach.



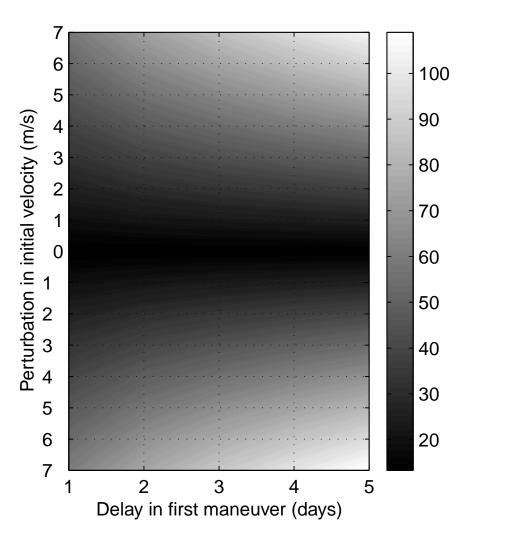
■ Merge Optimal Control with Dynamical Systems

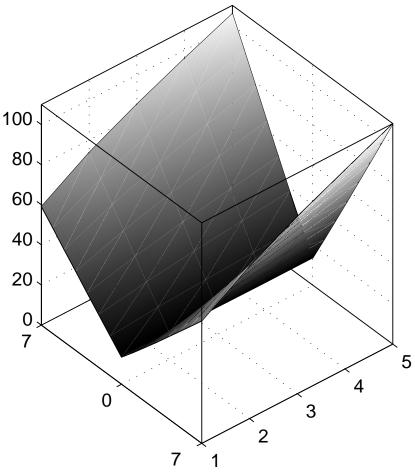
- ▶ 2 similar but different approaches were explored, based on merging **optimal control/dynamical systems**.
 - Halo Orbit Insertion: re-target halo orbit with original nominal trajectory as **first guess**.
 - Stable Manifold Insertion: target **stable manifold**.



■ Within Genesis ΔV Budget

▶ Obtain in both cases an optimal maneuver strategy, within Genesis ΔV budget of 150 m/s.





Two Main Ideas

► Theoretically, **optimal control** is a favorite approach in **trajectory generation**.

$$\max \int C, \quad \text{with} \quad \dot{x} = f(x, u).$$

- Resulting trajectories can be optimal in fuel consumption.
- ▶ But **numerically**, there exist many difficulties.
 - Existing numerical algorithms would not converge whenever underlying dynamics is sensitive.
- ► Tackle these from 2 fronts:
 - Explore "direct method" optimal control algorithms.
 - Merge optimal control with dynamical systems.

Direct vs. Indirect Method

► Indirect Method: equations derived by Calculus of Variations or Pontryagin Maximum Principle.

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$$
 where $L = C + \lambda(\dot{x} - f(x, u)).$

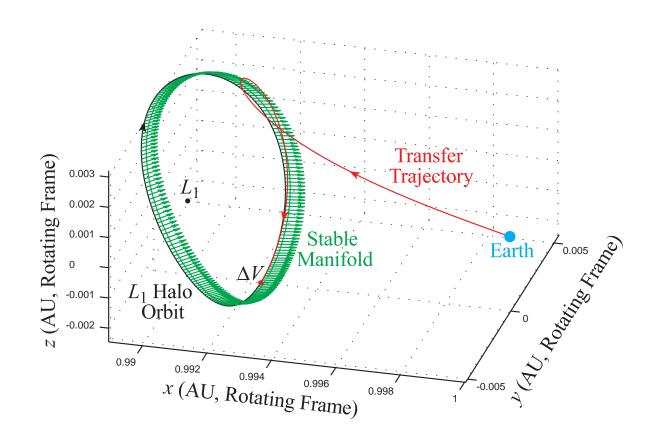
- ► Main drawbacks:
 - 2 point boundary value problem (numerically sensitive).
 - Need a good first guess. But it is difficult to guess λ .
- ▶ Direct Method:

$$\max \int C, \quad \text{with} \quad \dot{x} = f(x, u)$$

- approximated by a **discrete optimization** problem
- solved by **SQP** (sequential quadratic programming) software.
- ▶ Resulting algorithm avoids many difficulties and is very robust.

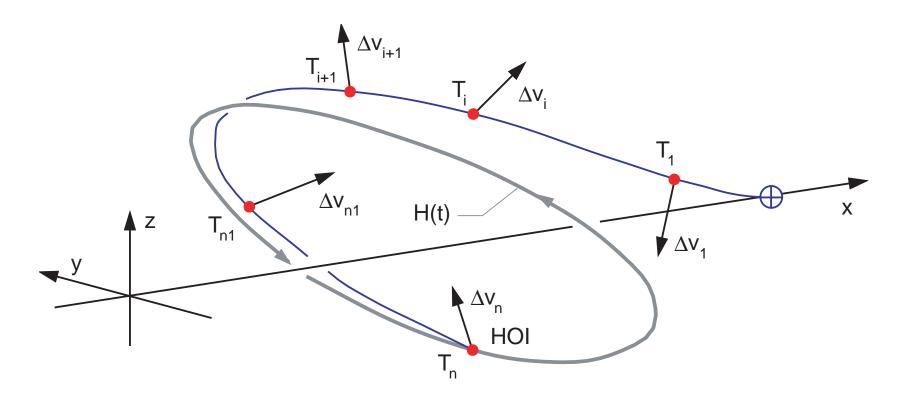
■ Merge Optimal Control with Dynamical Systems

- ► Optimal control techniques need to work together with dynamical systems tools.
 - Can help in constructing a superior **first guess**.
 - Suggest better formulation based on **geometry** of phase space.
 - Exploit **mechanical** nature of the problem.



■ Technical Details: HOI and MOI Techniques

- ▶ Both are **similar** once cast as optimal control problem.
 - **HOI**: final maneuver allowed at halo orbit at $T_{HOI} = t_{max}$.
 - MOI: final maneuver on stable manifold at $T_{MOI} < t_{max}$.
- ► Find maneuver times and sizes for an optimal trajectory starting near Earth and ending on the specified halo orbit such that **TCM1** is delayed by at least a prescribed amount.



■ Technical Details: Halo Orbit Insertion

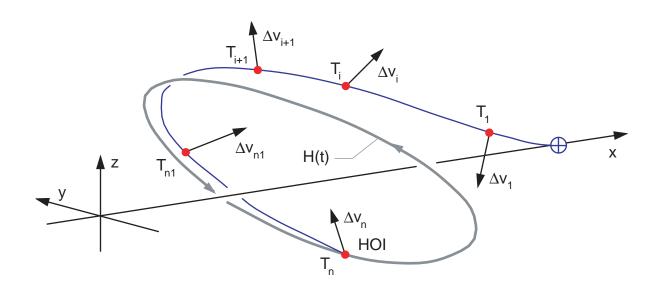
▶ Use Circular Restricted Three Body Problem as model

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}).$$

- ► To deal with **discontinuous** impulsive controls, equations solved simultaneously between 2 maneuvers.
 - Position **continuity** constraints at each maneuver,

$$\mathbf{x}_{i}^{p}(T_{i}) = \mathbf{x}_{i+1}^{p}(T_{i}), \quad i = 1, 2, ..., n-1.$$

• Final position is on halo orbit, $\mathbf{x}_n^p(T_n) = \mathbf{x}_H^p(T_n)$.



■ Technical Details: Halo Orbit Insertion

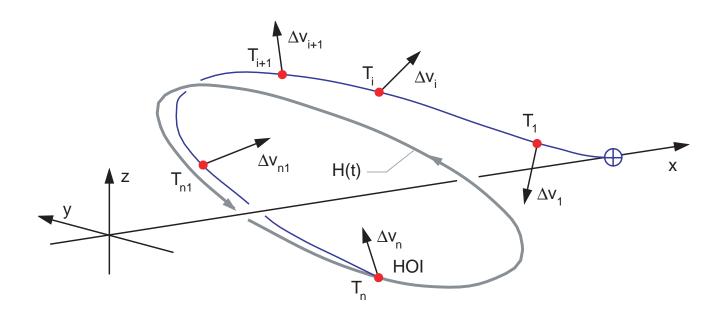
- ▶ TCM1 delayed by at least a prescribed amount: $T_1 \ge TCM1_{min}$.
- \triangleright With cost function as some measure of control $\triangle V's$

$$\Delta \mathbf{v}_i = \mathbf{x}_{i+1}^v(T_i) - \mathbf{x}_i^v(T_i), \qquad \Delta \mathbf{v}_n = \mathbf{x}_H^v(T_n) - \mathbf{x}_n^v(T_n),$$

optimization problem becomes

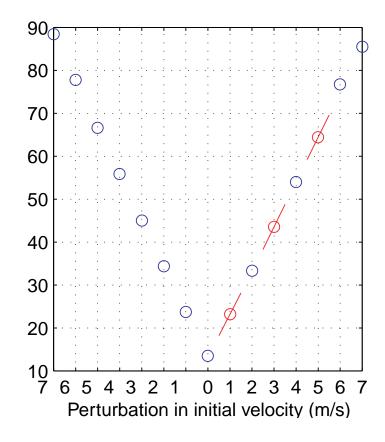
$$\min_{T_i, \mathbf{x}_i, \Delta \mathbf{v}_i} C(\Delta \mathbf{v}_i),$$

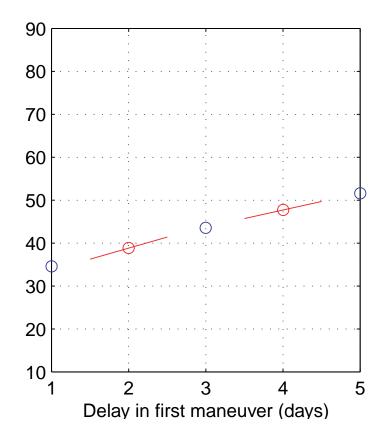
subject to constraints given above.



■ Technical Details: Software COOPT

- ► COOPT based on **direct method**.
 - provides **optimal solution** with nominal trajectory as first guess.
 - provides estimations of how different launch velocity errors and delays in TCM1 affect the changes in control ΔV .





■ Conclusions and Future Work

- ▶ Have used optimal control for halo orbit correction maneuvers.
- ► COOPT or similar software (**direct method**) and method of **optimal control/dynamical systems** can be used for many future missions.
 - Petit Grand Tour and Shoot the Moon.
 - Formation flight near halo orbit or for earthbound satellites.

