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Abstract

Reduction, Reconstruction and Optimal Control

for Nonholonomic Mechanical Systems with Symmetry

by

Wang Sang Koon

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Jerrold E. Marsden, Chair

Many problems in robotics, dynamics of wheeled vehicles and motion generation,

involve nonholonomic mechanics. Despite considerable advances in both Hamiltonian and

Lagrangian sides of the theory, there remains much to be done, and this thesis makes

contributions in three important areas.

First, we establish necessary conditions for optimal control using the ideas of La-

grangian reduction. The techniques developed here are designed for Lagrangian mechanical

control systems with symmetry. Lagrangian reduction can do in one step what one can

alternatively do by applying Pontryagin Maximum Principle followed by Poisson reduction.

We apply the techniques to some known examples of optimal control on Lie groups and

principal bundles. More importantly, we extend the method to the case of nonholonomic

systems with a nontrivial momentum equation, such as the snakeboard.

Second, we compare the Hamiltonian (symplectic) approach to nonholonomic sys-

tems with Lagrangian approach. There are many differences between these approaches, and

it was not obvious how they were equivalent. For example, Bloch, Krishnaprasad, Marsden

and Murray [1996] developed the momentum equation, the reconstruction equation and the

reduced Lagrange-d’Alembert equations, which are important for control applications, and

it is not obvious how these correspond to the developments in Bates and Sniatycki [1993].

Our second result establishes specific links between these two sides and uses the ideas and

results of each to shed light on the other, deepening our understanding of both approaches.

We treat a simplified model of the bicycle and obtain new and interesting results.
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We also develop the Poisson point of view for nonholonomic systems. Some of

this theory has been started in van der Schaft and Maschke [1994]. In our third result,

we develop the Poisson reduction for nonholonomic systems with symmetry, which enables

us to obtain specific formulas for the Hamiltonian dynamics. Moreover, we show that the

equations given by the Poisson reduction are equivalent to those given by the Lagrangian

reduction.

We hope that these results will help lay a firm foundation for further developments

of control, stability and bifurcation theories for such systems.

Professor Jerrold E. Marsden
Dissertation Committee Chair
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Chapter 1

Introduction

Many important problems in robotics, the dynamics of wheeled vehicles and mo-

tion generation, involve nonholonomic mechanics, which typically means mechanical systems

with rolling constraints. Some of the important issues are trajectory tracking, dynamic sta-

bility and feedback stabilization (including nonminimum phase systems), bifurcation and

control. Many of these systems have symmetry, such as the group of Euclidean motions in

the plane or in space and this symmetry plays an important role in the theory.

Recently there have been considerable advances in the study of such systems from

both the Hamiltonian and the Lagrangian sides of the theory. We refer to papers such as

Weber [1986], Koiller [1992], Bloch and Crouch [1992], Krishnaprasad, Dayawansa and Yang

[1992, 1993], Bates and Sniatycki [1993], van der Schaft and Maschke [1994], Herman [1995],

Marle [1995], Ostrowski [1996] and Bloch, Krishnaprasad, Marsden and Murray [1996] and

references therein.

While these and other references have made considerable progress in recent years,

there remains much to be done. This thesis makes contributions in three important areas.

First, we have developed a “reduced Lagrangian optimization” procedure to find the op-

timal controls for such systems. Second, our work has clarified the relation between the

Hamiltonian reduction (from the symplectic viewpoint) and Lagrangian reduction of non-

holonomic systems, which enables us to write the Hamiltonian dynamics of such systems as

a reconstruction equation, a momentum equation and a set of reduced Hamilton equations.

Third, we have developed the Poisson reduction for nonholonomic systems with symmetry,

which enables us to obtain specific formulas for the Hamiltonian dynamics. We have also

shown that the equations given by the Poisson reduction are equivalent to those given by the
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Lagrangian reduction. All these help to lay a firm foundation for the further development

of control, stability and bifurcation theories for such systems.

The basic setting is a configuration space Q with a distribution (usually nonin-

tegrable) D ⊂ TQ describing the constraints of interest. For simplicity, we consider only

homogeneous velocity constraints. We are given a Lagrangian L on TQ and a Lie group G

acting on the configuration space and leaving the constraints and the Lagrangian invariant.

In many example, the group encodes the position and orientation information. For exam-

ple, for the snakeboard, the group is SE(2) of rotations and translations in the plane. The

quotient space Q/G is called the shape space.

1.1 Motivation and Results

1.1.1 Optimal Control and Lagrangian Reduction

Bloch, Krishnaprasad, Marsden and Murray [1996], hereafter denoted [BKMM],

applied the method of geometric mechanics to the Lagrange-d’Alembert formulation, gener-

alizing the use of connections and momentum maps associated with a given symmetry group

to this case. With the help of the generalized momentum and the nonholonomic mechanical

connection, [BKMM] provided a framework for studying the general form of nonholonomic

mechanical control systems with symmetry that might have a nontrivial evolution of their

nonholonomic momentum. The dynamics of such a system was described by a system of

equations of the form of a reconstruction equation for a group element g, an equation for

the nonholonomic momentum p (no longer conserved in the general case), and the equations

of motion for the reduced variables r which describe the “shape” of the system. In terms

of these variables, the equations of motion have the functional form

g−1ġ = −Anh(r)ṙ + Γ(r)p

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p

M(r)r̈ = δ(r, ṙ, p) + τ.




(1.1)

The first equation describes the motion in the group variables as the flow of a

left invariant vector field determined by the internal shape r, its velocity ṙ, as well as

the generalized momentum p, and can be considered as the reconstruction equation for

the group variables. The momentum equation describes the evolution of p and is bilinear

in (ṙ, p). Finally, the bottom (second-order) equation for r̈ describes the motion of the
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variables which describe the configuration up to a symmetry (i.e., the shape). The variable

τ represents the external forces applied to the system, and is assumed to affect only the

shape variables, i.e., the external forces are G-invariant. Note that the evolution of the

momentum p and the shape r decouple from the group variables.

It is natural to ask how can we develop the optimal control of nonholonomic

systems, such as the snakeboard, using this Lagrangian framework.

In this thesis, we have established necessary conditions for optimal control of

both holonomic and nonholonomic systems, using the ideas of Lagrangian reduction. The

techniques developed here are designed for Lagrangian mechanical control systems with

symmetry and will be referred to as “reduced Lagrangian optimization” procedures. The

benefit of such an approach is that it makes use of special structure of the system, especially

its symmetry structure and thus it leads rather directly to the desired conclusions for such

systems.

Reduced Lagrangian optimization can do in one step what one can alternatively

do by applying the Pontryagin Maximum Principle followed by an application of Poisson re-

duction. We have applied it to some known examples, such as optimal control on Lie groups

and principal bundles (such as the ball and plate problem) and reorientation example with

zero angular momentum (such as the satellite with movable masses). More important, we

have extended the method to the case of nonholonomic systems with a nontrivial momen-

tum equation in the context of the work of [BKMM]. The snakeboard is used to illustrate

the method.

1.1.2 Symplectic and Poisson Geometry of Nonholonomic Systems

Bates and Sniatycki [1993], hereafter denoted [BS], developed the Hamiltonian

(symplectic geometry) side of nonholonomic systems, while [BKMM] has explored the La-

grangian side. It was not obvious how these two approaches were equivalent. For example,

[BKMM] developed the momentum equation, the reduced Lagrange-d’Alembert equations

and the reconstruction equation on the Lagrangian side, which are important for the con-

trol theory of these systems. It is not obvious how these correspond to the developments

in [BS] on the Hamiltonian side. Moreover, the two approaches are conceptually very dif-

ferent, especially as the mechanics of the computations are so dissimilar, and the resulting

differential equations appear very different.
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Our second main result in this thesis establishes the specific links between these

two sides and uses the ideas and results of each to shed light on the other, deepening

our understanding of both points of view. For example, in proving the equivalence of the

Lagrangian reduction and the symplectic reduction, we have shown where the momentum

equation is lurking on the Hamiltonian side and how this is related to the breaking up

the dynamics of nonholonomic systems with symmetry into three parts: a reconstruction

equation for the group element g, an equation for the nonholonomic momentum p and the

reduced Hamilton equations in the shape variables r, pr (and p). This way of breaking up

the dynamics may have the same significance for the control theory as what has already

been noted in [BKMM]. Moreover, we have also explored the reduced Lagrange-d’Alembert

equations in greater detail than was done previously.

We have illustrated the basic theory with the snakeboard, a well known example

treated in [BKMM]. We have also treated a simplified model of the bicycle (introduced in

Getz [1994] and Getz and Marsden [1995]) and have obtained some new and interesting

results. This is an important prototype control system because it is an underactuated

balance system.

On the Hamiltonian side, besides the symplectic point of view, one can also develop

the Poisson point of view. Some of this theory has been started in van der Schaft and

Maschke [1994], hereafter denoted [VM]. In our third main result in this thesis, we have

built on the work of [VM] and have developed the Poisson reduction for nonholonomic

systems with symmetry. We have used this Poisson reduction procedure to obtain specific

formulas for the nonholonomic Hamiltonian dynamics and have shown that the equations

given by Poisson reduction are equivalent to those given by Lagrangian reduction via a

reduced constrained Legendre transform.

This Poisson reduction is important for the future development of the stability

theory for nonholonomic mechanical systems with symmetry. In particular, it will be re-

quired for the development of the powerful block diagonalization properties of the energy-

momentum method developed by Simo, Lewis and Marsden [1991]. This technique is very

important for the development of systematic methods for stability analysis.
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1.2 Outline of the Thesis

Chapter2 Optimal Control and Lagrangian Reduction

In §2, we recall some basic facts about both holonomic and nonholonomic mechan-

ical systems with symmetry. We set up a class of optimal control problems for holonomic

mechanical systems on a (trivial) principal bundle as was done in Montgomery [1990] and

Krishnaprasad, Yang and Dayawansa [1991]. We also set up the corresponding problems

for nonholonomic systems. We will call these “Lagrangian optimal control problems”.

In §3 we review some aspects of the theory of Lagrangian reduction and use it

to solve the Lagrangian optimal control problem in the holonomic case, showing that an

optimal trajectory is a solution of Wong’s equations (at least for regular extremals). This

provides an alternative derivation to the approach (based on methods of subriemannian

geometry) in Montgomery [1990] and the approach (based on the Pontryagin maximum

principle and Poisson reduction) in Krishnaprasad, Yang and Dayawansa [1991].

In §4 we generalize these results to the case of nonholonomic systems. Notice in

particular that our techniques allow for nonzero values of the momentum map, which is

interesting even for the holonomic case. In §5 we consider a number of examples, such

as the ball on a plate (as in Bloch, Krishnaprasad, Marsden and Murray [1996]), and the

snakeboard. We also consider optimal control problems for systems on Lie groups such as

the landing tower problem (see Krishnaprasad [1993] and Walsh, Montgomery and Sastry

[1994]) and the plate ball problem considered in Jurdjevic [1993].

In the conclusions, we give a few additional remarks.

Chapter 3 Symplectic Geometry of Nonholonomic Systems

General Nonholonomic Mechanical Systems. We first consider mechanics in the

presence of homogeneous linear nonholonomic velocity constraints. No symmetry assump-

tions are made. In this section,

1. we recall the basic ideas and results of [BKMM] on general nonholonomic systems: in

particular, how to describe constraints using Ehresmann connection and how to write

the Lagrange d’Alembert equations of motion using the curvature of this connection.

2. We review the geometric structure of Hamiltonian systems with nonholonomic con-

straints in [BS], including a general procedure for finding the equations of motion for
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nonholonomic systems from the symplectic point of view.

3. We construct the geometric objects on the Lagrangian side corresponding to those on

the Hamiltonian side using the Legendre transformation in the context of nonholo-

nomic constraints.

4. We prove that these dual procedures give us the same Lagrange d’Alembert equations

as in [BKMM]. Since this proof is done in coordinates, it also provides a concrete

coordinate based procedure for finding the equations of motion on the Hamiltonian

side.

5. We use the symplectic procedure to work out the example of snakeboard taken from

[BKMM].

Nonholonomic Mechanical Systems with Symmetry. Now we add the hypothesis

of symmetry to the preceding development. In this section,

1. we recall the basic ideas and results of [BKMM] on simple nonholonomic mechanical

systems, especially on how it extend the Lagrangian reduction theory of Marsden and

Scheurle [1993a,b] to the context of nonholonomic systems. We shall describe briefly

how [BKMM] modifies the Ehresmann connection associated with the constraints to a

new connection, called the nonholonomic connection, that also takes into account the

symmetries, and how the reduced equations, relative to this new connection, break

up into two sets: a set of reduced Lagrange-d’Alembert equations, and a momentum

equation. When the reconstruction equation is added, one recovers the full set of

equations of motion for the system.

2. We summarize the symplectic reduction formulation of [BS] on finding the reduced

equations of motion for nonholonomic systems with symmetry.

3. We restate the reduction procedure on the Lagrangian side corresponding to those on

the Hamiltonian side using the Legendre transformation.

4. We prove that these dual procedures give us the same reduced Lagrange-d’Alembert

equations as in [BKMM]. Since this proof is done in coordinates, it does provide a

systematic way to carry out the computations on the Hamiltonian side. Also, the proof

clarifies which construction in [BS] corresponds to the momentum equation of [BKMM]
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and how this is related to breaking up the dynamics of the nonholonomic system into

a reconstruction equation for a group element g, an equation for the nonholonomic

momentum p and the reduced Hamilton equations in the shape variables r, pr (and

p).

5. We apply the symplectic reduction procedure to the examples of the snakeboard, the

bicycle and a nonholonomically constrained particle.

Chapter 4 Poisson Geometry of Nonholonomic Systems

General Nonholonomic Mechanical Systems. As in Chapter 3, we first consider

general nonholonomic systems without symmetry assumptions. In this section,

1. we review the Poisson formulation of nonholonomic systems in [VM], including a

procedure for finding the equations of motion for nonholonomic systems from the

Poisson point of view.

2. With the help of the Ehresmann connection, we use the Poisson procedure to write

a compact formula for the equations of motion of the nonholonomic Hamiltonian

dynamics.

3. We prove the equivalence of the Poisson and Lagrange-d’Alembert formulations for

nonholonomic mechanics.

4. We apply the Poisson procedure to the example of the snakeboard.

Nonholonomic Mechanical Systems with Symmetry. Now we add the hypothesis

of symmetry to the preceding development. In this section,

1. we build on the work of [VM] and develop the Poisson reduction, using the tools like

the nonholonomic connection and nonholonomic momentum. We write the equations

of motion for the reduced constrained Hamiltonian dynamics using a reduced Poisson

bracket. This Poisson reduction procedure breaks the Hamiltonian nonholonomic

dynamics into a reconstruction equation, a momentum equation and a set of reduced

Hamilton equations.

2. We prove that the set of equations given by Poisson reduction is equivalent to those

given by Lagrangian reduction via a reduced Legendre transform.
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3. We apply the Poisson reduction procedure to the example of the snakeboard.

Chapter 5 Conclusions

In the conclusions, we give a few remarks on future research directions.
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Chapter 2

Optimal Control and Lagrangian

Reduction

2.1 Introduction

Recently several papers have appeared exploring the symmetry reduction of op-

timal control problems on configuration spaces such as Lie groups and principal bundles.

The mechanical systems which they have modeled vary widely: ranging from the falling

cat, the rigid body with two oscillators, to the plate-ball system as well as the (airport)

landing tower problem. Since the Pontryagin Maximum Principle is such an important and

powerful tool in optimal control theory, it is frequently employed as a first step in finding

necessary conditions for the optimal controls. Finally, different variants of Poisson reduction

on the cotangent bundle T ∗Q of the configuration space Q are used to obtain the reduced

equations of motion for the optimal trajectories.

In this chapter, we develop a Lagrangian alternative to the method of Pontryagin

Maximum Principle and Poisson reduction used in many of the above studies. More impor-

tantly, our method can handle the optimal control of nonholonomic mechanical system such

as the snakeboard which has a nontrivial evolution equation for its nonholonomic momen-

tum. Our key idea is to link the method of Lagrange multipliers with Lagrangian reduction.

This procedure which will be referred to as “reduced Lagrangian optimization”, is able to

handle all the above cases including the snakeboard. We hope that it will complement other

existing methods and may also have the advantage that it is easier to use in many situations
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and can solve many new problems. In the optimal control problems we deal with in this

chapter, one encounters degenerate Lagrangians; fortunately this does not cause problems

with the technique of Lagrangian reduction. For more information on these degeneracies,

see Bloch and Crouch [1995a,b].

Our objectives in this chapter are limited to presenting reduced Lagrangian op-

timization in the context of both holonomic and nonholonomic systems that may have

conservation laws or nontrivial momentum equations. We use this approach as an alterna-

tive to the Pontryagin Maximum Principle and Poisson reduction. Although an assumption

of controllability underlies most optimal control problems, we are concerned here with find-

ing necessary conditions for optimality and so do not discuss controllability explicitly. We

do not extensively develop the geometry of the situation in much detail and we restrict our

attention to regular extremals throughout the chapter without explicit mention. Of course

all of these points are of interest in themselves.

In the course of working on this chapter, we have found some related ideas in

Montgomery [1990], Vershik and Gershkovich [1994] and Bloch and Crouch [1994, 1995a,b].

The paper Bloch, Krishnaprasad, Marsden and Murray [1996] provides a useful framework

for the present work.

The materials in this chapter has appeared in SIAM Journal of Control and Opti-

mization, Volume 35, Number 3, May 1997, and as the article “Optimal Control for Holo-

nomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction”

by W.S. Koon and J.E. Marsden.

Outline of the Chapter

In §2, we recall some basic facts about both holonomic and nonholonomic mechan-

ical systems with symmetry. We set up a class of optimal control problems for holonomic

mechanical systems on a (trivial) principal bundle as was done in Montgomery [1990] and

Krishnaprasad, Yang and Dayawansa [1991]. We also set up the corresponding problems

for nonholonomic systems. We will call these “Lagrangian optimal control problems”.

In §3 we review some aspects of the theory of Lagrangian reduction and use it

to solve the Lagrangian optimal control problem in the holonomic case, showing that an

optimal trajectory is a solution of Wong’s equations (at least for regular extremals). This

provides an alternative derivation to the approach (based on methods of subriemannian
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geometry) in Montgomery [1990] and the approach (based on the Pontryagin maximum

principle and Poisson reduction) in Krishnaprasad, Yang and Dayawansa [1991].

In §4 we generalize these results to the case of nonholonomic systems. Notice in

particular that our techniques allow for nonzero values of the momentum map, which is

interesting even for the holonomic case. In §5 we consider a number of examples, such

as the ball on a plate (as in Bloch, Krishnaprasad, Marsden and Murray [1996]), and the

snakeboard. We also consider optimal control problems for systems on Lie groups such as

the landing tower problem (see Krishnaprasad [1993] and Walsh, Montgomery and Sastry

[1994]) and the plate ball problem considered in Jurdjevic [1993].

In the conclusions, we give a few additional remarks.

2.2 Lagrangian Mechanical Systems with Symmetry

In this section we shall review, for the convenience of the reader, some notation

and results for mechanical systems with symmetry. We will begin with the case of holonomic

systems and then study the nonholonomic case.

2.2.1 Holonomic systems with symmetry

Notation

A simple Lagrangian system with symmetry consists of a configuration manifold Q,

a metric tensor (the mass matrix) 〈〈 , 〉〉, a symmetry group G (a Lie group) and a Lagrangian

L. Assume that G acts on Q by isometries and that the Lagrangian L is of the form kinetic

minus potential energy, i.e.,

L(q, v) =
1
2
‖v‖2

q − V (q)

where ‖ · ‖q denotes the norm on TqQ and V is a G-invariant potential. For more infor-

mation, see for example, Marsden [1992] and Marsden and Ratiu [1994]. Examples of such

systems are the falling cat (Montgomery [1990, 1991]) and the rigid body with 2 oscillators

(Krishnaprasad, Yang and Dayawansa [1991]).

The associated equivariant momentum map J : TQ → g∗ for a simple Lagrangian

system with symmetry is given by

〈J(q, v), ξ〉 = 〈〈v, ξQ(q)〉〉 =
∂L

∂q̇i
(ξQ)i, (2.1)



CHAPTER 2. OPTIMAL CONTROL AND LAGRANGIAN REDUCTION 12

where g∗ is the dual of the Lie algebra g of G, ξQ is the infinitesimal generator of ξ ∈ g

on Q, and 〈 , 〉 is the pairing between g∗ and g (other natural pairings between spaces and

their duals are also denoted 〈 , 〉 in this chapter).

Assume that G acts freely and properly on Q, so we can regard Q → Q/G as a

principal G-bundle (Q,B, π,G) where B = Q/G is called the base (or shape) space and

π : Q → B is the bundle projection. On this bundle, we construct the mechanical connection

A as follows: for each q ∈ Q, let the locked inertia tensor be the map I(q) : g → g∗ defined

by

〈I(q)η, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉.

The terminology comes from the fact that for a coupled rigid body, particle, or elastic

system, I(q) is the classical moment of inertia tensor of the instantaneous rigid system. The

mechanical connection is the map A : TQ → g that assigns to each (q, v) the “angular

velocity of the locked system”

A(q, v) = I(q)−1J(q, v). (2.2)

When there is danger of confusion, we will write the mechanical connection as Amec (addi-

tional connections will be introduced later in the chapter). The map A is a connection on

the principal G-bundle Q → Q/G; that is, A is G-equivariant and satisfies A(ξQ(q)) = ξ,

both of which are readily verified. The horizontal space of the connection A is given by

horq = {(q, v) | J(q, v) = 0},

i.e., the space orthogonal to the G-orbits. The vertical space consists of vectors that are

tangent to the group orbits, i.e.,

verq = Tq(Orb(q)) = {ξQ(q) | ξ ∈ g}.

For later use, we would like to say a few words about a general principal connection

and its expression in a local trivialization. As stated above, a principal connection is a g-

valued 1-form A : TQ → g such that A(g · v) = AdgA(v), and A(ξQ(q)) = ξ for each

ξ ∈ g. For example, if Q = G, there is a canonical connection given by the right invariant

1-form which equals the identity at g = e. That is, for v ∈ TgG, we let AG : TG → g,

AG(v) = TRg−1 · v. In a local trivialization where we can locally write Q = B ×G and the
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action of G is given by left translation on the second factor, a connection A as a 1-form has

the form

A(r, g) = Aloc(r, g)dr + AG

and

A(r, g)(ṙ, ġ) = Aloc(r, g)ṙ + ġg−1 = Adg(Aloc(r, e)ṙ + g−1ġ),

where (ṙ, ġ) is the tangent vector at each point q = (r, g). With abuse of notation, we

denote Aloc(r, e) = Aloc(r). Hence, for a principal connection, we can write

A(r, g)(ṙ, ġ) = Adg(g−1ġ + Aloc(r)ṙ). (2.3)

Holonomic Optimal Control Problems

Now we are ready to formulate an optimal control problem for a holonomic system

on a trivial bundle (B × G,B, π,G). As in Montgomery [1990, 1991] and Krishnaprasad,

Yang and Dayawansa [1991], let us assume that the control is internal to the system, which

leaves invariant the conserved momentum map J , and that there is no drift, i.e., µ =

J(q, v) = 0. Assume further that the velocity ṙ of the path in the base space B can be

directly controlled; then an associated control problem can be set up as

ṙ = u

g−1ġ = −Aloc(r)u,


 (2.4)

because, from the results above, the constraint that µ = 0 is nothing but (ṙ, ġ) ∈ hor(r,g)
which is equivalent to g−1ġ + Aloc(r)ṙ = 0. Here u(·) is a vector-valued function.

Let C be a cost function which usually is a positive definite quadratic function in

u and hence C can be written as the square of a metric on B. Then we can formulate an

optimal control problem on Q = B ×G as follows:

Optimal Control Problem for Holonomic Systems Given two points q0,
q1 in Q, find the optimal controls u(·) which steer from q0 to q1 and minimize∫ 1
0 C(u)dt subject to the constraints ṙ = u, g−1ġ = −Aloc(r)u.

Clearly the above optimal control problem is equivalent to the following con-

strained variational problem:

Constrained Variational Problem for Holonomic Systems Among all
curves q(t) such that q̇(t) ∈ horq(t), q(0) = q0, q(1) = q1, find the optimal curves
q(t) such that

∫ 1
0 C(ṙ)dt is minimized, where r = π(q).
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For example in Krishnaprasad, Yang and Dayawansa [1991], they considered a

rigid body with 2 (driven) oscillators, which was used to model the drift observed in

the Hubble Space Telescope due to thermo-elastically driven shape changes of the solar

panels arising from the day-night thermal cycling during orbit. The bundle used was

(R2 × SO(3),R2, π, SO(3)) and the corresponding optimal control problem was

Optimal Control for a Rigid Body with Two Oscillators Find the control
u(·) = (u1(·), u2(·)) that minimizes

∫ 1
0 ((u1)2 + (u2)2)dt, subject to ṙ = u, ġ =

−gAloc(r)u, for r1(0) = r1(1) = r2(0) = r2(1) = 0, g(0) = g0, and g(1) = g1 ∈
SO(3).

For more details on the derivation of this model, see Krishnaprasad, Yang and

Dayawansa [1991]. Below we will take this optimal control problem as given and focus on

finding the necessary conditions for its optimal trajectories. See Montgomery [1990, 1991]

for additional examples.

2.2.2 Simple Nonholonomic Mechanical Systems with Symmetry

Next, we recall some basic ideas and results from Bloch, Krishnaprasad, Marsden

and Murray [1996] which will help to set the overall context for the optimal control of a

simple nonholonomic system. Assume that we have data as before, namely a configuration

manifold Q, a Lagrangian of the form kinetic minus potential, and a symmetry group G

that leaves the Lagrangian invariant. However, now we also assume we have a distribution

D that describes the kinematic nonholonomic constraints. Thus, D is a collection of linear

subspaces denoted Dq ⊂ TqQ, one for each q ∈ Q. We assume that G acts on Q by isometries

and leaves the distribution invariant, i.e., the tangent of the group action maps Dq to Dgq.

Moreover, we assume that we are in the principal case where the constraints and the orbit

directions span the entire tangent space to the configuration space: Dq +Tq(Orb(q)) = TqQ

for each q ∈ Q. We also assume throughtout the thesis that all the relevant spaces have

constant dimensions.

As discussed in Bloch, Krishnaprasad, Marsden and Murray [1996], the dynam-

ics of a nonholonomically constrained mechanical system is governed by the Lagrange-

d’Alembert principle. This principle states that (at least in the case of homogeneous linear

constraints) the equations of motion of a curve q(t) in configuration space are obtained by

setting to zero the variations in the integral of the Lagrangian subject to variations lying
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in the constraint distribution vanish and that the velocity of the curve q(t) itself satisfies

the constraints.

The Momentum Equation

In the case of a simple holonomic mechanical system, setting up an optimal control

problem uses the momentum map J , the mechanical connection A as well as the reconstruc-

tion of path on Q given a path in Q/G. For the case of a simple nonholonomic mechanical

system, we shall need similar notions and they are recalled in the following discussion.

Let the intersection of the tangent to the group orbit and the distribution at a

point q ∈ Q be denoted

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace gq to be the set of Lie algebra elements in g

whose infinitesimal generators evaluated at q lie in Sq:

gq = {ξ ∈ g : ξQ(q) ∈ Sq}.

Then gD is the corresponding bundle over Q whose fiber at the point q is given by gq.

The nonholonomic momentum map Jnh is the bundle map taking TQ to the bundle (gD)∗

(whose fiber over the point q is the dual of the vector space gq) that is defined by

〈Jnh(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i, (2.5)

where ξ ∈ gq.

As the examples like the snakeboard show, in general the tangent space to the

group orbit through q intersects the constraint distribution at q nontrivially.

Notice that the nonholonomic momentum map may be viewed as giving just some

of the components of the ordinary momentum map, namely along those symmetry directions

that are consistent with the constraints.

It is proven in Bloch, Krishnaprasad, Marsden and Murray [1996] that if the La-

grangian L is invariant under the group action and that if ξq is a section of the bundle gD,

then any solution q(t) of the Lagrange-d’Alembert equations for a nonholonomic system

must satisfy, in addition to the given kinematic constraints, the momentum equation:

d

dt

(
Jnh(ξq(t))

)
=
∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

. (2.6)



CHAPTER 2. OPTIMAL CONTROL AND LAGRANGIAN REDUCTION 16

When the momentum map is paired with a section in this way, we will just refer to it as

the momentum. Examples show that the nonholonomic momentum map may or may not

be conserved.

The Momentum Equation in an Orthogonal Body Frame

Let a local trivialization (r, g) be chosen on the principal bundle π : Q → Q/G.

Let η ∈ gq and ξ = g−1ġ. Since L is G-invariant, we can define a new function l by writing

L(r, g, ṙ, ġ) = l(r, ṙ, ξ). Define Jnh
loc : TQ/G → (gD)∗ by

〈
Jnh

loc(r, ṙ, ξ), η
〉

=
〈
∂l

∂ξ
, η

〉
.

As with connections, Jnh and its version in a local trivialization are related by the Ad map;

i.e., Jnh(r, g, ṙ, ġ) = Ad∗
g−1Jnh

loc(r, ṙ, ξ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m elements

span the subspace gq. In a local trivialization, one chooses, for each r, such a basis at the

identity element, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

We may require the basis to be orthogonal, that is, their corresponding infinitesimal gener-

ators are orthogonal in the given kinetic energy metric. Keep in mind that the subspaces

Dq and TqOrb need not be orthogonal but here we are choosing a basis corresponding only

to the subspace TqOrb. (Actually, all we need is that the vectors in the set of basis vectors

corresponding to the subspace Sq be orthogonal to the remaining basis vectors.) Define the

orthogonal body frame by

ea(r, g) = Adg · ea(r);

thus, by G invariance, the first m elements span the subspace gq. In this basis, we have

〈
Jnh(r, g, ṙ, ġ), eb(r, g)

〉
=
〈
∂l

∂ξ
, eb(r)

〉
:= pb, (2.7)

which defines pb, a function of r, ṙ and ξ. It is proven in Bloch, Krishnaprasad, Marsden

and Murray [1996] that in such an orthogonal body frame, the momentum equation can be

written in the following form:

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p. (2.8)
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Note that in this body representation, the functions pb are invariant rather than equivariant,

as is usually the case with the momentum map, and the momentum equation is independent

of, that is, decouples from, the group variables g.

The Nonholonomic Connection

Recall that in the case of holonomic mechanical systems, the mechanical connection

A is defined by A(vq) = I(q)−1J(vq) or equivalently by the fact that its horizontal space at

q is orthogonal to the group orbit at q. For the case of a simple nonholonomic mechanical

system where the Lagrangian is of the form kinetic minus potential energy and G acts on

Q by isometries and leaves D invariant, the result turns out to be quite similar.

As Bloch, Krishnaprasad, Marsden and Murray [1996] points out, in the principal

case where the constraints and the orbit directions span the entire tangent space to the

configuration space (that is, Dq + Tq(Orb(q)) = TqQ), the nonholonomic connection Anh is

a principal connection on the bundle Q → Q/G whose horizontal space at the point q ∈ Q is

given by the orthogonal complement to the space Sq within the space Dq. Moreover, Bloch,

Krishnaprasad, Marsden and Murray [1996] develop formulas for Anh similar to those for

the mechanical connection, namely

Anh(vq) = I
nh(q)−1Jnh(vq) (2.9)

where I
nh : gD → (gD)∗ is the locked inertia tensor defined in a way similar to that given

above for holonomic systems. In an orthogonal body frame, (2.9) can be written as

Adg(g−1ġ + Anh
loc(r)ṙ) = Adg(Inh

loc(r)
−1p), (2.10)

where Anh
loc and I

nh
loc are the representations of Anh and I

nh in a local trivialization. For

simplicity in what follows, we shall omit the subscript “loc”.

Control Systems in Momentum Equation Form

With the help of the momentum equations and the nonholonomic mechanical con-

nection, Bloch, Krishnaprasad, Marsden and Murray [1996] provides a framework for study-

ing the general form of nonholonomic mechanical control systems with symmetry that may

have a nontrivial evolution of their nonholonomic momentum. The dynamics of such a

system can be described by a system of equations of the form of a reconstruction equation
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for a group element g, an equation for the nonholonomic momentum p (no longer conserved

in the general case), and the equations of motion for the reduced variables r which describe

the “shape” of the system. In terms of these variables, the equations of motion have the

functional form

g−1ġ = −Anh(r)ṙ + Γ(r)p

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p

M(r)r̈ = δ(r, ṙ, p) + τ,




(2.11)

where (where Γ(r) = I
nh(r)).

The first equation describes the motion in the group variables as the flow of a

left invariant vector field determined by the internal shape r, its velocity ṙ, as well as the

generalized momentum p. The term g−1ġ + Anh(r)ṙ = Γ(r)−1p is interpreted as the local

representation of the body angular velocity. This is nothing more than the vertical part

of the bundle velocity. The momentum equation describes the evolution of p and as was

mentioned earlier, is bilinear in (ṙ, p). Finally, the bottom (second-order) equation for r̈

describes the motion of the variables which describe the configuration up to a symmetry

(i.e., the shape). The variable τ represents the external forces applied to the system, which

we assume here only affect the shape variables, i.e., the external forces are G-invariant.

Note that the evolution of the momentum p and the shape r decouple from the group

variables.

The Optimal Control Problem for Nonholonomic Systems on a Trivial Bundle

Assume that we have a simple nonholonomic mechanical system with symmetry;

thus, assume we have data (Q,D, 〈〈 , 〉〉, G,L) where the Lagrangian L is G-invariant and of

the form kinetic minus potential energy, the distribution D is G-invariant, and we are in

the principal case where the constraints and the orbit directions span the tangent space to

the configuration space. Let us also assume in this section that the principal bundle π :

Q → Q/G is trivial; all the examples we consider (including the snakeboard) have a trivial

principal bundle structure. We consider this simplification as a first step to the general case

because in a local trivialization any principal bundle is a trivial bundle (B × G,B, π,G).

Furthermore, we will assume that

1. Any control forces applied to the system affect only the shape variables which leaves

the generalized momenta and the momentum equation unchanged. Indeed, such forces
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would be invariant under the action of the Lie group G and so would be annihilated

by the variations taken to derive the momentum equation.

2. We have full control of the shape variables; that is, the curve r(t) in the shape space

B can be specified arbitrarily using a suitable control force τ .

Given a cost function C which is a positive definite quadratic function of ṙ(t) (so can be

written as the square of a metric on the shape space B), we can formulate an optimal

control problem on Q = B ×G as follows:

Optimal Control Problem for Nonholonomic Systems Given two points
q0, q1 ∈ Q, find the curves r(t) ∈ B which steer the system from q0 to q1,
and which minimize the total cost

∫ 1
0 C(ṙ)dt, where r = π(q), subject to the

constraints g−1ġ = −Anh(r)ṙ + Γ(r)p, and to the momentum equation ṗ =
ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p.

This optimal control problem is clearly equivalent to the following constrained

variational problem:

Constrained Variational Problem for Nonholonomic Systems Among all
curves q(t) with q(0) = q0, q(1) = q1 and satisfying g−1ġ = −Anh(r)ṙ + Γ(r)p,
where ṗ = ṙTH(r)ṙ+ṙTK(r)p+pTD(r)p, find the curves q(t) such that

∫ 1
0 C(ṙ)dt

is minimized, where r = π(q).

Now we are ready to use the method of Lagrange multipliers and Lagrangian

reduction to find necessary conditions for optimal trajectories.

2.3 Optimal Control and Lagrangian Reduction for Holo-

nomic Systems

In this section we consider reduced Lagrangian optimization in the context of

holonomic systems.

2.3.1 A Review of Lagrangian Reduction

We first recall some facts about Lagrangian reduction theory for systems with

holonomic constraints (see Marsden and Scheurle [1993a,b].)
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Rigid Body Reduction

Let R ∈ SO(3) denote the time dependent rotation that gives the current config-

uration of a rigid body. The body angular velocity Ω is defined in terms of R by

R−1Ṙ = Ω̂,

where Ω̂ is the three by three skew matrix defined by Ω̂v := Ω× v. Denoting by I the (time

independent) moment of inertia tensor, the Lagrangian thought of as a function of R and Ṙ

is given by L(R, Ṙ) = 1
2 〈IΩ,Ω〉 and when we think of it as a function of Ω alone, we write

l(Ω) = 1
2 〈IΩ,Ω〉.

The following statements are equivalent:

1. (R, Ṙ) satisfies the Euler-Lagrange equations on SO(3) for L,

2. Hamilton’s principle on SO(3) holds:

δ

∫
Ldt = 0,

3. Ω satisfies the Euler equations

IΩ̇ = IΩ × Ω,

4. the reduced variational principle holds on R
3:

δ

∫
l dt = 0,

where variations in Ω are restricted to be of the form δΩ = η̇ + η × Ω, with η an

arbitrary curve in R
3 satisfying η = 0 at the temporal endpoints.

An important point is that when one reduces the standard variational principle from SO(3)

to its Lie algebra so(3), one ends up with a variational principle in which the variations

are constrained ; that is, one has a principle of Lagrange-d’Alembert type. In this case, the

term η represents the infinitesimal displacement of particles in the rigid body. Note that the

same phenomenon of constrained variations occurs in the case of nonholonomic systems.

The Euler-Poincaré Equations

Let g be a Lie algebra and let l : g → R be a given Lagrangian. Then the Euler-

Poincaré equations are:
d

dt

∂l

∂ξ
= ad∗

ξ

∂l

∂ξ
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or, in coordinates,
d

dt

∂l

∂ξa
= Cbdaξ

d ∂l

∂ξb
,

where the structure constants are defined by [ξ, η]a = Cadeξ
dηe. If G is a Lie group with Lie

algebra g, we let L : TG → R be the left invariant extension of l and let ξ = g−1ġ. In the

case of the rigid body, ξ is Ω̂, where Ω is the body angular velocity.

The basic fact regarding the Lagrangian reduction leading to these equations is:

Theorem 1 Euler-Poincaré reduction. A curve (g(t), ġ(t)) ∈ TG satisfies the Euler-

Lagrange equations for L if and only if ξ satisfies the Euler-Poincaré equations for l.

In this situation, the reduction is implemented by the map (g, ġ) ∈ TG 7→ g−1ġ =: ξ ∈ g.

One proof of this theorem is of special interest, as it shows how to drop variational

principles to the quotient (see Marsden and Scheurle [1993b] and Bloch, Krishnaprasad,

Marsden and Ratiu [1994] for more details). Namely, we transform

δ

∫
Ldt = 0

under the map (g, ġ) 7→ g−1ġ to give the reduced variational principle for the Euler-Poincaré

equations: ξ satisfies the Euler-Poincaré equations if and only if

δ

∫
l dt = 0,

where the variations are all those of the form

δξ = η̇ + [ξ, η]

and where η is an arbitrary curve in the Lie algebra satisfying η = 0 at the endpoints.

Variations of this form are obtained by calculating what variations are induced by variations

on the Lie group itself.

One obtains the Lie-Poisson equations on g∗ by the Legendre transformation:

µ =
∂l

∂ξ
, h(µ) = µ · ξ − l(ξ).

Dropping the variational principle this way is the analogue of Lie-Poisson reduction in which

one drops the Poisson bracket from T ∗G to the Lie-Poisson bracket on g∗.
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The Reduced Euler-Lagrange Equations

The Euler-Poincaré equations can be generalized to the situation in which G acts

freely on a configuration space Q to obtain the reduced Euler-Lagrange equations. This pro-

cess starts with a G-invariant Lagrangian L : TQ → R, which induces a reduced Lagrangian

l : TQ/G → R. The Euler-Lagrange equations for L induce the reduced Euler-Lagrange

equations on TQ/G. To compute them in coordinates, it is useful to introduce a principal

connection on the bundle Q → Q/G. Although any can be picked, a common choice is the

mechanical connection.

Thus, assume that the bundle Q → Q/G has a given (principal) connection A.

Divide variations into horizontal and vertical parts — this breaks up the Euler-Lagrange

equations on Q into 2 sets of equations that we now describe. Let rα be coordinates on

shape space Q/G and Ωa be coordinates for vertical vectors in a local bundle chart. Drop

L to TQ/G to obtain a reduced Lagrangian l : TQ/G → R in which the group coordinates

are eliminated. We can represent this reduced Lagrangian in a couple of ways. First, if

we choose a local trivialization as we have described earlier, we obtain l as a function of

the variables (rα, ṙα, ξa). However, it will also be convenient to change variables from ξa

to the local version of the locked angular velocity, i.e., the body angular velocity, namely

Ω = ξ + Alocṙ, or in coordinates,

Ωa = ξa + Aa
α(r)ṙ

α.

We will write l(rα, ṙα,Ωa) for the local representation of l in these variables.

Theorem 2 Lagrangian Reduction Theorem. A curve (qi, q̇i) ∈ TQ, satisfies the

Euler-Lagrange equations if and only if the induced curve in TQ/G with coordinates given

in a local trivialization by (rα, ṙα,Ωa) satisfies the reduced Euler-Lagrange equations:

d

dt

∂l

∂ṙα
− ∂l

∂rα
=

∂l

∂Ωa

(
−Baαβ ṙβ + EaαdΩd

)
(2.12)

d

dt

∂l

∂Ωb
=

∂l

∂Ωa
(−Eaαbṙα + CadbΩ

d) (2.13)

where

Bbαβ =
∂Ab

α

∂rβ
−
∂Ab

β

∂rα
− CbacAa

βAc
α,

are the coordinates of the curvature B of A, and Eaαd = CabdAb
α.
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The first of these equations is similar to the Lagrange-d’Alembert equations for a nonholo-

nomic system written in terms of the constrained Lagrangian and the second is similar to

the momentum equation. It is useful to note that the first set of equations results from

Hamilton’s principle by restricting the variations to be horizontal relative to the given con-

nection.

If one uses the variables, (rα, ṙα, pa), where p is the body angular momentum, so

that p = Iloc(r)Ω = ∂l/∂Ω, then the equations become (using the same letter l for the

reduced Lagrangian, an admitted abuse of notation):

d

dt

∂l

∂ṙα
− ∂l

∂rα
= pa

(
−Baαβ ṙβ + EaαdIdepe

)
− pd

∂Ide

∂rα
pe (2.14)

d

dt
pb = pa(−Eaαbṙα +CadbI

depe), (2.15)

where Ide denotes the inverse of the matrix Iab.

Connections are also useful in control problems with feedback. For example, Bloch,

Krishnaprasad, Marsden and Sánchez de Alvarez [1992] found a feedback control that sta-

bilizes rigid body dynamics about its middle axis using an internal rotor. This feedback

controlled system can be described in terms of connections (Marsden and Sánchez de Alvarez

[1995]): a shift in velocity (change of connection) turns the free Euler-Poincaré equations

into the feedback controlled Euler-Poincaré equations.

2.3.2 Reduced Lagrangian Optimization for Holonomic Systems

Let us assume for the moment that we are dealing with a holonomic system on

a trivial bundle and that the momentum map vanishes. Since we would like to use the

method of Lagrange multipliers to relax the constraints, we define a new Lagrangian by L

L = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉 (2.16)

for some λ(t) ∈ g∗, where ξ = g−1ġ ∈ g. Clearly L is G-invariant and induces a function l

on (TQ/G) × g∗ where

l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉 (2.17)

Theorem 3 Reduced Lagrangian Optimization for Holonomic Systems. Assume

that q(t) = (r(t), g(t)) is a (regular) optimal trajectory for the above optimal control problem,

then there exists a λ(t) ∈ g∗ such that the reduced curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G with
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coordinates given by (rα, ṙα, ξa) satisfies the constraints ξ = −Aloc(r)ṙ, as well as the

reduced Euler Lagrange equations

d

dt

∂l

∂ṙα
− ∂l

∂rα
= 0 (2.18)

d

dt

∂l

∂ξb
=

∂l

∂ξa
Cadbξ

d (2.19)

where l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉.

Proof If (r(t), g(t)) is a (regular) optimal trajectory, then by the method of Lagrange

multipliers, it solves the following variational problem

δ

∫ 1

0
Ldt = δ

∫ 1

0
(C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉)dt = 0

for some λ(t) ∈ g∗.

Since B×G → B is trivial, we can put a trivial connection on this bundle and use

it to split the variations into the horizontal and vertical parts. Then by the Lagrangian re-

duction method recalled above, the reduced curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G with coordinates

given by (rα, ṙα, ξa) satisfies the reduced Euler Lagrange equations stated above. (When us-

ing a trivial connection, the coefficients of A and B vanish and the reduced Euler-Lagrange

equations are called Hamel’s equations). �

Now we are ready to generalize one of the results in Krishnaprasad, Yang and

Dayawansa [1991]. Define the components Aa
α of the mechanical connection by Aloc(r)ṙ =

Aa
αṙ

αea, where {ea} is the basis of g and {ea} is its dual basis. Here α runs from 1 to

n− k and a runs from 1 to k where n− k is the dimension of the base space B and k is the

dimension of the Lie algebra g. The result deals with the following problem.

Iso-holonomic Problem for Trivial Bundles Minimize
∫ 1
0 C(ṙ) dt, subject

to ṙ = u, ġ = −gAlocu = −gAa
α(r)uαea, for given boundary conditions

(r(0), g(0)) = (0, g0), (r(1), g(1)) = (0, g1).

Corollary 1 Let the cost function C =
∑n−k

1 cα(uα)2. be quadratic in u. If (r(t), g(t)) is a

(regular) optimal trajectory with the control ū(t) for the iso-holonomic (falling cat) problem,
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then there exist ρ(t) ∈ T ∗B, and λ(t) ∈ g∗ satisfying ṙα = ūα, ξa = −Aa
α(x)ūα and the

following ordinary differential equations

ρ̇β = λa
∂Aa

α

∂rβ
ūα

λ̇b = −CadbλaAd
αū

α

where

ūβ =
1

2cβ
(ρβ − λaAa

β)

with boundary conditions r(0) = 0, g(0) = g0, r(1) = 0, g(1) = g1.

Proof According to Theorem 3, there exists some λ(t) ∈ g∗ such that the reduced curve

(r(t), ṙ(t), ξ(t)) satisfies the reduced Euler-Lagrange equations for

l = cα(ṙα)2 + 〈λaea, (ξa + Aa
αṙ

α)ea〉 = cα(ṙα)2 + λa(ξa + Aa
αṙ

α).

After some computations, we find

∂l

∂ṙβ
= 2cβ ṙβ + λaAa

β

∂l

∂rβ
= λa

∂Aa
α

∂rβ
ṙα

∂l

∂ξb
= λb.

Now let

ρβ =
∂l

∂ṙβ
= 2cβ ṙβ + λaAa

β

and solve for ṙ, to give

ṙβ =
1

2cβ
(ρβ − λaAa

β).

Moreover, the reduced Euler-Lagrange equations (2.18) and (2.19) give

ρ̇β =
d

dt

∂l

∂ṙβ
=

∂l

∂rβ
= λa

∂Aa
α

∂rβ
ṙα

λ̇b =
d

dt

∂l

∂ξb
=

∂l

∂ξa
Cadbξ

d = Cadbλaξ
d.

After substituting

ṙα = ūα ξd = −Ad
αū

α,

we get the desired equations. �
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Remarks

1. This Corollary generalizes the result of Krishnaprasad, Yang and Dayawansa [1991]

for the trivial principal bundle (R × R ×SO(3),R × R, π, SO(3)) (see Theorem 3 and

Remark 3.2 in Krishnaprasad, Yang and Dayawansa [1991]).

2. The reduced equations of motion for ρβ and λb can be written in intrinsic form as a

special case of Wong’s equations in rβ and λb (see the following section).

2.3.3 Optimal Control of a Holonomic System on a Principal Bundle

While the above method seems to work only for the case where the principle bundle

is trivial, it can be easily generalized to an arbitrary principle bundle. In fact, the proof

of the Lagrangian reduction theorem stated above provides all the necessary techniques.

Recall that Marsden and Scheurle [1993b] arrived at the general reduced Euler-Lagrange

equations in two steps:

1. one first gets the Hamel equations in a local bundle trivialization:

d

dt

∂l

∂ṙα
− ∂l

∂rα
= 0

d

dt

∂l

∂ξb
=

∂l

∂ξa
Cadbξ

d,

2. one introduces an arbitrary principal connection A (which is not necessarily the me-

chanical connection) to split the original variational principle intrinsically and globally

relative to horizontal and vertical parts of the variation δq, and derived the general

form from the above form by means of a velocity shift replacing ξ by the vertical part

relative to this connection:

Ωa = Aa
αṙ

α + ξa

Here, Aa
α are the local coordinates of the connection A. The resulting reduced Euler-

Lagrange equations are then as given earlier.

Now we are ready to state a general theorem for the constrained variational prob-

lem on a principal bundle. This problem is as follows:

Iso-holonomic Problem for General Bundles (The Falling Cat Prob-
lem) Among all curves q(t) such that q(0) = q0, q(1) = q1 and q̇(t) ∈ horq(t)
(horizontal with respect to the mechanical connection Amec), find the optimal
curves q(t) such that

∫ 1
0 C(ṙ)dt is minimized, where r = π(q).
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Observe that while this problem is set up using the mechanical connection Amec,

when applying the Lagrangian reduction theorem, one may use an arbitrary connection A
to split the variational principle. This observation is used in the proof of the following

result.

Theorem 4 If q(t) is a (regular) optimal trajectory for the iso-holonomic problem for gen-

eral bundles, then there exists a λ(t) ∈ g∗ such that the reduced curve in TQ/G with coordi-

nates given in a local trivialization by (rα, ṙα,Ωα) satisfies the constraints ξa = −(Amec)aαṙ
α

as well as the reduced Euler-Lagrange equations (2.12) and (2.13), where

l = C(ṙ) + 〈λ(t), ξ + Aloc(r)ṙ〉

and

Ωa = Aa
αṙ

α + ξa

Proof The proof proceeds as in the proof in Marsden and Scheurle [1993b] in the present

context. The needed modifications of what we have done before are minor, so are omitted.

�

Corollary 2 In the preceding Theorem, if we use the mechanical connection Amec to split

the variational principle, then the reduced Euler-Lagrange equations coincide with Wong’s

equations (see Montgomery [1984] and references therein):

ṗα = −λaBaαβ ṙβ − 1
2
∂gβγ

∂rα
pβpγ

λ̇b = −λaCadbAd
αṙ

α

where gαβ is the local representation of the metric on the base space B, that is

C(ṙ) =
1
2
gαβ ṙ

αṙβ,

gβ,γ is the inverse of the matrix gα,β, pα is defined by

pα =
∂C

∂ṙα
= gαβ ṙ

β

and where we write the components of Amec simply as Ab
α and similarly for its curvature.
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Proof Applying Theorem 4 to the function l where

l = C(ṙ) + 〈λ(t), ξ +Aloc(r)ṙ〉
= C(ṙ) + 〈λ(t),Ω〉
= C(ṙα) + λaΩa.

Clearly,

∂l

∂ṙα
=

∂C

∂ṙα
= gαβ ṙ

β

∂l

∂rα
=

∂C

∂rα
=

1
2
∂gβγ

∂rα
ṙβ ṙγ

∂l

∂Ωa
= λa.

Since ξa = −Aa
αṙ

α (the constraints) and Ωa = Aa
αṙ

α + ξa, we have Ωa = 0 and the reduced

Euler- Lagrange equations become

d

dt

∂C

∂ṙα
− ∂C

∂rα
= −λa(Baαβ ṙβ)

d

dt
λb = −λa(Eaαbṙα) = −λaCadbAd

αṙ
α.

But

d

dt

∂C

∂ṙα
− ∂C

∂rα
= ṗα − 1

2
∂gβγ
∂rα

ṙβ ṙγ

= ṗα +
1
2
∂gκσ

∂rα
gκβgσγ ṙ

β ṙγ

= ṗα +
1
2
∂gκσ

∂rα
pκpσ

= ṗα +
1
2
∂gβγ

∂rα
pβpγ ,

and so we have the desired equations. �

Remark

Recall that in Corollary 3.4, we have the reduced equations:

ρ̇β = λa
∂Aa

α

∂rβ
ṙα

λ̇b = −CadbλaAd
αṙ

α.
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But ρβ = λaAa
α + 2cβ ṙβ and hence

ρ̇β = 2cβ r̈β + λ̇aAa
β + λa

∂Aa
β

∂rα
ṙα = λa

∂Aa
α

∂rβ
ṙα.

Therefore,

2cβ r̈β = λa
∂Aa

α

∂rβ
ṙα − λa

∂Aa
β

∂rα
ṙα − (−CadbλaAd

αṙ
α)Ab

β

= λa(
∂Aa

α

∂rβ
−
∂Aa

β

∂rα
− CabdAd

αAb
β)ṙ

α

= −λaBaβαṙα.

That is, the reduced equations in Corollary 3.4 (and those in Krishnaprasad, Yang and

Dayawansa [1991]) can be written intrinsically as Wong’s equations after a change of vari-

ables. This should not surprise us because Marsden and Scheurle derived the general reduced

Euler-Lagrange equations from the Hamel equations using a suitable change of variables

from local trivialization variables to those in which the Lie algebra variable is replaced by

the vertical part of the bundle velocity.

2.4 Optimal Control and Lagrangian Reduction for Nonholo-

nomic Systems

Now we are ready to use the method of Lagrange multipliers and Lagrangian

reduction to find the necessary conditions for optimal trajectories of nonholonomic systems

in the case of a trivial bundle.

2.4.1 The General Theorem for Optimization

In Bloch, Krishnaprasad, Marsden and Murray [1996], the reconstruction process

may be seen in a two step fashion: given an initial condition and a path r(t) in the base

space, we first integrate the momentum equation to determine p(t) for all time and then use

r(t) and p(t) jointly to determine the motion g(t) in the fiber. But in studying the optimal

control problem, it is better to treat p as a set of independent variables and the momentum

equation as an additional set of constraints. With this viewpoint, it is possible to write

down the reduced equations of motion for the optimal trajectories.
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Since we would like to use the method of Lagrange multipliers to relax the con-

straints, we define a new Lagrangian L:

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉 +
〈
κ(t), ṗ − ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
for some λ(t) ∈ g∗ and for some κ(t) ∈ R

m, where m is the number of momentum functions

pb. For simplicity of notation we have written A for Anh. Clearly L is G-invariant and

induces a function on (T (Q× R
m)/G) × g∗ × R

m which is also denoted L.

We formulate the main problem to be studied as follows.

Iso-holonomic Problem for Nonholonomic Systems Among all curves q(t)
such that q(0) = q0, q(1) = q1, q̇(t) ∈ Dq(t) and that satisfy g−1ġ+A(r)ṙ = Γ(r)p
and the momentum equation, find the optimal curves q(t) such that

∫ 1
0 C(ṙ)dt

is minimized, where r = π(q).

Before we state the theorem and do some computations, we want to make sure

that the readers understand the index convention used in this section:

1. The first batch of indices is denoted a, b, c, ... and range from 1 to k corresponding to

the symmetry direction (k = dim g).

2. The second batch of indices will be denoted i, j, k, ... and range from 1 to m cor-

responding to the symmetry direction along constraint space (m is the number of

momentum functions).

3. The indices α, β, ... on the shape variables r range from 1 to n−k (n−k = dim (Q/G),

i.e., the dimension of the shape space).

Theorem 5 Reduced Lagrangian Optimization for the Nonholonomic Systems If

q(t) = (r(t), g(t)) is a (regular) optimal trajectory for the above optimal control problem, then

there exist a λ(t) ∈ g∗ and a κ(t) ∈ R
m such that the reduced curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G

with coordinates (rα, ṙα, ξα) satisfies the reduced Euler Lagrange equations

d

dt

∂L
∂ṙβ

− ∂L
∂rβ

= 0

d

dt

∂L
∂ξb

=
∂L
∂ξa

Cadbξ
d

d

dt

∂L
∂ṗj

− ∂L
∂pj

= 0,
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as well as

ξ = −A(r)ṙ + Γ(r)p

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p.

Here Cadb are the structure coefficients of the Lie algebra g and

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉 +
〈
κ(t), ṗ − ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
Proof If (r(t), g(t)) is a (regular) optimal trajectory, then by the method of Lagrange

multipliers, it solves the following variational problem

δ

∫ 1

0
Ldt = 0

for some λ(t) ∈ g∗ and some κ(t) ∈ R
m. Since the bundle is trivial, we can put a flat

connection on this bundle and use it to split the variations into horizontal and vertical

parts. Then by the Lagrange reduction theorem, the reduced curve (r(t), ṙ(t), ξ(t)) ∈ TQ/G

satisfies the reduced Euler Lagrange equations stated above. �

2.4.2 The Optimality Conditions in Coordinates

Now let us work out everything in detail in bundle coordinates. Since

L =
1
2
Cα(ṙα)2 + λa(ξa + Aa

αṙ
α − Γaipi) + κi(ṗi −Hαγiṙ

αṙγ −K l
iαṙ

αpl −Dlk
i plpk),

we find after some computations that

∂L
∂ṙβ

= Cβ ṙ
β + λaAa

β − κi(2Hαβiṙ
α +K l

iβpl)

∂L
∂rβ

= λa

(
∂Aa

α

∂rβ
ṙα − ∂Γai

∂rβ
pi

)

−κi
(
∂Hαγi

∂rβ
ṙαṙγ +

∂K l
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)
.

Also we have

∂L
∂ξb

= λb

∂L
∂ṗj

= κj

∂L
∂pj

= −λaΓaj − κi(Kj
iαṙ

α + 2Dlj
i pl).
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By Theorem 5, we know that the reduced curve (r(t), ṙ(t), ξ(t)) must satisfy

the following system of differential equations for the given boundary conditions q(0) =

(r0, g0), q(1) = (r1, g1):

d

dt
[Cβ ṙβ + λaAa

β − κi(2Hαβiṙ
α +K l

iβpl)]

= λa

(
∂Aa

α

∂rβ
ṙα − ∂Γai

∂rβ
pi

)
− κi

(
∂Hαγi

∂rβ
ṙαṙγ +

∂K l
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)

and

κ̇j = −λaΓaj − κi(Kj
iαṙ

α + 2Dlj
i pl)

λ̇b = Cadbλaξ
d = Cadbλa(−Ad

αṙ
α + Γdipi)

ṗi = Hαγiṙ
αṙγ +K l

iαṙ
αpl +Dlk

i plpk.

Remarks

1. The first set of equations can be simplified somewhat as follows:

d

dt

[
Cβ ṙ

β − κi(2Hαβiṙ
α +K l

iβpl)
]

= λaBaβαṙα − λa

(
∂Γai

∂rβ
+ CadbAb

βΓ
di

)
pi

−κi
(
∂Hαγi

∂rβ
ṙαṙγ +

∂K l
iα

∂rβ
ṙαpl +

∂Dlk
i

∂rβ
plpk

)
.

where Baβα are the coordinates of the curvature B of the nonholonomic connection A,

which is used to set up the constrained variational problem. Clearly more work is

needed to establish a better form of the first set of equations as well as the geometry

behind them. However, for the snakeboard, the reduced equations of motion for the

optimal trajectories turn out to be rather simple.

2. In proving the above theorem, while variations with fixed endpoints for r(t) can be

used, we generally can only hold the initial endpoint fixed for the variations of p(t) and

leave their final endpoints free (which is called ”free endpoint problem” in the language

of calculus of variations). However, we will obtain the same system of differential

equations (namely the reduced Euler- Lagrange equations) except the need to impose

some kind of transversality condition at t = 1, e.g., in this case we need to have

κ(1) = 0.
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In the following section, we will apply the method of reduced Lagrangian opti-

mization developed in this section to some examples, especially the snakeboard.

2.5 Examples

2.5.1 Optimal Control of a Homogeneous Ball on a Rotating Plate

Bloch, Krishnaprasad, Marsden and Murray [1996] also studies a well-known ex-

ample, namely the model of a homogeneous ball on a rotating plate (for more informations,

also see Neimark and Fufaev [1972] and Yang [1992] for the affine case and Bloch and Crouch

[1992], Brockett and Dai [1992] and Jurdjevic [1993] for the linear case) and writes down

its equations of motion in a form that is suitable for the application of control theory.

Fix coordinates in inertial space and let the plane rotate with constant angular

velocity Ω about the z-axis. The configuration space of the sphere is Q = R
2 × SO(3),

parameterized by (x, y, g), g ∈ SO(3), all measured with respect to the inertial frame. Let

ω = (ωx, ωy, ωz) be the angular velocity vector of the sphere measured also with respect to

the inertial frame, let m be the mass of the sphere, mk2 its inertia about any axis, and let

a be its radius.

The Lagrangian of the system is

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mk2(ωx2 + ωy

2 + ωz
2)

with the affine nonholonomic constraints

ẋ− aωy = −Ωy

ẏ + aωx = Ωx.

Note that the Lagrangian here is a metric on Q which is bi-invariant on SO(3) as the ball

is homogeneous. Note also that R
2 × SO(3) is a principal bundle over R

2 with respect to

the right SO(3) action on Q given by

(x, y, g) 7→ (x, y, gh)

for h ∈ SO(3). The action is on the right since the symmetry is a material symmetry.
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After some computations, it can be shown that (for details, see Bloch, Krish-

naprasad, Marsden and Murray [1996]) the equations of motion are:

ωx +
1
a
ẏ =

Ωx
a

ωy − 1
a
ẋ =

Ωy
a

ωz = c,

(where c is a constant), together with

ẍ+
k2Ω

a2 + k2 ẏ = 0

ÿ − k2Ω
a2 + k2 ẋ = 0.

Notice that the first set of three equations has the form

ġg−1 = −Aloc(r)ṙ + Γloc(r),

where

Aloc =
1
a
e1dy − 1

a
e2dx

and

Γloc =
Ω
a
xe1 +

Ω
a
ye2 + ce3.

Here, r1 = x, r2 = y and e1, e2, e3 is the standard basis of so(3)−. Also, Aloc is the expression

of nonholonomic connection relative to the (global) trivialization and Γloc is the expression

of the affine piece of the constraints with respect to the same trivialization (see Bloch,

Krishnaprasad, Marsden and Murray [1996]).

Now we are ready to apply reduced Lagrangian optimization to find the optimal

trajectories for a homogeneous ball. Clearly the homogeneous ball on a rotating plate is a

simple nonholonomic mechanical system with symmetry as defined earlier, which also has a

trivial principal bundle structure (except that the constraint is affine which can be dealt with

in the same way). Also we can assume that we have full control over the motion of the center

of the ball, i.e., over the shape variables. Now let the cost function be C(ṙ) = 1
2 [(ẋ)2 +(ẏ2)]

and set a = 1 for simplicity, then we can use the method of Lagrange multipliers and

Lagrangian reduction to find the necessary conditions for the optimal trajectories of the

following optimal control problem:
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Plate Ball Problem Given two points q0, q1 ∈ R
2 × SO(3), find the optimal

control curves (x(t), y(t)) ∈ R
2 that steer the system from q0 to q1 and minimizes∫ 1

0
1
2 [(ẋ)2 + (ẏ)2]dt, subject to the constraints

ġg−1 = −ẏe1 + ẋe2 + ce3 + Ωxe1 + Ωye2,

where, again, ea is the standard basis of so(3)−.

Following the reduced Lagrangian optimization method developed in the preceding

section, we define a new Lagrangian L by

L =
1
2
[(ẋ)2 + (ẏ)2] + λaξ

a + λ1ẏ − λ2ẋ− λ3c− Ωλ1x− Ωλ2y,

where λ(t) ∈ so(3)∗− (note that we use the negative Lie-Poisson structure because the right

action is used).

By the preceding Theorem in the last section, we know that any of the reduced op-

timal curve (x(t), y(t), ẋ(t), ẏ(t), ξa(t)) must satisfy the reduced Euler Lagrangian equations.

Simple computations show that

∂L
∂ẋ

= ẋ− λ2 = ρ1

∂L
∂x

= −Ωλ1

∂L
∂ẏ

= ẏ + λ1 = ρ2

∂L
∂y

= −Ωλ2

∂L
∂ξb

= λb.

Therefore

ρ̇1 = −Ωλ1

ρ̇2 = −Ωλ2,

and

λ̇b = Cadbλaξ
d,

that is:

λ̇1 = λ3ξ
2 − λ2ξ

3 = λ3(ρ1 + λ2 + Ωy) − cλ2

λ̇2 = −λ3ξ
1 + λ1ξ

3 = λ3(ρ2 − λ1 − Ωx) + cλ1

λ̇3 = λ2ξ
1 − λ1ξ

2 = −(λ1ρ1 + λ2ρ2) + Ω(λ2x− λ1y).
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In the special case where c = 0 (no drift) and Ω = 0 (no rotation) studied in

Jurdjevic [1993], we have

ρ̇1 = 0

ρ̇2 = 0

λ̇1 = λ3(ρ1 + λ2)

λ̇2 = λ3(ρ2 − λ1)

λ̇3 = −(λ1ρ1 + λ2ρ2).

which gives the same result as in Jurdjevic [1993] obtained through the application of the

Pontryagin Maximum Principle.

2.5.2 Optimal Control of the Snakeboard

The snakeboard is a modified version of a skate-board in which the front and

back pairs of wheels are independently actuated. The extra degree of freedom enables

the rider to generate forward motion by twisting their body back and forth, while simul-

taneously moving the wheels with the proper phase relationship. For details, see Bloch,

Krishnaprasad, Marsden and Murray [1996] and the references listed there. Here we will

include the computations shown in that paper both for completeness as well as to make

concrete the nonholonomic theory.

The snakeboard is modeled as a rigid body (the board) with two sets of inde-

pendently actuated wheels, one on each end of the board. The human rider is modeled

as a momentum wheel which sits in the middle of the board and is allowed to spin about

the vertical axis. Spinning the momentum wheel causes a counter-torque to be exerted on

the board. The configuration of the board is given by the position and orientation of the

board in the plane, the angle of the momentum wheel, and the angles of the back and front

wheels. Thus the configuration space is Q = SE(2) × S1 × S1 × S1. Let (x, y, θ) represent

the position and orientation of the center of the board, ψ the angle of the momentum wheel

relative to the board, and φ1 and φ2 the angles of the back and front wheels, also relative

to the board. Take the distance between the center of the board and the wheels to be r.

The Lagrangian for the snakeboard consists only of kinetic energy terms and can

be written as

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
Jθ̇2 +

1
2
J0(θ̇ + ψ̇)2 +

1
2
J1(θ̇ + φ̇1)2 +

1
2
J2(θ̇ + φ̇2)2,
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where m is the total mass of the board, J is the inertia of the board, J0 is the inertia of the

rotor and Ji, i = 1, 2, is the inertia corresponding to φi. The Lagrangian is independent of

the configuration of the board and hence it is invariant to all possible group actions.

The rolling of the front and rear wheels of the snakeboard is modeled using non-

holonomic constraints which allow the wheels to spin about the vertical axis and roll in

the direction that they are pointing. The wheels are not allowed to slide in the sideways

direction. This gives constraint one forms

ω1(q) = − sin(θ + φ1)dx+ cos(θ + φ1)dy − r cos φ1dθ

ω2(q) = − sin(θ + φ2)dx+ cos(θ + φ2)dy + r cos φ2dθ.

These constraints are invariant under the SE(2) action given by

(x, y, θ, ψ, φ1, φ2) 7→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, θ + α,ψ, φ1, φ2),

where (a, b, α) ∈ SE(2). The constraints determine the kinematic distribution Dq:

Dq = span
{
∂

∂ψ
,
∂

∂φ1
,
∂

∂φ2
, a

∂

∂x
+ b

∂

∂y
+ c

∂

∂θ

}
,

where a, b, and c, are given by

a = −r(cosφ1 cos(θ + φ2) + cosφ2 cos(θ + φ1))

b = −r(cos φ1 sin(θ + φ2) + cosφ2 sin(θ + φ1))

c = sin(φ1 − φ2).

The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span
{
∂

∂x
,
∂

∂y
,
∂

∂θ

}

The intersection between the tangent space to the group orbits and the constraint distribu-

tion is thus given by

Dq ∩ Tq(Orb(q)) = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂θ
.

The momentum can be constructed by choosing a section of D∩TOrb regarded as a bundle

over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to be

ξqQ = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂θ
,
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which is invariant under the action of SE(2) on Q. The corresponding Lie algebra element

in se(2), ξq, is

ξq = (a+ yc)ex + (b− xc)ey + ceθ

where ex is the basis element of the Lie algebra corresponding to translations in the x

direction (and whose corresponding infinitesimal generator is ∂/∂x), etc. The nonholonomic

momentum map is thus given by

p = Jnh(ξq) =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ + Jcθ̇ + J0c(θ̇ + ψ̇) + J1c(θ̇ + φ̇1) + J2c(θ̇ + φ̇2).

In Bloch, Krishnaprasad, Marsden and Murray [1996] a simplification is made which we

shall also assume in this chapter, namely φ1 = −φ2, J1 = J2. The parameters are also

chosen such that J + J0 + J1 + J2 = mr2 (which eliminates some terms in the derivation

but does not affect the essential geometry of the problem). Setting φ = φ1 = −φ2, the

constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cos φθ̇

0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cos φθ̇

p = −2mr cos2(φ) cos(θ)ẋ− 2mr cos2(φ) sin(θ)ẏ

+mr2 sin(2φ)θ̇ + J0 sin(2φ)ψ̇.

Adding, subtracting, and scaling these equations, we can write (away from φ = π/2),




cos(θ)ẋ+ sin(θ)ẏ

− sin(θ)ẋ+ cos(θ)ẏ

θ̇


+




− J0

2mr
sin(2φ)ψ̇

0
J0

mr2
sin2(φ)ψ̇


 =




−1
2mr

p

0
tan φ
2mr2

p


 . (2.20)

These equations have the form

g−1ġ + Aloc(r)ṙ = Γ(r)p

where

Aloc = − J0

2mr
sin(2φ)ex dψ +

J0

mr2
sin2(φ)eθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tan(φ) eθ .
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These are precisely the terms which appear in the nonholonomic connection relative to the

(global) trivialization (r, g). The momentum equation, which governs the evolution of p, is

given by

ṗ =
∂L

∂q̇i

[
d

dt
ξq
]i
Q

= 4mr cos(θ) cos(φ) sin(φ)ẋφ̇+ 4mr sin(θ) cos(φ) sin(φ)ẏφ̇

+2J0 cos(2φ)φ̇ψ̇ + 2mr2 cos(2φ)θ̇φ̇

−2mr cos(θ) cos2(φ)ẏθ̇ + 2mr sin(θ) cos2(φ)ẋθ̇

Solving for the group velocities ẋ, ẏ, θ̇ from the equations which define the nonholonomic

connection, the momentum equation can be rewritten as

ṗ = 2J0 cos2(φ) φ̇ψ̇ − tan(φ) pφ̇

This version of the momentum equation corresponds to the coordinate form in body repre-

sentation but it contains no terms which are quadratic in p, due to the fact that gq is one

dimensional.

These equations describe how paths in the base space, parameterized by r ∈ S1 ×
S1 × S1 (in fact, the base space is S1 × S1 if we assume φ1 = −φ2), are lifted to the fiber

SE(2). The utility of these equations is that they greatly simplify the process of solving

for the motion of the system given the base space trajectory.

Now we are ready to apply the method of reduced Lagrangian optimization to

find the optimal trajectories for the snakeboard. Clearly the snakeboard is a simple non-

holonomic mechanical system with symmetry as defined earlier and which also has a trivial

principal bundle structure. Moreover, the control forces are only applied to the shape vari-

ables which we have full control of. Let the cost function be C(ṙ) = 1
2 [(ψ̇)2 + (φ̇)2] for

simplicity. We can use the method of Lagrange multipliers and Lagrangian reduction to

find the necessary conditions for the optimal trajectories of the following optimal control

problem:

Optimal Control Problem for the Snakeboard Given two points q0, q1 ∈
SE(2) × S1 × S1, find the optimal control curves (ψ(t), φ(t)) ∈ S1 × S1 that
steer from q0 to q1 and minimize

∫ 1
0

1
2 ((ψ̇)2 + (φ̇)2)dt, subject to the constraints

g−1ġ + Aloc(r)ṙ = Γ(r)p
ṗ = 2J0 cos2(φ)φ̇ψ̇ − tan(φ)pφ̇
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where

Aloc = − J0

2mr
sin(2φ)ex dψ +

J0

mr2
sin2(φ)eθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tan(φ) eθ .

Following the general procedures in the previous section, we define a new L by

L =
1
2
((ψ̇)2 + (φ̇)2) + λaξ

a − J0

2mr
λ1 sin(2φ)ψ̇ +

J0

mr2
λ3 sin2(φ)ψ̇

+
1

2mr
λ1p− 1

2mr2
λ3 tan(φ)p + κṗ − 2J0κ cos2(φ)φ̇ψ̇ + κ tan(φ)pφ̇

where ξ = g−1ġ ∈ g, λ(t) ∈ g∗ and κ(t) ∈ R
1 are Lagrange multipliers. Here ξa and λa are

the components of ξ and λ in the standard basis of se(2) and se(2)∗ respectively.

By Theorem 5, we know that reduced optimal curves (ψ(t), φ(t), ψ̇(t), φ̇(t), ξa(t))

must satisfy the reduced Euler Lagrangian equations for L . After some computations, we

find

∂L
∂ψ̇

= ψ̇ − J0

2mr
λ1 sin(2φ) +

J0

mr2
λ3 sin2(φ) − 2J0κ cos2(φ)φ̇

∂L
∂ψ

= 0

∂L
∂φ̇

= φ̇− 2J0κ cos2(φ)ψ̇ + κ tan(φ)p

∂L
∂φ

= − J0

mr
λ1 cos(2φ)ψ̇ +

J0

mr2
λ3 sin(2φ)ψ̇ − 1

2mr2
λ3 sec2(φ)p

+2J0κ sin(2φ)φ̇ψ̇ + κ sec2(φ)pφ̇
∂L
∂ṗ

= κ

∂L
∂p

=
1

2mr
λ1 − 1

2mr2
λ3 tan(φ) + κ tan(φ)φ̇

∂L
∂ξb

= λb.

Substitute the above calculations into the reduced Euler Lagrangian equations and simplify,

giving

ψ̈ − J0

2mr
λ̇1 sin(2φ) − J0

mr
λ1 cos(2φ)φ̇ +

J0

mr2
λ3 sin(2φ)φ̇

+
J0

mr2
λ̇3 sin2(φ) − 2J0κ̇ cos2 φ φ̇+ 2J0κ sin(2φ)(φ̇)2 − 2J0κ cos2(φ)φ̈ = 0

φ̈ − 2J0κ̇ cos2(φ)ψ̇ − 2J0κ cos2(φ)ψ̈ + κ̇ tan(φ)p + κ tan(φ)ṗ

= − J0

mr
λ1 cos(2φ)ψ̇ +

J0

mr2
λ3 sin(2φ)ψ̇ − 1

2mr2
λ3 sec2(φ)p.
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Also, we have

κ̇ =
1

2mr
λ1 − 1

2mr2
λ3 tan(φ) + κ tan(φ)φ̇

λ̇1 = λ2ξ
3 = λ2

(
− J0

mr2
sin2(φ)ψ̇ +

1
2mr2

tan(φ)p
)

λ̇2 = −λ1ξ
3 = −λ1

(
− J0

mr2
sin2(φ)ψ̇ +

1
2mr2

tan(φ)p
)

λ̇3 = −λ2ξ
1 = −λ2

(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
ṗ = 2J0 cos2(φ) φ̇ψ̇ − tan(φ) pφ̇.

After eliminating λ̇1, λ̇3, κ̇ and ṗ from the first set of two equations, we finally obtain

ψ̈ − J0

2mr
λ1(1 + 3 cos(2φ))φ̇ +

3J0

2mr2
λ3 sin(2φ)φ̇+ J0κ sin(2φ)(φ̇)2 − 2J0κ cos2(φ)φ̈ = 0

and

φ̈ − J0

mr
λ1 sin2 φ ψ̇ +

1
2mr

λ1 tan(φ)p

+
1

2mr2
λ3p− J0

2mr2
λ3 sin(2φ)ψ̇ − 2J0κ cos2(φ)ψ̈ = 0.

2.5.3 Optimal Control on a Lie Group

Krishnaprasad [1994] considered the following optimal control problem on a finite

dimensional Lie group G which has been used to model various problems in several other

papers (e.g. the plate-ball problem in Jurdjevic [1993], and the landing tower problem in

Walsh, Montgomery and Sastry [1994]). While it is possible to model this class of problems

as a special case of the optimal control of nonholonomic system on a trivial principal bundle

and apply reduced Lagrangian optimization, it may be useful to provide in this section a

more direct proof that uses simpler machinery.

Optimal Control Problem for a Lie Group Given a left invariant control
system on G, ġ = g · ξu, where ξu = e0 +

∑m
i=1 u

i(t)ei, find the optimal controls
u(·) that steer from g0 to g1 and minimize

∫ 1
0 L(u)dt.

Here {e0, e1, . . . , em} spans an (m + 1)-dimensional subspace of the whole Lie

algebra g of G, m+1 ≤ n = dim (g), u(·) is a vector valued control function with ui(t) ∈ R,

L is a cost function on R
m which is the space of values of controls, and L(u) = 1

2
∑m

i=1 Ii(u
i)2

with Ii > 0.
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To apply the method of Lagrangian reduction, we recast the above optimal control

problem as a constrained variational problem. For simplicity of exposition, we will deal with

the vector space case first where there is no e0 term and will take up the affine case later.

Let C be the m-dimensional subspace of g spanned by {e1, . . . , em}. We make the

following points

(i) ξu =
∑m

i=1 u
i(t)ei lies in C;

(ii) if we define L1 = L ◦ φ where L = 1
2
∑m

i=1 Ii(u
i)2 with Ii > 0 and φ = (e1, . . . , em)

with {e1, . . . , em} as the dual basis of {e1, . . . , em}, then L1 : C → R is nothing but 1
2

of the square of a metric on C which is intrinsically defined and does not depend on

the basis chosen;

(iii) we can extend L1 to be half of the square of a metric L̄ on g such that L̄ = L1 on C.

As we will see, the necessary conditions for an optimal control do not depend on how

the extension is done.

(iv) For the affine case, we will simply set ξu − e0 =
∑m

i=1 u
i(t)ei.

Now it should be clear that the original problem is equivalent to the following

constrained variational problem:

Constrained Variational Problem for Optimal Control on Lie Groups
Given an m-dimensional subspace C of g, find the optimal control curves ξ−e0 ∈
C such that g(0) = g0, g(1) = g1 and minimize

∫ 1
0 L̄(ξ − e0)dt.

Since we want to use the method of Lagrange multipliers to relax the constraint

on the variations, we define a new Lagrangian

L = L̄(ξ − e0) + λ(t)(ξ − e0) = L̃(ξ) + λ̃(t)(ξ) (2.21)

where λ(t) lies in the annihilator C0 of C; furthermore τ(ξ) = ξ−e0, L̃ = L̄◦τ and λ̃ = λ◦τ .

Theorem 6 Optimization Theorem for Nonholonomic Systems on Lie Groups.

If ξ̄ is a (regular) optimal control curve in C + e0 = {ξ ∈ g : ξ = ξc + e0, ξc ∈ C}, then there

exists a λ(t) ∈ g∗ such that ξ̄ satisfies the Euler-Poincare equation:

d

dt

(
δL̃

δξ
+ λ

)
= ad∗

ξ

(
δL̃

δξ
+ λ

)
(2.22)
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Proof If ξ̄(t) is an optimal control curve in C + e0, then by the Lagrangian reduction

method, ξ̄(t) is a solution of the following variational problem

δ

∫ 1

0
L(ξ)dt = δ

∫ 1

0
(L̃(ξ) + λ̃(ξ))dt = 0

for some λ ∈ g∗, where the variations take the form δξ = Ω̇ + [ξ,Ω] with Ω = g−1 · δg
arbitrary except vanishing at the endpoints. Since

0 = δ

∫ 1

0
(L̃(ξ) + λ̃(ξ))dt

=
∫ 1

0

(
δL̃

δξ
δξ + λ (δξ)

)
dt

=
∫ 1

0

(
δL̃

δξ
+ λ

)(
Ω̇ + [ξ,Ω]

)
dt

=
∫ 1

0

(
− d

dt

(
δL̃

δξ
+ λ

)
+ ad∗

ξ

(
δL̃

δξ
+ λ

))
Ωdt,

we conclude that ξ̄(t) satisfies

d

dt

(
δL̃

δξ
+ λ

)
= ad∗

ξ

(
δL̃

δξ
+ λ

)
. �

Corollary 3 Given a left invariant control system on G, ġ = g · ξu where

ξu = e0 +
m∑
i=1

ui(t)ei.

If ū(·) is an optimal control, then

ūi(t) =
µi(t)
Ii

where i = 1, . . . ,m, and µi, i = 1, . . . ,m is the solution of the following system of differen-

tial equations

µ̇i = Ckjiµkξ
j
u

where i, j, k = 0, . . . , n− 1, and where Ckij are the structure constants of g.

Proof Extend {e0, e1, . . . , em} to a basis {e0, . . . , en−1} and let {e0, . . . , en−1} be its dual

basis.
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(i) For i = 1, . . . ,m, and ξu ∈ e0 + C, we have

δL̃

δξiu
=
∂L

∂ui
= Iiu

i

because L̃(ξu) = L ◦ φ ◦ τ(ξu) = L(u) and ξiu = ui; furthermore,

λi = 0, i = 1, . . . ,m

because λ lies in the annihilator C0.

(ii) If we set

µi =
δL̃

δξiu
, i = 1, . . . ,m,

and

µi =
δL̃

δξiu
+ λi, i = m+ 1, . . . , n− 1, 0,

and write out the Euler-Poincare equation using the above coordinates, we will get

the desired system of differential equations. �

Remarks

1. From the above computations, we can see that the necessary conditions for an optimal

control ū(·) depend only on L and have nothing to do with how the extension is done,

because not only ui(t) = µi(t)/Ii, but also µ̇i = Ckjiµkξ
j
u do not depend on L̄.

2. The necessary conditions given in the above Corollary are the same as those in Kr-

ishnaprasad [1994]:

ui =
µi
Ii

i = 1, . . . ,m,

µ̇i = −µkCkij
δh

δµj
i, j, k = 0, . . . , n− 1,

where

h = µ0 +
1
2

m∑
i=1

µ2
i

Ii
.

This is because Ckji = −Ckij and

δh

δµj
=




1 j = 0
µj
Ij

= uj j = 1, . . . ,m

0 j = m+ 1, . . . , n− 1




= ξju
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Conclusions

We have found a procedure based on reduced Lagrangian optimization that can

be used to directly establish results on

1. optimal control for left invariant system on Lie group with velocity constraint,

2. optimal control for holonomic system on principal bundle with the constraint of the

vanishing of the momentum map, and

3. optimal control for nonholonomic system on (trivial) principal bundles that may have

a nontrivial evolution of its nonholonomic momentum.

In fact, the first two results can be seen as special cases of the last result even

though we have derived each of them in a parallel way. Recall that in the nonholonomic

case, we have

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ − Γ(r)p〉 +
〈
κ(t), ṗ − ṙTH(r)ṙ − ṙTK(r)p− pTD(r)p

〉
.

(2.23)

In the drift-less holonomic case, Dq = TqQ for each q ∈ Q, the momentum is conserved and

assumed to be zero, so the above Lagrangian L will be reduced to

L = C(ṙ) + 〈λ(t), ξ + A(r)ṙ〉 ,

which is exactly the same Lagrangian used in the second case. As for system on Lie group

G with velocity constraint (say, g−1ġ =
∑m

i=1 u
iei for simplicity), it can be seen as system

on (trivial) principal bundle G × R
m whose (nonholonomic) connection is independent of

the shape variable r, i.e.,

ξa = Aa
αṙ

α

where Aa
α = 1 and ṙα = uα.
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Chapter 3

Symplectic Geometry of

Nonholonomic Systems

3.1 Introduction

The General Setting. Many important problems in robotics, the dynamics of wheeled

vehicles and motion generation, involve nonholonomic mechanics, which typically means

mechanical systems with rolling constraints. Some of the important issues are trajectory

tracking, dynamic stability and feedback stabilization (including non-minimum phase sys-

tems), bifurcation and control. Many of these systems have symmetry, such as the group

of Euclidean motions in the plane or in space and this symmetry plays an important role

in the theory.

In the last several years, several basic works have been done on both the Hamilto-

nian and the Lagrangian sides of the theory. Papers like Weber [1986], Koiller [1992], Bloch

and Crouch [1992], Krishnaprasad, Dayawansa and Yang [1992, 1993], Bates and Sniatycki

[1993], van der Schaft and Maschke [1994], Hermans [1995], Marle [1995],Ostrowski [1996]

and Bloch, Krishnaprasad, Marsden and Murray [1996] have laid a firm foundation for

understanding nonholonomic mechanical systems with symmetry.

Bates and Sniatycki [1993], hereafter denoted [BS], developed the Hamiltonian

side, while Bloch, Krishnaprasad, Marsden and Murray [1996], hereafter denoted [BKMM],

has explored the Lagrangian side. It was not obvious how these two approaches were equiv-

alent because, for example, [BKMM] developed the momentum equation and the reduced
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Lagrange-d’Alembert equations and it is not obvious how these correspond to the develop-

ments in [BS]. Our aim is to establish links between these two sides and use the ideas and

results of each to shed light on the other, with the goal of deepening our understanding of

both points of view. We hope that it will aid related efforts such as extending the results

of energy-momentum method for stability of relative equilibria and the theory of Hamilto-

nian bifurcations to nonholonomic mechanics. In the spirit of [BKMM], we do many of the

calculations in coordinates to help in the study of examples.

We illustrate the basic theory with the snakeboard, the well known example treated

in [BKMM]. We also treat a simplified model of the bicycle (introduced in Getz [1994] and

Getz and Marsden [1995]) and obtain results that were not known previously. This is an

important prototype control system because it is an under-actuated balance system.

Outline of the Chapter. We begin in §3.2 by recalling some of the main results of

[BKMM] and of [BS] in the general context of nonholonomically constrained systems. In

that section, we establish the precise link between them. The snakeboard example is begun

in this section.

In §3.3, we treat systems with symmetry and study the momentum equation,

the reconstruction equation and the reduced Lagrange-d’Alembert equations from both

the Hamiltonian and the Lagrangian points of view. This clarifies which construction in

[BS] corresponds to the momentum equation of [BKMM]. This section also continues the

snakeboard example and treats the bicycle.

Summary of the Main Results. The main results of the present work are as follows:

• The precise relation between the constructions in the papers [BS] and [BKMM] are

given.

• The reduced Lagrange-d’Alembert equations established in [BKMM] are shown to be

equivalent to the reduced nonholonomic Hamilton equations implicitly given in [BS].

• The relation between the constructions is illustrated with two specific examples, the

snakeboard and the nonholonomically constrained particle.

• A simplified model of the bicycle is treated.
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3.2 General Nonholonomic Mechanical Systems

Following the approaches of both [BS] and [BKMM], we first consider mechanics

in the presence of homogeneous linear nonholonomic velocity constraints. For now, no

symmetry assumptions are made; we add such assumptions in the following sections.

In this section,

1. we recall the basic ideas and results from [BKMM] on general nonholonomic systems:

in particular, how to describe constraints using Ehresmann connections and how to

write the Lagrange-d’Alembert equations of motion using the curvature of this con-

nection.

2. We review the geometric structure of Hamiltonian systems with nonholonomic con-

straints from [BS], including a general procedure for finding the equations of motion

for nonholonomic systems from the Hamiltonian point of view.

3. We construct the geometric objects on the Lagrangian side corresponding to those on

the Hamiltonian side using the Legendre transformation in the context of nonholo-

nomic constraints.

4. We prove that these dual procedures gives us the same Lagrange d’Alembert equations

as in [BKMM]. Since this proof is done in coordinates, it also provides a concrete

coordinate based procedure for finding the equations of motion on the Hamiltonian

side.

5. We will use the Hamiltonian procedure to work out the example of snakeboard taken

from [BKMM].

3.2.1 Review of the Lagrangian Approach

We start with a configuration space Q with local coordinates denoted qi, i =

1, . . . , n and a distribution D on Q that describes the kinematic nonholonomic constraints.

The distribution is given by the specification of a linear subspace Dq ⊂ TqQ of the tangent

space to Q at each point q ∈ Q.

In this chapter we consider only homogeneous velocity constraints. The extension

to affine constraints is straightforward, as in [BKMM].
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The dynamics of a nonholonomically constrained mechanical system is governed

by the Lagrange-d’Alembert principle. The principle states that the equations of motion

of a curve q(t) in configuration space are obtained by setting to zero the variations in the

integral of the Lagrangian subject to variations lying in the constraint distribution and that

the velocity of the curve q(t) itself satisfies the constraints; that is, q̇(t) ∈ Dq(t). Standard

arguments in the calculus of variations show that this “constrained variational principle” is

equivalent to the equations

− δL :=
(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (3.1)

for all variations δq such that δq ∈ Dq at each point of the underlying curve q(t). These

equations are often equivalently written as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λi,

where λi is a set of Lagrange multipliers (i = 1, . . . , n), representing the force of constraint.

Intrinsically, this multiplier λ is a section of the cotangent bundle over q(t) that annihilates

the constraint distribution. The Lagrange multipliers are often determined by using the

condition that q̇(t) lies in the distribution.

In Bloch and Crouch [1992] and Lewis [1996], the Lagrange-d’Alembert equations

are shown to have the form of a generalized acceleration condition

∇q̇ q̇ = 0

for a suitable affine connection on Q and the force of constraint λ is interpreted as a gener-

alized second fundamental form (as is well known for systems with holonomic constraints;

see Abraham and Marsden [1978], for example). In this form of the equations, one can add

external forces directly to the right hand sides so that the equations now become in the

form of a generalized Newton law. This form is convenient for control purposes.

To explore the structure of the Lagrange-d’Alembert equations in more detail,

let {ωa}, a = 1, . . . , k be a set of k independent one forms whose vanishing describes the

constraints; i.e., the distribution D. One can introduce local coordinates qi = (rα, sa) where

α = 1, . . . n− k, in which ωa has the form

ωa(q) = dsa +Aaα(r, s)drα
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where the summation convention is in force. In other words, we are locally writing the

distribution as

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aaαṙ
α = 0}.

The equations of motion, (3.1) may be rewritten by noting that the allowed vari-

ations δqi = (δrα, δsa) satisfy δsa +Aaαδr
α = 0. Substitution into (3.1) gives

(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
. (3.2)

Equation (3.2) combined with the constraint equations

ṡa = −Aaαṙα (3.3)

gives a complete description of the equations of motion of the system; this procedure may

be viewed as one way of eliminating the Lagrange multipliers. Using this notation, one finds

that λ = λaω
a, where λa = d

dt
∂L
∂ṡa − ∂L

∂sa .

Equations (3.2) can be written in the following way:

d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L

∂ṡb
Bb
αβ ṙ

β, (3.4)

where

Lc(rα, sa, ṙα) = L(rα, sa, ṙα,−Aaα(r, s)ṙα).

is the coordinate expression of the constrained Lagrangian defined by Lc = L|D and where

Bb
αβ =

(
∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)
. (3.5)

Letting dωb be the exterior derivative of ωb, a computation shows that

dωb(q̇, ·) = Bb
αβ ṙ

αdrβ

and hence the equations of motion have the form

−δLc =
(
d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

)
δrα = − ∂L

∂ṡb
dωb(q̇, δr).
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This form of the equations isolates the effects of the constraints, and shows, in particular,

that in the case where the constraints are integrable (i.e., dω = 0), the equations of mo-

tion are obtained by substituting the constraints into the Lagrangian and then setting the

variation of Lc to zero. However in the non-integrable case the constraints generate extra

(curvature) terms, which must be taken into account.

The above coordinate results can be put into an interesting and useful intrinsic

geometric framework. The intrinsically given information is the distribution and the La-

grangian. Assume that there is a bundle structure πQ,R : Q → R for our space Q, where R

is the base manifold and πQ,R is a submersion and the kernel of TqπQ,R at any point q ∈ Q

is called the vertical space Vq. One can always do this locally. An Ehresmann connection

A is a vertical valued one form on Q such that

1. Aq : TqQ → Vq is a linear map and

2. A is a projection: A(vq) = vq for all vq ∈ Vq.

Hence, TqQ = Vq ⊕Hq where Hq = kerAq is the horizontal space at q, sometimes

denoted horq. Thus, an Ehresmann connection gives us a way to split the tangent space to

Q at each point into a horizontal and vertical part.

If the Ehresmann connection is chosen in such a way that the given constraint

distribution D is the horizontal space of the connection; that is, Hq = Dq, then in the

bundle coordinates qi = (rα, sa), the map πQ,R is just projection onto the factor r and the

connection A can be represented locally by a vector valued differential form ωa:

A = ωa
∂

∂sa
, ωa(q) = dsa +Aaα(r, s)dr

α,

and the horizontal projection is the map

(ṙα, ṡa) 7→ (ṙα,−Aaα(r, s)ṙα).

The curvature of an Ehresmann connection A is the vertical valued two form

defined by its action on two vector fields X and Y on Q as

B(X,Y ) = −A([horX,hor Y ])

where the bracket on the right hand side is the Jacobi-Lie bracket of vector fields obtained

by extending the stated vectors to vector fields. This definition shows the sense in which

the curvature measures the failure of the constraint distribution to be integrable.
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In coordinates, one can evaluate the curvature B of the connection A by the

following formula:

B(X,Y ) = dωa(horX,hor Y )
∂

∂sa
,

so that the local expression for curvature is given by

B(X,Y )a = Ba
αβX

αY β

where the coefficients Ba
αβ are given by (3.5).

The Lagrange d’Alembert equations may be written intrinsically as

δLc = 〈FL,B(q̇, δq)〉,

in which δq is a horizontal variation (i.e., it takes values in the horizontal space) and B is

the curvature regarded as a vertical valued two form, in addition to the constraint equations

A(q) · q̇ = 0.

Here 〈 , 〉 denotes the pairing between a vector and a dual vector and

δLc =
〈
δrα,

∂Lc
∂rα

− d

dt

∂Lc
∂ṙα

−Aaα
∂Lc
∂sa

〉
.

As shown in [BKMM], when there is a symmetry group G present, there is a natural

bundle one can work with and put a connection on, namely the bundle Q → Q/G. In the

generality of the preceding discussion, one can get away with just the distribution itself

and can introduce the corresponding Ehresmann connection locally. In fact, the bundle

structure Q → R is really a “red herring”. The notion of curvature as a TqQ/Dq valued

form makes good sense and is given locally by the same expressions as above. However,

keeping in mind that we eventually want to deal with symmetries and in that case there

is a natural bundle, the Ehresmann assumption is nevertheless a reasonable bridge to the

more interesting case with symmetries.

3.2.2 Review of the Hamiltonian Formulation

The approach of [BS] starts on the Lagrangian side with a configuration space Q

and a Lagrangian L of the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1
2
〈〈q̇, q̇〉〉 − V (q),
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where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a potential energy

function. We do not restrict ourselves to Lagrangians of this form.

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ. We

also let Do ⊂ T ∗Q denote the annihilator of this distribution.

As above, the basic equations are given by the Lagrange-d’Alembert principle.

The Legendre transformation FL : TQ → T ∗Q, assuming that it is a diffeomor-

phism, is used to define the Hamiltonian H : T ∗Q → R in the standard fashion (ignoring

the constraints for the moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of variables, the equations

of motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
.

ṗi = −∂H
∂qi

+ λaω
a
i ,

where i = 1, . . . , n, together with the constraint equations.

The preceding Hamiltonian equations can be rewritten as

X Ω = dH + λaπ
∗
Qω

a,

where X is the vector field on T ∗Q governing the dynamics, Ω is the canonical symplectic

form on T ∗Q, and πQ : T ∗Q → Q is the cotangent bundle projection. We may write X in

coordinates as X = q̇i∂qi + ṗi∂pi .

On Lagrangian side, we saw that one can get rid of the Lagrange multipliers. On

the Hamiltonian side, it is also desirable to model the Hamiltonian equations without the

Lagrange multipliers by a vector field on a submanifold of T ∗Q. We do this in what follows.

First of all, we define the set M = FL(D) ⊂ T ∗Q, so that the constraints on the

Hamiltonian side are given by

p ∈ M.

Besides M, another basic object we deal with is defined as

F = (TπQ)−1(D) ⊂ TT ∗Q.

Using a basis ωa of the annihilator Do, we can write these spaces as
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M = {p ∈ T ∗Q | ωa((FL)−1(p)) = 0}, (3.6)

and

F = {u ∈ TT ∗Q |
〈
π∗
Qω

a, u
〉

= 0}. (3.7)

Finally, we define

H = F ∩ TM.

Using natural coordinates (qi, pi, q̇i, ṗi) on TT ∗Q, we see that the distribution F
naturally lifts the constraint on q̇ from TQ to TT ∗Q. On the other hand, the space M
puts the associated constraints on the variable p and therefore the intersection H puts the

constraints on both variables.

To eliminate the Lagrange multipliers, we regard the Hamiltonian equations as a

vector field on the constraint submanifold M ⊂ T ∗Q which takes values in the constraint

distribution H. Next we recall from [BS] how to construct these equations intrinsically

using the ideas of symplectic geometry.

A result of [BS] is that ΩH, the restriction of the canonical two-form Ω of T ∗Q

fiberwise to the distribution H of the constraint submanifold M, is nondegenerate. Note

that ΩH is not a true two form on a manifold, so it does not make sense to speak about it

being closed. We speak of it as a fiber-restricted two form to avoid any confusion. Of course

it still makes sense to talk about it being nondegenerate; it just means nondegenerate as a

bilinear form on each fiber of H. The dynamics is then given by the vector field XH on M
which takes values in the constraint distribution H and is determined by the condition

XH ΩH = dHH (3.8)

where dHH is the restriction of dHM to H. We will be exploring the coordinate meaning

of this condition and its comparison with the Lagrangian formulation in the subsequent

sections.

3.2.3 Lagrangian Side

We now construct the geometric structures on the tangent bundle TQ correspond-

ing to those on the Hamiltonian side from the preceding subsection and formulate a similar
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procedure for obtaining the equations of motion. By doing this, it will be easier to made

comparison with the geometric constructions and analytic formulations in [BKMM].

First of all, we can define the energy function E simply as E = H ◦ FL and pull

back to TQ the canonical two-form on T ∗Q and denote it by ΩL.

We define the distribution

C = (TτQ)−1(D) ⊂ TTQ,

where τQ : TQ → Q. In coordinates, the distribution C consists of vectors annihilated by

the form τ∗
Qω

a:

C = {u ∈ TTQ |
〈
τ∗
Qω

a, u
〉

= 0}. (3.9)

When C is restricted to the constraint submanifold D ⊂ TQ, we obtain the constraint

distribution K:

K = C ∩ TD. (3.10)

Clearly M = FL(D) and H = TFL(K).

The dynamics is given by a vector field XK on the manifold D which takes values

in K and satisfies the equation

XK ΩK = dEK, (3.11)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the distribution K
and where ED and ΩD are the restrictions of E and ΩL to D.

3.2.4 The equivalence of the Hamiltonian and the Lagrange-d’Alembert

formulations

The Lagrangian procedure on TQ formulated in the preceding subsection acts as a

bridge between [BS] and [BKMM]. We can show the correctness of the Lagrangian procedure

given above by (carefully) invoking the results of [BS] (generalized to arbitrary Lagrangians

and with some gaps filled in), or by checking the methods against the results of [BKMM].

We choose the latter method.

Theorem 7 Consider a configuration space Q, a hyper-regular Lagrangian L and a distri-

bution D that describes the kinematic nonholonomic constraints. The K-valued vector field
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XK on D given by the equation

XK ΩK = dEK

defines dynamics that are equivalent to the Lagrange-d’Alembert equations together with the

constraints.

Proof To keep things concrete and to provide additional insight, we shall give a coordinate

based proof. Introduce local coordinates (rα, sa, ṙα, ṡa) for TQ as described earlier. Local

coordinates for the manifold D are given by (rα, sa, ṙα).

Let us first compute dED and XK ΩD. We claim that

ED =
∂Lc
∂ṙβ

ṙβ − Lc,

where Lc = L|D is the constrained Lagrangian. This is because E = ∂L
∂q̇i
q̇i − L and so

restricting it to D we get

ED =
(
∂L

∂ṙα
ṙα +

∂L

∂ṡa
ṡa
)∣∣∣∣

D
− Lc

=
∂Lc
∂ṙα

ṙα +Aaα
∂L

∂ṡa
ṙα −Aaα

∂L

∂ṡa
ṙα − Lc

=
∂Lc
∂ṙα

ṙα − Lc.

The differential of ED is then computed to be

dED = ṙβ
∂2Lc
∂rα∂ṙβ

drα + ṙβ
∂2Lc
∂ṙα∂ṙβ

dṙα + ṙβ
∂2Lc
∂sb∂ṙβ

dsb − ∂Lc
∂rα

drα − ∂Lc
∂sb

dsb

= ṙβ
∂2Lc
∂rα∂ṙβ

drα + ṙβ
∂2Lc
∂ṙα∂ṙβ

dṙα − ṙβAbα
∂2Lc
∂sb∂ṙβ

drα + ṙβ
∂2Lc
∂sb∂ṙβ

(dsb +Abαdr
α)

−∂Lc
∂rα

drα +Abα
∂Lc
∂sb

drα − ∂Lc
∂sb

(dsb +Abαdr
α)
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As for ΩD, we have

ΩD = −d
(
∂L

∂q̇i

∣∣∣∣
D
dqi
)

= −d
{(

∂Lc
∂ṙβ

+Abβ
∂L

∂ṡb

)
drβ +

∂L

∂ṡb
dsb
}

= −d
(
∂Lc
∂ṙβ

)
∧ drβ − d

(
Abβ

∂L

∂ṡb

)
∧ drβ − d

(
∂L

∂ṡb

)
∧ dsb

= −d
(
∂Lc
∂ṙβ

)
∧ drβ − d

(
Abβ

∂L

∂ṡb

)
∧ drβ

+Abβd
(
∂L

∂ṡb

)
∧ drβ − d

(
∂L

∂ṡb

)
∧ (dsb +Abβdr

β)

= −d
(
∂Lc
∂ṙβ

)
∧ drβ − ∂L

∂ṡb
d(Abβ) ∧ drβ − d

(
∂L

∂ṡb

)
∧ (dsb +Abβdr

β)

= − ∂2Lc
∂rα∂ṙβ

drα ∧ drβ − ∂2Lc
∂ṙα∂ṙβ

dṙα ∧ drβ − ∂2Lc
∂sa∂ṙβ

dsa ∧ drβ

− ∂L

∂ṡb
∂Abβ
∂rα

drα ∧ drβ − ∂L

∂ṡb
∂Abβ
∂sa

dsa ∧ drβ − d

(
∂L

∂ṡb

)
∧ (dsb +Abβdr

β)

=

(
− ∂2Lc
∂rα∂ṙβ

+Aaα
∂2Lc
∂sa∂ṙβ

− ∂L

∂ṡb
∂Abβ
∂rα

+Aaα
∂L

∂ṡb
∂Abβ
∂sa

)
drα ∧ drβ

− ∂2Lc
∂ṙα∂ṙβ

dṙα ∧ drβ − ∂2Lc
∂sa∂ṙβ

(dsa +Aaαdr
α) ∧ drβ

− ∂L

∂ṡb
∂Abβ
∂sa

(dsa +Aaαdr
α) ∧ drβ − d

(
∂L

∂ṡb

)
∧ (dsb +Abβdr

β),

where there is a sum on all α, β.

Now we are ready to find the equations of motion. Any vector field XD on D has

the following coordinate form:

XD = ṙα∂rα + ṡa∂sa + r̈α∂ṙα .

Since XK lies in the distribution K, it is annihilated by the one-forms dsa + Aaαdr
α and

hence must be of the form

XK = ṙα∂rα −Aaαṙ
α∂sa + r̈α∂ṙα,

i.e., for the vector field XK,

ṡa = −Aaαṙα.
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As for XK ΩK, we have

XK ΩK = ṙα

(
− ∂2Lc
∂rα∂ṙβ

+Aaα
∂2Lc
∂sa∂ṙβ

− ∂L

∂ṡb
∂Abβ
∂rα

+Aaα
∂L

∂ṡb
∂Abβ
∂sa

)
drβ

− ṙβ

(
− ∂2Lc
∂rα∂ṙβ

+Aaα
∂2Lc
∂sa∂ṙβ

− ∂L

∂ṡb
∂Abβ
∂rα

+Aaα
∂L

∂ṡb
∂Abβ
∂sa

)
drα

+ ṙβ
∂2Lc
∂ṙα∂ṙβ

dṙα − r̈α
∂2Lc
∂ṙα∂ṙβ

drβ

This is because XK ΩK is the restriction of XK ΩD to the distribution of K and hence

all the terms in ΩD which involve (dsb +Abβdr
β) vanish. The same is true for dED.

Equating XK ΩK with dEK and recalling that we have already obtained ṡa =

−Aaαṙα, we get the following set of equations

ṙβ
∂2Lc
∂rα∂ṙβ

− ṙβAbα
∂2Lc
∂sb∂ṙβ

− ∂Lc
∂rα

+Abα
∂Lc
∂sb

= ṙβ
(

− ∂2Lc
∂rβ∂ṙα

+Aaβ
∂2Lc
∂sa∂ṙα

− ∂L

∂ṡb
∂Abα
∂rβ

+Aaβ
∂L

∂ṡb
∂Abα
∂sa

)

−ṙβ
(

− ∂2Lc
∂rα∂ṙβ

+Aaα
∂2Lc
∂sa∂ṙβ

− ∂L

∂ṡb
∂Abβ
∂rα

+Aaα
∂L

∂ṡb
∂Abβ
∂sa

)
− r̈β

∂2Lc
∂ṙβ∂ṙα

After simplification, we have

r̈β
∂2Lc
∂ṙβ∂ṙα

+ ṙβ
∂2Lc
∂rβ∂ṙα

− ṙβAaβ
∂2Lc
∂sa∂ṙα

− ∂Lc
∂rα

+Abα
∂Lc
∂sb

= ṙβ
∂L

∂ṡb

(
−∂A

b
α

∂rβ
+Aaβ

∂Abα
∂sa

+
∂Abβ
∂rα

−Aaα
∂Abβ
∂sa

)
,

which indeed gives the Lagrange-d’Alembert equations in [BKMM]:

d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Abα
∂Lc
∂sb

= − ∂L

∂ṡb
Bb
αβ ṙ

β. �

Remarks.

Here is another way of viewing the preceding theorem. Consider the following

form of the equations:

XH ΩM = dHM on H;

that is,

〈XH ΩM, u〉 = 〈dHM, u〉 ,
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for all u ∈ H. If we rewrite this in the form

〈dHM −XH ΩM, u〉 = 0,

then on the Lagrangian side, this is nothing but

〈dED −XK (ΩL)D, v〉 = 0,

where v ∈ K. With appropriate interpretations, this is equivalent to Lagrange-d’Alembert

principle: (
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
(δqi) = 0

ωa(q̇) = 0

where ω(δq) = 0.

3.2.5 Example: The Snakeboard

The snakeboard is a modified version of a skateboard in which the front and back

pairs of wheels are independently actuated. The extra degree of freedom enables the rider to

generate forward motion by twisting the body back and forth, while simultaneously moving

the wheels with the proper phase relationship. For details, see [BKMM] and the references

listed there. Here we will include some of the computations shown in that paper both for

completeness as well as to make concrete the nonholonomic theory.

The snakeboard is modeled as a rigid body (the board) with two sets of indepen-

dently actuated wheels, one on each end of the board. The human rider is modeled as a

momentum wheel which sits in the middle of the board and is allowed to spin about the

vertical axis. Spinning the momentum wheel causes a counter-torque to be exerted on the

board. The configuration of the board is given by the position and orientation of the board

in the plane, the angle of the momentum wheel, and the angles of the back and front wheels.

Let (x, y, θ) represent the position and orientation of the center of the board, ψ the angle

of the momentum wheel relative to the board, and φ1 and φ2 the angles of the back and

front wheels, also relative to the board. Take the distance between the center of the board

and the wheels to be r. See figure 3.1.

In [BKMM], a simplification is made which we shall also assume in this chapter,

namely φ1 = −φ2, J1 = J2. The parameters are also chosen such that J+J0+J1+J2 = mr2,



CHAPTER 3. SYMPLECTIC GEOMETRY OF NONHOLONOMIC SYSTEMS 60

ϕ1

ϕ2

ψ
θ(x, y)

r

Figure 3.1: The geometry of the snakeboard.

where m is the total mass of the board, J is the inertia of the board, J0 is the inertia of

the rotor and J1, J2 are the inertia of the wheels. This simplification eliminates some

terms in the derivation but does not affect the essential geometry of the problem. Setting

φ = φ1 = −φ2, then the configuration space becomes Q = SE(2) × S1 × S1 and the

Lagrangian L : TQ → R is the total kinetic energy of the system and is given by

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2.

The Constraints. The rolling of the front and rear wheels of the snakeboard is modeled

using nonholonomic constraints which allow the wheels to spin about the vertical axis and

roll in the direction that they are pointing. The wheels are not allowed to slide in the

sideways direction. The constraints are defined by

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cos φθ̇ = 0 (3.12)

− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cos φθ̇ = 0 (3.13)

and can be simplified as

ẋ = −r cotφ cos θθ̇

ẏ = −r cotφ sin θθ̇.

Since the constrained Legendre transform FL|D on the constraint submanifold D
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and its inverse are given by

px = −mr cotφ cos θθ̇

py = −mr cotφ sin θθ̇

pθ = mr2θ̇ + J0ψ̇

pψ = J0ψ̇ + J0θ̇

pφ = 2J1φ̇

ẋ = − r

mr2 − J0
cotφ cos θ(pθ − pψ)

ẏ = − r

mr2 − J0
cotφ sin θ(pθ − pψ)

θ̇ =
pθ − pψ
mr2 − J0

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

φ̇ =
pφ
2J1

,

the constraint submanifold M is defined by

M = {(x, y, θ, ψ, φ, px, py, pθ, pψ, pφ) |

px = − mr

mr2 − J0
cot φ cos θ(pθ − pψ), py = − mr

mr2 − J0
cot φ sin θ(pθ − pψ).}

Notice that M may be thought of as a graph in T ∗Q and we can use the induced

coordinates (x, y, θ, ψ, φ, pθ , pψ, pφ) as its local coordinates. Hence the distribution H of M
is

H = ker{dx+ r cot φ cos θdθ, dy + r cotφ sin θdθ}

= span{−r cotφ cos θ∂x − r cot φ sin θ∂y + ∂θ, ∂ψ, ∂φ, ∂pθ , ∂pψ , ∂pφ}.

The Hamiltonian. The corresponding Hamiltonian is given via the Legendre transform

by

H =
1

2m
(p2
x + p2

y) +
1

2J0
p2
ψ +

1
2(mr2 − J0)

(pθ − pψ)2 +
1

4J1
p2
φ.

Now if we restrict the Hamiltonian H to the submanifold M, we get

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ − pψ)2 +

1
2J0

p2
ψ +

1
2(mr2 − J0)

(pθ − pψ)2 +
1

4J1
p2
φ.
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After computing its differential dHM and restricting it to H, we have

dHH = − mr2

(mr2 − J0)2
cotφ csc2 φ(pθ − pψ)2dφ

+
mr2

(mr2 − J0)2
cot2 φ(pθ − pψ)(dpθ − dpψ)

+
1
J0
pψdpψ +

1
(mr2 − J0)

(pθ − pψ)(dpθ − dpψ) +
1

2J1
pφdpφ.

The Two Form. After pulling back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ
= kdx ∧ [csc2 φ cos θ(pθ − pψ)dφ+ cotφ sin θ(pθ − pψ)dθ − cotφ cos θ(dpθ − dpψ)]

+kdy ∧ [csc2 φ sin θ(pθ − pψ)dφ− cotφ cos θ(pθ − pψ)dθ − cot φ sin θ(dpθ − dpψ)]

+dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ,

where k = mr/(mr2 − J0). If we restrict ΩM to the distribution H, we get

ΩH = −kr cot φ cos θdθ ∧

[csc2 φ cos θ(pθ − pψ)dφ+ cotφ sin θ(pθ − pψ)dθ − cot φ cos θ(dpθ − dpψ)]

− kr cot φ sin θdθ ∧

[csc2 φ sin θ(pθ − pψ)dφ− cotφ cos θ(pθ − pψ)dθ − cot φ sin θ(dpθ − dpψ)]

+ dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ
= dθ ∧ [−kr cotφ csc2 φ(pθ − pψ)dφ+ kr cot2 φ(dpθ − dpψ) + dpθ]

+dψ ∧ dpψ + dφ ∧ dpφ.

The Equations of Motion. Notice that any vector field XM is of the form

XM = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ .

But XH also lies in H = ker{dx+ r cotφ cos θdθ, dy + r cot φ sin θdθ} and hence must be of

the form

XH = θ̇(−r cotφ cos θ∂x − r cot φ sin θ∂y + ∂θ) + ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ ,

which gives us the first set of relationships

ẋ = −r cot φ cos θ θ̇

ẏ = −r cot φ sin θ θ̇.
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Moreover,

XH ΩH = − kr cotφ csc2 φ(pθ − pψ)θ̇ dφ+ kr cot2 φθ̇(dpθ − dpψ) + θ̇ dpθ

+ ψ̇ dpψ + kr cot φ csc2 φ(pθ − pψ)φ̇ dθ + φ̇ dpφ − kr cot2 φṗθ dθ − ṗθ dθ

+ kr cot2 φṗψ dθ − ṗψ dψ − ṗφ dφ,

and if equated with dHH, we will get the following set of equations:

kr cotφ csc2 φ(pθ − pψ) φ̇− kr cot2 φ ṗθ − ṗθ + kr cot2 φ ṗψ = 0

−ṗψ = 0

−ṗφ − kr cotφ csc2 φ(pθ − pψ)θ̇ = − mr2

(mr2 − J0)2
cotφ csc2 φ(pθ − pψ)2

kr cot2 φθ̇ + θ̇ =
mr2

(mr2 − J0)2
cot2 φ(pθ − pψ) +

1
(mr2 − J0)

(pθ − pψ)

−kr cot2 φ θ̇ + ψ̇ = − mr2

(mr2 − J0)2
cot2 φ(pθ − pψ) +

1
J0
pψ

− 1
(mr2 − J0)

(pθ − pψ)

φ̇ =
1

2J1
pφ.

After simplification, we have

ṗθ =
cotφ

2J1(1 − J0
mr2 sin2 φ)

pφ(pθ − pψ) (3.14)

ṗψ = 0 (3.15)

ṗφ = 0 (3.16)

θ̇ =
pθ − pψ
mr2 − J0

(3.17)

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

(3.18)

φ̇ =
pφ
2J1

. (3.19)

Notice that the last 3 equations are nothing but the inverse of the constrained

Legendre transformation FL|D written in local coordinates. The first equation is equivalent

to the momentum equation (discussed below and in [BKMM]) written in Hamiltonian form

and the 2nd and 3rd equations are the reduced equations on the shape space, again in their

Hamiltonian forms.
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Moreover, the corresponding Lagrangian procedure gives the equations of the mo-

tion on the Lagrangian side as

θ̈ − cot φφ̇θ̇ +
J0

mr2
sin2 φψ̈ = 0

J0ψ̈ + J0θ̈ = 0

2J1φ̈ = 0

and it can be shown that both systems of equations are equivalent via the Legendre trans-

form FL|D.

3.3 Nonholonomic Mechanical Systems with Symmetry

Now we add the hypothesis of symmetry to the preceding development. Assume

that we have a configuration manifold Q, a Lagrangian of the form kinetic minus potential,

and a distribution D that describes the kinematic nonholonomic constraints. We also assume

there is a symmetry group G (a Lie group) that leaves the Lagrangian invariant, and that

acts on Q (by isometries) and also leaves the distribution invariant, i.e., the tangent of the

group action maps Dq to Dgq (for more details, see [BKMM].) Later, we shall refer this as

a simple nonholonomic mechanical system.

In this section,

1. we recall the basic ideas and results from [BKMM] on simple nonholonomic mechanical

systems, especially on how it extend the Lagrangian reduction theory of Marsden and

Scheurle [1993a,b] to the context of nonholonomic systems. We shall describe briefly

how [BKMM] modifies the Ehresmann connection associated with the constraints to a

new connection, called the nonholonomic connection, that also takes into account the

symmetries, and how the reduced equations, relative to this new connection, break

up into two sets: a set of reduced Lagrange-d’Alembert equations, and a momentum

equation. When the reconstruction equations are added, one recovers the full set of

equations of motion for the system.

2. We summarize the Hamiltonian reduction formulation of [BS] on finding the reduced

equations of motion for nonholonomic systems with symmetry.

3. We restate the reduction procedure on the Lagrangian side corresponding to those on

the Hamiltonian side using the Legendre transformation.
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4. We prove that these dual procedures give us the same reduced Lagrange-d’Alembert

equations in [BKMM]. Since this proof is done in coordinates, it does provide a sys-

tematic way to carry out the computations on the Hamiltonian side. Also, the proof

shows where the momentum equation is lurking on the Hamiltonian side and how

this is related to breaking up the dynamics of the nonholonomic system into 3 parts:

a reconstruction equation for a group element g, an equation for the nonholonomic

momentum p and the reduced Hamilton equations in the shape variables r, pr (and p).

This way of breaking up the dynamics may have the same significance for the control

theory as what has already been noted in [BKMM].

5. We apply the Hamiltonian reduction procedure to the examples of the snakeboard,

the bicycle and a nonholonomically constrained particle.

3.3.1 Review of Lagrangian Reduction

We first recall how [BKMM] explains in general terms how one constructs reduced

systems by eliminating the group variables.

Proposition 1 Under the assumptions that both the Lagrangian L and the distribution D
are G-invariant, we can form the reduced velocity phase space TQ/G and the constrained

reduced velocity phase space D/G. The Lagrangian L induces well defined functions, the

reduced Lagrangian

l : TQ/G → R

satisfying L = l ◦ πTQ where πTQ : TQ → TQ/G is the projection, and the constrained

reduced Lagrangian

lc : D/G → R,

which satisfies L|D = lc ◦ πD where πD : D → D/G is the projection. Also, the Lagrange-

d’Alembert equations induce well defined reduced Lagrange-d’Alembert equations on D/G.

That is, the vector field on the manifold D determined by the Lagrange-d’Alembert equa-

tions (including the constraints) is G-invariant, and so defines a reduced vector field on the

quotient manifold D/G.

This proposition follows from general symmetry considerations, but to compute the

associated reduced equations explicitly and to reconstruct the group variables, one defines
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the nonholonomic momentum map Jnh, and extends the Noether Theorem to nonholonomic

system and synthesizes, out of the mechanical connection and the Ehresmann connection,

a nonholonomic connection Anh which is a connection on the principal bundle Q → Q/G.

The Nonholonomic Momentum Map. Let the intersection of the tangent to the group

orbit and the distribution at a point q ∈ Q be denoted

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace gq to be the set of Lie algebra elements in g

whose infinitesimal generators evaluated at q lie in Sq:

gq = {ξ ∈ g | ξQ(q) ∈ Sq}.

We let gD denote the corresponding bundle over Q whose fiber at the point q is given by gq.

The nonholonomic momentum map Jnh is the bundle map taking TQ to the bundle (gD)∗

(whose fiber over the point q is the dual of the vector space gq) that is defined by

〈Jnh(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i, (3.20)

where ξ ∈ gq. Notice that the nonholonomic momentum map may be viewed as encoding

some of the components of the ordinary momentum map, namely the projection along those

symmetry directions that are consistent with the constraints.

[BKMM] extends the Noether Theorem to nonholonomic systems by deriving the

equation for the momentum map that replace the usual conservation law. It is proven that

if the Lagrangian L is invariant under the group action and that ξq is a section of the bundle

gD, then any solution q(t) of the Lagrange d’Alembert equations must satisfy, in addition

to the given kinematic constraints, the momentum equation:

d

dt

(
Jnh(ξq(t))

)
=
∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

. (3.21)

When the momentum map is paired with a section in this way, we will just refer to it as

the momentum. Examples show that the nonholonomic momentum map may or may not

be conserved.
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The Momentum Equation in Body Representation Let a local trivialization (r, g)

be chosen on the principal bundle π : Q → Q/G. Let η ∈ gq and ξ = g−1ġ. Since L

is G-invariant, we can define a new function l by writing L(r, g, ṙ, ġ) = l(r, ṙ, ξ). Define

Jnh
loc : TQ/G → (gD)∗ by 〈

Jnh
loc(r, ṙ, ξ), η

〉
=
〈
∂l

∂ξ
, η

〉
.

As with connections, Jnh and its version in a local trivialization are related by the Ad map;

i.e.,

Jnh(r, g, ṙ, ġ) = Ad∗
g−1J

nh
loc(r, ṙ, ξ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m elements

span the subspace gq. In a local trivialization, one chooses, for each r, such a basis at the

identity element, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Define the body fixed basis by

ea(r, g) = Adg · ea(r);

thus, by G invariance, the first m elements span the subspace gq. In this basis, we have
〈
Jnh(r, g, ṙ, ġ), eb(r, g)

〉
=
〈
∂l

∂ξ
, eb(r)

〉
:= pb, (3.22)

which defines pb, a function of r, ṙ and ξ. Note that in this body representation, the functions

pb are invariant rather than equivariant, as is usually the case with the momentum map.

It is shown in [BKMM] that in this body representation, the momentum equation is given

by

d

dt
pi =

〈
∂l

∂ξ
, [ξ, ei] +

∂ei
∂rα

ṙα
〉
, (3.23)

where the range of i is 1 to m. Moreover, the momentum equation in this representation is

independent of, that is, decouples from, the group variables g.

The Nonholonomic Connection Recall that in the case of simple holonomic mechanical

system, the mechanical connection A is defined by A(vq) = I(q)−1J(vq) where J is the

associated momentum map and I(q) is the locked inertia tensor of the system. Equivalently

the mechanical connection can also be defined by the fact that its horizontal space at q
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is orthogonal to the group orbit at q with respect to the kinetic energy metric. For more

information, see for example, Marsden [1992] and Marsden and Ratiu [1994].

As [BKMM] points out, in the principal case where the constraints and the orbit

directions span the entire tangent space to the configuration space, that is,

Dq + Tq(Orb(q)) = TqQ, (3.24)

the definition of the momentum map can be used to augment the constraints and provide

a connection on Q → Q/G. Let Jnh be the nonholonomic momentum map and define

similarly as above a map Asym
q : TqQ → Sq given by

Asym(vq) = (Inh(q)−1Jnh(vq))Q

(this defines the momentum “constraints”) where I
nh : gD → (gD)∗ is the locked inertia

tensor defined in a similar way as in holonomic systems.

Choose a complementary space to Sq by writing Tq(Orb(q)) = Sq ⊕ Uq. Let Akin
q :

TqQ → Uq be a Uq valued form that projects Uq onto itself and maps Dq to zero. Then the

kinematic constraints are defined by the equation

Akin(q)q̇ = 0.

This kinematic constraints equation plus the momentum ”constraints” equation can be

used to synthesis a nonholonomic connection Anh which is a principal connection on the

bundle Q → Q/G and whose horizontal space at the point q ∈ Q is given by the orthogonal

complement to the space Sq within the space Dq. Moreover,

Anh(vq) = I
nh(q)−1Jnh(vq). (3.25)

In a body fixed basis, (3.25) can be written as

Adg(g−1ġ + Anh
loc(r)ṙ) = Adg(Inh

loc(r)
−1p).

Hence, the constraints can be represented in a nice way by

g−1ġ = ξ = −A(r)ṙ + Γ(r)p, (3.26)

where A(r) is the abbreviation for Anh
loc(r) and Γ(r) = I

nh
loc(r)

−1.

Moreover, with the help of the nonholonomic mechanical connection, the Lagrange-

d’Alembert principle may be broken up into two principles by breaking the variations δq into
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two parts, namely parts that are horizontal with respect to the nonholonomic connection

and parts that are vertical (but still in D), and the reduced equations break up into two sets:

a set of reduced Lagrange-d’Alembert equations (which have curvature terms appearing as

’forcing’), and a momentum equation, which have a form generalizing the components of

the Euler-Poincaré equations along the symmetry directions consistent with the constraints.

When one supplements these equations with the reconstruction equations, one recovers the

full set of equations of motion for the system.

3.3.2 Hamiltonian Reduction

In working out the nonholonomic Hamiltonian reduction, [BS] also starts out with

a simple nonholonomic mechanical system. Recall from Section 2 that the Legendre trans-

formation FL : TQ → T ∗Q is used to define the constraint submanifold M ⊂ T ∗Q where

M = FL(D).

On this manifold, there is a distribution H

H = F ∩ TM,

where

F = (Tπ)−1(D),

and π : T ∗Q → Q. Also recall that ΩH, the restriction of the canonical two-form Ω of

T ∗Q to the distribution H of the constraint submanifold M, is nondegenerate and that the

dynamics is given by a vector field XH on M taking values in H and satisfies the equation

XH ΩH = dHH (3.27)

where dHH is the (fiberwise) restriction of dHM to H.

Now let G be the symmetry group of this system and assume that the quotient

space M = M/G of the G-orbit in M is a quotient manifold with projection map ρ : M →
M. Since G is a symmetric group, all intrinsically defined vector fields and distributions

push down to M. In particular, the vector field XM on M pushes down to a vector field

XM = ρ∗XM, and the distribution H pushes down to a distribution ρ∗H on M.

However, ΩH need not push down to a two-form defined on ρ∗H, despite the fact

that ΩH is G-invariant. This is because there may be infinitesimal symmetry ξM that lies
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in H such that

ξM ΩH 6= 0,

To eliminate this difficulty, [BS] restricts ΩH to a subdistribution U of H defined by

U = {u ∈ H | ΩH(u, v) = 0 for all v ∈ V ∩ H} = H ∩ (V ∩ H)⊥, (3.28)

where V is the distribution on M tangent to the orbits of G in M and is spanned by the

infinitesimal symmetries and (V∩H)⊥ is the ΩH-orthogonal complement of (V∩H). Clearly,

U and V are both G-invariant, project down to M and ρ∗V = 0. Define H by

H = ρ∗U .

It is proven in [BS] that

1. The vector field XH which satisfies the above Hamiltonian equation of motion (3.27)

lies in the distribution U .

2. The restriction ΩU of Ω to the distribution U pushes down to a nondegenerate 2-form

ΩH = ρ∗ΩU on H, which is modeled by the symplectic space (V ∩H)⊥/(V ∩H)∩ (V ∩
H)⊥.

3. Furthermore,

XH ΩH = dhH, (3.29)

where hM = ρ∗HM is the pushdown of the restriction to M of the Hamiltonian H and

dhH is the restriction of dhM to H. This is because the equation XH ΩH = dHH,

restricted to U ⊂ H, vanishes on vectors in V, and is G-invariant. Hence both sides

push down to H.

Note that the original equations of motion are

XH ΩH = dHH

where H is a distribution in the constraint manifold M. After the reduction of symmetry

we obtain equations of the same type

XH ΩH = dhH,

where H is a distribution in the reduced space M = M/G.
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3.3.3 Lagrangian Side

By using the Legendre transformation FL, we can construct dual geometric struc-

tures on the tangent bundle TQ and formulate a similar Lagrangian reduction procedure.

This allows us to better compare with the geometric constructions and analytic formula-

tions on the manifold Q in [BKMM], and in the course of doing this, we realize that the

requirement (see point (1) of last subsection) that the vector field XH lies in the subdistri-

bution U is equivalent to the extended Noether Theorem; that is, that any solution of the

Lagrange-d’Alembert equations must satisfy the momentum equation.

Recall from Section 2. We consider D as a constraint submanifold of TQ and then

construct the distribution

K = C ∩ TD,

on TTQ, where

C = (TτQ)−1(D),

and τQ : TQ → Q. Clearly D = (FL)−1(M),K = (TFL)−1(H). The motion is then given

by a vector field XK on the manifold D which takes values in K and satisfies the equation

XK ΩK = dEK, (3.30)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the distribution K.

Now let G be the symmetry group of this system and assume that the quotient

space D = D/G of the G-orbit in D is a smooth quotient manifold with projection map

λ : D → D. Since G is a symmetric group, all intrinsically defined vector fields and

distributions push down to D. In particular, the vector field XD on D pushes down to a

vector field XD = λ∗XD, and the distribution K pushes down to a distribution λ∗K on D.

Here we use the push forward symbol λ∗ to mean that the vector fields are λ-related.

For the same reason as the Hamiltonian side, ΩK need not push down to a two-

form defined on λ∗K, despite the fact that ΩK is G-invariant. We can restrict ΩK to the

subdistribution W of K defined by

W = {w ∈ K | ΩK(w, v) = 0 for all v ∈ T ∩ K} = K ∩ (T ∩ D)⊥, (3.31)

where T is the distribution on D tangent to the orbits of G in D and is spanned by the

infinitesimal symmetries. Clearly, W and T are both G-invariant, W projects down to D
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and λ∗T = 0. Define K by

K = λ∗W.

Since the above constructions are dual to those in the Hamiltonian side, we also

have

1. The vector field XK which satisfies the above equation (3.30) takes values in the

distribution W.

2. The restriction ΩW of ΩL to the distribution W, pushes down to a nondegenerate

2-form ΩK = λ∗ΩW on K, which is modeled by the symplectic space (T ∩ K)⊥/(T ∩
K) ∩ (T ∩ K)⊥.

3. The reduced equations of motion are given by

XK ΩK = dEK, (3.32)

where ED = λ∗ED is the pushdown of the restriction to D of the energy function

E. This is because the equation XK ΩK = dEK, restricted to W ⊂ K, vanishes on

vectors in T , and is G-invariant. Hence both sides push down to K. All these will

become clearer in the subsequent computations.

3.3.4 The equivalence of Hamiltonian and Lagrangian Reductions

Theorem 8 Consider a simple nonholonomic mechanical system with symmetry and as-

sume that it is in the principal case. Then the reduction procedure on TQ described in the

preceding section gives the same set of equations as in [BKMM].

Proof The first difficulty is how to represent the constraint submanifold D ⊂ TQ in a

way that is both intrinsic and ready for reduction. The comparison with the geometric

constructions in [BKMM] and the desire to have the dynamics break up in a way that

are ready for reconstruction give hints that we should use the tools like nonholonomic

momentum p and the nonholomomic connection A in [BKMM] to describe the constraint

submanifold D
Recall that in [BKMM], the nonholonomic constraints together with the basic iden-

tity of the nonholonomic momentum map are used to synthesis a nonholonomic connection

A and the nonholonomic constraints are then written in the form

g−1ġ = −A(r)ṙ + Γ(r)p,
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where p is G-invariant. Hence, the constraint manifold is nothing but

D = {(g, r, ġ, ṙ) | ġ = g(−A(r)ṙ + Γ(r))p)}.

It is a submanifold in TQ and we can use (g, r, ṙ, p) as its induced local coordinates. Then,

clearly, the corresponding coordinates for D = D/G are (r, ṙ, p). From now on, we will use

A(r) to abbreviate Anh
loc(r).

The next difficulty is to find the corresponding representations for the distribution

K, the subdistribution T ∩ K and its annihilator distribution W where

W = K ∩ (T ∩ K)⊥.

Recall that in [BKMM], a body fixed basis

eb(g, r) = Adg · eb(r)

has been constructed such that the infinitesimal generators (ei(g, r))Q of its first m elements

at a point q span Sq = Dq ∩ Tq(Orb(q)). Assume that G is a matrix group and edi is the

component of ei(r) with respect to a fixed basis {ba} of the Lie algebra g where (ba)Q = ∂ga ,

then

(ei(g, r))Q = gade
d
i ∂ga .

Since K = (Tτ)−1(D) where Dq is the direct sum of Sq and the horizontal space of the

nonholonomic connection Anh, it can be represented in the induced coordinates by

K = span{gadedi ∂ga ,−gabAbα∂ga + ∂rα , ∂ṙ, ∂p}. (3.33)

Also, we have

T ∩ K = span{gadedi ∂ga}. (3.34)

To find the distribution W, we have to compute gade
d
i ∂ga ΩD, for all i = 1, . . . ,m.

Since L is G-invariant, we have

ΩD = dga ∧ d
(
∂L

∂ġa

)
+ drα ∧ d

(
∂L

∂ṙα

)

= dga ∧ d
(

(g−1)ba
∂l

∂ξb

)
+ drα ∧ d

(
∂l

∂ṙα

)

=
∂(g−1)ba
∂gc

∂l

∂ξb
dga ∧ dgc + (g−1)badg

a ∧ d
(
∂l

∂ξb

)
+ drα ∧ d

(
∂l

∂ṙα

)
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Hence

gafe
f
i ∂ga ΩD = gafe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dgc − gcfe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dga + ebid

(
∂l

∂ξb

)

= efi

((
gcf
∂(g−1)bc
∂ga

− ∂(g−1)ba
∂gc

gcf

)
∂l

∂ξb
dga + d

(
∂l

∂ξf

))

= efi

(
(g−1)bσ

(
−
∂gσf
∂gτ

gτa +
∂gσa
∂gτ

gτf

)
∂l

∂ξb
(g−1)aedg

e + d

(
∂l

∂ξf

))

= efi

(
−Cbaf

∂l

∂ξb
(g−1)aedg

e + d

(
∂l

∂ξf

))

= dpi −
∂l

∂ξf
d(efi ) − Cbaf

∂l

∂ξb
efi (g

−1)aedg
e.

Here, Cbaf is the structural constants for the Lie algebra g and pi = ∂l
∂ξf

efi as defined in

(3.22). Therefore, the subdistribution W ⊂ K is

W = ker
{
dpi −

∂l

∂ξf
d(efi ) − Cbaf

∂l

∂ξb
efi (g

−1)aedg
e

}
. (3.35)

Since the constraint manifold D has the induced local coordinates (g, r, ṙ, p), any

vector field XD on the manifold D is of the form

XD = ġa∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi .

If XD lies in the distribution K, then we have ġ = g(−Aṙ + Γp). Moreover, if XD lies in

the distribution W, then for each j, we have

ṗj − ∂l

∂ξd
∂edj
∂rα

ṙα − Cbad
∂l

∂ξb
ξaedj = 0,

i.e.,

ṗj =
〈
∂l

∂ξ
, [ξ, ej ] + ėj

〉
, (3.36)

which gives exactly the momentum equation (3.23). Therefore, any vector field XW taking

values in W must be of the form

XW = gab ξ
b∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi ,

where

ξ = −Aṙ + Γp ṗj =
〈
∂l

∂ξ
, [ξ, ej ] + ėj

〉
, (3.37)
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Now we are ready to do the reduction. But before that, we need to compute all

the ingredients of the equation

XK ΩK = dEK.

Notice first that since E is G-invariant, we have

E =
∂L

∂q̇i
q̇i − L

=
∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L

=
∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l

After restricting it to the submanifold D, we have

ED =
∂l

∂ξa
(−Aaαṙα + Γaipi) +

(
∂lc
∂ṙα

+Aaα
∂l

∂ξa

)
ṙα − lc

=
∂l

∂ξa
Γaipi +

∂lc
∂ṙα

ṙα − lc

Therefore,

dED =
∂l

∂ξa

(
∂Γai

∂rα
pidr

α + Γaidpi

)
+ Γaipi

(
∂2l

∂rα∂ξa
drα +

∂2l

∂ṙα∂ξa
dṙα +

∂2l

∂pj∂ξa
dpj

)

+ ṙα
(

∂2lc
∂rβ∂ṙα

drβ +
∂2lc

∂ṙβ∂ṙα
dṙβ +

∂2lc
∂pi∂ṙα

dpi

)
− ∂lc
∂rα

drα − ∂lc
∂pi

dpi.

Furthermore,

XK ΩD = gaf ξ
f ∂(g−1)ba

∂gc
∂l

∂ξb
dgc − gcf ξ

f ∂(g−1)ba
∂gc

∂l

∂ξb
dga + gaf ξ

f (g−1)bad
(
∂l

∂ξb

)

−
(

∂

∂rα

(
∂l

∂ξb

)
ṙα +

∂

∂ṙα

(
∂l

∂ξb

)
r̈α +

∂

∂pi

(
∂l

∂ξb

)
ṗi

)
(g−1)badg

a

+ (ṙα∂rα + r̈α∂ṙα + ṗi∂pi)
(
drα ∧ d

(
∂l

∂ṙα

))

= ξfd

(
∂l

∂ξf

)
+
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
(g−1)aedg

e

+ (ṙα∂rα + r̈α∂ṙα + ṗi∂pi)
(
drα ∧ d

(
∂l

∂ṙα

))
. (3.38)

Clearly, both sides of the equation

XK ΩK = dEK
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are G-invariant, and when restricted to subdistribution W ⊂ K, they vanish on the distri-

bution T ∩K. This can be shown to be true either by invoking how W has been constructed

or by direct calculation, noticing that when(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
(g−1)aedg

e (3.39)

is paired with gfc eci in T ∩ K, it is equal to zero on W. Hence both sides push down to K
where

XK = ṙα∂rα + r̈α∂ṙα + ṗi∂pi ,

with

ṗi =
〈
∂l

∂ξ
, [ξ, ei] + ėi

〉
.

To find the remaining reduced equations, notice that the restriction of (3.39) to

the subdistribution spanned by {−gabAbα∂ga + ∂rα , ∂ṙα , ∂pi} is equivalent to

−
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
Aaαdr

α. (3.40)

If we compute

−
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
Aaαdr

α + ξad

(
∂l

∂ξa

)

+(ṙα∂rα + r̈α∂ṙα + ṗi∂pi)
(
drα ∧ d

(
∂l

∂ṙα

))

and equate its terms with the corresponding terms of dEK which is the same as dEK, we

have the following equations after some computations

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= −Cbda
∂l

∂ξb
ξdAaα − ∂l

∂ξa

(
Ȧaα −

∂Aaβ
∂rα

ṙβ +
∂Γaipi
∂rα

)
.

After plugging in the constraint ξ = −Aṙ + Γp and simplify, we get the desired

reduced equations

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bb

αβ ṙ
β + F bipi), (3.41)

where

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α (3.42)

F biα =
∂Γbi

∂rα
− CbadA

a
αΓ

di. (3.43)
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In an orthogonal body frame where we choose our moving basis eb(g, r) to be

orthogonal, that is, the corresponding generators [eb(g, r)]Q are orthogonal in the given

kinetic energy metric (actually, all that is needed is that the vectors in the set of basis

vectors corresponding to the subspace Sq be orthogonal to the remaining basis vectors), the

momentum equation (3.36) can be written as (see [BKMM])

d

dt
pi = CjhiI

hlpjpl + Dj
iαṙ

αpj + Dαβiṙ
αṙβ, (3.44)

where

Dj
iα = −CjaiAaα + γjiα + λa′αC

a′
li I

lj

Dαβi = λa′α(−Ca′
aiA

a
β + γa

′
iβ).

Here γcbα and λa′α are defined by

∂eb
∂rα

= γcbαec

λa′α =
∂l

∂ξa′∂ṙα
− ∂l

∂ξa′∂ξb
Abα.

Notice that while the summation range of a, b, c, d... are over all Lie algebra element (1 to

k). those over i, j, l, ... are the restricted (constrained) range (1 to m) and those over a′, b′, ...

run from m + 1 to k (which correspond to the symmetry directions not aligned with the

constraints).

Similarly we can rewrite the above reduced Lagrange-d’Alembert equations (3.41)

using the orthogonal body frame. Essentially, it is a change of basis. Instead of using the

natural fixed basis {ba} where (ba)Q = ∂ga , we do all the computations in the orthogonal

body frame {eb}. With the abuse of notation, we shall still use l(r, ṙ, ξ) and lc(r, ṙ, p) to

denote the reduced Lagrangian and the constrained reduced Lagrangian (in the orthogonal

body frame) respectively. But it should be clear that for the following computations, ξ =

ξbeb. Similar interpretation should apply to all other notations. Now let us compute the

right hand side of the reduced equations in the new basis. Since

∂

∂rβ
(Aaαea) =

∂Abα
∂rβ

eb +Aaαγ
b
aβeb

∂

∂rα
(Γbipieb) =

∂Γbi

∂rα
pieb + Γaiγbaαpieb,
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we have

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb

(
∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα

)
ṙβ

− ∂l

∂ξb

(
∂Γbipi
∂rα

− CbadA
a
αΓdipi + Γciγbcαpi

)

Now applying Proposition 7.1 of [BKMM] to the above reduced equations and

notice that in the orthogonal body basis, Γbi = 0 for any b > m (recall Γji = Iji), we can

rewrite the reduced equations in the following form

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= −(Kjl
α pjpl + Kj

αβ ṙ
βpj + Kαβδ ṙ

β ṙδ) (3.45)

where

Kjl
α =

∂Ijl

∂rα
− CjbhA

b
αI

hl + γjhαI
hl

Kj
αβ = λa′β(−Ca

′
bhA

b
αI

hj + γa
′
hαI

hj) +Bj
αβ

Kαβδ = λa′δB
a′
αβ.

Here

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα. �

Remarks

1. A careful reading of the proof of Theorem 8 and the subsections 3.2 and 3.3 shows

that the Hamiltonian reduction procedure still works as long as the constrained Leg-

endre transform FL|D is invertible. This is important because in some examples like

the bicycle the Legendre transform FL is singular, but its restriction to the constraint

submanifold D is invertible and the Hamiltonian reduction procedure is also applica-

ble.

2. In many examples like the snakeboard and the bicycle, the constraints satisfy a special

condition, namely, they involve only the velocities of the group variables ġ and are

independent of the velocities of the shape variables ṙ (see equations (3.12) and (3.13)).

Under this special condition, the distribution K in equation (3.33) can be represented

by

K = span{gadedi ∂ga , ∂r, ∂ṙ, ∂p}. (3.46)
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This representation simplifies the computation for finding the reduced equations be-

cause the restriction of the one form (3.39) to the subdistribution K spanned by

{∂r, ∂ṙ, ∂p} will equal to zero. Hence in pushing down XK ΩD in (3.38) to K, we

can simply omit the one form (3.39). In the following subsections, we will use this

simplified procedure for the examples of the snakeboard and the bicycle. We will use

a modified version of a nonholonomically constrained particle to illustrate the general

procedure.

3. Since the momentum equation is central to the theory of nonholonomic mechanical

systems with symmetry, we make a few additional remarks about it. Before that, we

state the following proposition, the result of which is implicit in both [BKMM] and

Ostrowski [1996].

Proposition 2 For a nonholonomic mechanical system with symmetry, we have

(
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

)
(ξqQ)i =

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

where ξq ∈ gq

Proof: Choose a section of gD and apply the chain rule to give

d

dt

(
∂L

∂q̇i
(ξqQ)i

)
=

d

dt

(
∂L

∂q̇i

)
(ξqQ)i +

∂L

∂q̇i

(
(TξqQ · q̇)i +

(
d

dt
ξq
)i
Q

)
.

Invariance of the Lagrangian implies that

L(exp(sξq) · q, exp(sξq) · q̇) = L(q, q̇).

Differentiating this expression and evaluating it at s = 0, we get

∂L

∂q̇i
(ξqQ)i +

∂L

∂q̇i
(TξqQ · q̇)i = 0

After eliminating the term
∂L

∂q̇i
(TξqQ · q̇)i from the above two equations, we arrive at the

desired result. �
The above equation can be rewritten as

〈
(dE −X ΩL)|D, (ξqQ)′

〉
=

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

,
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where (ξqQ)′ ∈ T ∩ K and TτQ((ξqQ)′) = ξqQ. Since both the energy function E and the

submanifold D are G-invariant, the left hand of the above equation reduces to ΩD(XD, (ξ
q
Q)′)

and hence any vector field XD which takes values in W = K ∩ (T ∩ K)⊥ will make the left

hand side zero and hence must satisfy the momentum equation (3.21)

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

= 0,

as we have already seen in the proof of Theorem 8.

In showing that the vector field XH which satisfies the equation XH ΩH = dHH
must lie in the subdistribution U , one might think that any vector field Y ∈ V ∩ H can be

expressed as a linear combination of infinitesimal generators (generated by fixed Lie algebra

elements). But this is not the case, as we have pointed out earlier in the Lagrangian side,

in general (ξqQ)′ is the (vertical) lift of a section of the bundle S (generated by a section of

the bundle gD). This is also true on the Hamiltonian side.

3.3.5 Example: The Snakeboard Revisited

Now we return to the snakeboard and discuss the role of the symmetry group

G = SE(2). Recall from our earlier discussion that the Lagrangian is

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 + +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2
1,

which is independent of the configuration of the board and hence it is invariant to all possible

group actions.

The Constraint Submanifold. The condition of rolling without slipping gives rise to

the constraint one forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cos φdθ

ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cos φdθ,

which are invariant under the SE(2) action. The constraints determine the kinematic

distribution Dq:

Dq = span{∂ψ, ∂φ, a∂x + b∂y + c∂θ},

where a = −2r cos2 φ cos θ, b = −2r cos2 φ sin θ, c = sin 2φ. The tangent space to the orbits

of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ}
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The intersection between the tangent space to the group orbits and the constraint distribu-

tion is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂x + b∂y + c∂θ}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded

as a bundle over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to

be

ξqQ = a∂x + b∂y + c∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic momentum is thus

given by

p =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ +mr2cθ̇ + J0cψ̇.

The kinematic constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cos φθ̇

0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cos φθ̇

p = −2mr cos2 φ cos θẋ− 2mr cos2 φ sin θẏ

+mr2 sin 2φθ̇ + J0 sin 2φψ̇.

Adding, subtracting, and scaling these equations, we can write (away from the point φ =

π/2),




cos θẋ+ sin θẏ

− sin θẋ+ cos θẏ

θ̇


+




− J0

2mr
sin 2φψ̇

0
J0

mr2
sin2 φψ̇


 =




−1
2mr

p

0
tanφ
2mr2

p


 . (3.47)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p

where

A(r) = − J0

2mr
sin 2φex dψ +

J0

mr2
sin2 φeθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tan φ eθ.
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These are precisely the terms which appear in the nonholonomic connection relative to the

(global) trivialization (r, g).

After applying the constrained Legendre transformation and its inverse to the

constraint equations (3.47), we have




cos θpx + sin θpy

− sin θpx + cos θpy

pθ


+




− mr sinφ cos φ
(mr2 − J0 sin2 φ)

pψ

0

− mr2 cos2 φ

(mr2 − J0 sin2 φ)
pψ


 =




−mr
2(mr2 − J0 sin2 φ)

p

0

(mr2 − J0) tan φ
2(mr2 − J0 sin2 φ)

p


 ,

where

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

and is SE(2)-invariant.

Therefore, the constraint submanifold M ⊂ T ∗Q is defined by

px =
mr sinφ cos φ

(mr2 − J0 sin2 φ)
pψ cos θ − mr

2(mr2 − J0 sin2 φ)
p cos θ

py =
mr sinφ cos φ

(mr2 − J0 sin2 φ)
pψ sin θ − mr

2(mr2 − J0 sin2 φ)
p sin θ

pθ =
mr2 cos2 φ

(mr2 − J0 sin2 φ)
pψ +

(mr2 − J0) tan φ
2(mr2 − J0 sin2 φ)

p

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ , pφ, p) as its induced local coor-

dinates.

The Distributions H,V ∩ H and U . With the induced coordinates, the distribution H
on M is

H = span{−2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ, ∂ψ, ∂φ, ∂pψ , ∂pφ , ∂p}

and the subdistribution V ∩ H is

V ∩ H = span{−2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ}.

As for the subdistribution U , we first calculate the two form ΩM. After pulling
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back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= (cos θdx+ sin θdy) ∧
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ − mr

2(mr2 − J0 sin2 φ)
dp

)

+(cos θdx+ sin θdy) ∧ mr(mr2 cos 2φ+ J0 sin2 φ)
(mr2 − J0 sin2 φ)2

pψdφ

−(cos θdx+ sin θdy) ∧ mrJ0 sin 2φ
2(mr2 − J0 sin2 φ)2

pdφ

+dθ ∧
(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ
2(mr2 − J0 sin2 φ)

dp

)

+dθ ∧ mr2(J0 −mr2) sin 2φ
(mr2 − J0 sin2 φ)2

pψdφ

+dθ ∧ +
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

+(− sin θdx+ cos θdy) ∧
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

pψ − mr

2(mr2 − J0 sin2 φ)
p

)
dθ

+dψ ∧ dpψ + dφ ∧ dpφ

Since U = (V ∩ H)⊥ = ker{(V ∩ H) ΩH}, we need to calculate (V ∩ H) ΩM,

and restrict it to H:

(V ∩ H) ΩH =

−2r cos2 φ
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ − mr

2(mr2 − J0 sin2 φ)
dp

)

−2r cos2 φ
(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ− mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+ sin 2φ
(

mr2 cos2 φ
(mr2 − J0 sin2 φ)

dpψ +
(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
dp

)

+ sin 2φ
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+ sin 2φ
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

= dp− 2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tan φ
mr2 − J0 sin2 φ

pdφ

Hence,

U = ker
{
dp− 2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tan φ
mr2 − J0 sin2 φ

pdφ

}
.
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P

Figure 3.2: The momentum p is the angular momentum of the snakeboard system about
the point P .

The Reconstruction and Momentum Equations A vector field XU taking values in

U must be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p

where

ẋ =
J0

2mr
sin 2φψ̇ cos θ − 1

2mr
p cos θ

ẏ =
J0

2mr
sin 2φψ̇ sin θ − 1

2mr
p sin θ

θ̇ = − J0

mr2
sin2 φψ̇ +

tan φ
2mr2

p

and

ṗ =
2mr2 cos2 φ

mr2 − J0 sin2 φ
pψφ̇− (mr2 + J0 cos 2φ) tan φ

mr2 − J0 sin2 φ
pφ̇ (3.48)

The equations for ẋ, ẏ and θ̇ are the same reconstruction equations as equations (3.47) and

the last one for ṗ is the momentum equation on the Hamiltonian side. As noted in [BKMM],

the momentum p is the angular momentum of the system about the point P shown in figure

3.2.

It can be checked that the momentum equation (3.48) is equivalent to the equation

(3.14) via a change of variables with

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

=
2(mr2 − J0 sin2 φ) cot φ

mr2 − J0
pθ − 2mr2 cos2 φ cot φ

mr2 − J0
pψ
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as the key link. Similarly the two full sets of equations of motion in both section 3.2.5 and

this section are also related in the same way.

The Reduced Hamilton Equations. To find the remaining reduced equations, we need

to compute

XH ΩM = dHM,

restrict it to the subdistribution U and then push it down to the reduced constraint sub-

manifold M. Let us first compute XH ΩM

XH ΩM =

(ẋ cos θ + ẏ sin θ)
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ − mr

2(mr2 − J0 sin2 φ)
dp

)

+(ẋ cos θ + ẏ sin θ)
(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ− mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+θ̇
(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ
2(mr2 − J0 sin2 φ)

dp

)

+θ̇
(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ+

(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)
2(mr2 − J0 sin2 φ)2

pdφ

)
+ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−θ̇
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

pψ − mr

2(mr2 − J0 sin2 φ)
p

)
(− sin θdx+ cos θdy)

−mr
(
mr2 cos 2φ+ J0 sin2 φ

(mr2 − J0 sin2 φ)2
pψφ̇− J0 sin 2φ

2(mr2 − J0 sin2 φ)2
pφ̇

)
(cos θdx+ sin θdy)

−
(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψφ̇+

(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)
2(mr2 − J0 sin2 φ)2

pφ̇

)
dθ

− mr sin 2φ
2(mr2 − J0 sin2 φ)

ṗψ(cos θdx+ sin θdy) − mr2 cos2 φ

(mr2 − J0 sin2 φ)
ṗψdθ

+
mr

2(mr2 − J0 sin2 φ)
(cos θdx+ sin θdy) − (mr2 − J0) tanφ

2(mr2 − J0 sin2 φ)
ṗdθ.

As for dHH, recall that the constrained Hamiltonian HM is

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ − pψ)2 +

1
2J0

p2
ψ +

1
2(mr2 − J0)

(pθ − pψ)2 +
1

4J1
p2
φ.

Notice that HM is SE(2)-invariant and hence HM = hM where

hM =
mr2

2

(
1

2(mr2 − J0 sin2 φ)
p− sin2 φ

2(mr2 − J0 sin2 φ)
pψ

)2

+
1

2J0
p2
ψ

+
mr2 − J0

2

(
tan φ

2(mr2 − J0 sin2 φ)
p− sin2 φ

mr2 − J0 sin2 φ
pψ

)2

+
1

4J1
p2
φ.
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Compute dHM = dhM and we have

dhM =
mr2(p− sin 2φpψ)
2(mr2 − J0 sin2 φ)

(
1

2(mr2 − J0 sin2 φ)
dp− sin 2φ

2(mr2 − J0 sin2 φ)
dpψ

)

+
mr2(p− sin 2φpψ)
2(mr2 − J0 sin2 φ)

(
pd

(
1

2(mr2 − J0 sin2 φ)

)
− pψd

(
sin 2φ

2(mr2 − J0 sin2 φ)

))

+
(mr2 − J0)(tan φp− 2 sin2 φpψ)

2(mr2 − J0 sin2 φ)

(
tan φ

2(mr2 − J0 sin2 φ)
dp− sin2 φ

(mr2 − J0 sin2 φ)
dpψ

)

+
(mr2 − J0)(tan φp− 2 sin2 φpψ)

2(mr2 − J0 sin2 φ)
pd

(
tan φ

2(mr2 − J0 sin2 φ)

)

−(mr2 − J0)(tan φp− 2 sin2 φpψ)
2(mr2 − J0 sin2 φ)

pψd

(
sin2 φ

(mr2 − J0 sin2 φ)

)

+
1
J0
pψdpψ + +

1
2J1

pφdpφ.

It is easy to check that XH ΩM = dHM is SE(2)-invariant, and vanishes on V∩H
when restricted to U . Hence both sides push down to H. The push down of XH ΩM is

given by

XH ΩH =(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)(
mr sin 2φ

2(mr2 − J0 sin2 φ)
dpψ − mr

2(mr2 − J0 sin2 φ)
dp

)

+
(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ

−
(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

+
(

−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)(
mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ
2(mr2 − J0 sin2 φ)

dp

)

+
(

−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+
(

−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

+ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ.

Equating the terms of dhH = dhM with those of the push down of XH ΩM gives
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the remaining reduced Hamilton equations:

ψ̇ = − tan φ
2(mr2 − J0 sin2 φ)

p+
mr2

J0(mr2 − J0 sin2 φ)
pψ (3.49)

φ̇ =
pφ
2J1

(3.50)

ṗψ = 0 (3.51)

ṗφ = 0. (3.52)

Notice that both the momentum equation (3.48) and the above set of reduced equations are

independent of the group elements of the symmetry group SE(2). If we add in the set of

reconstruction equations (3.47), we recover the full dynamics of the system, and in a form

that is suitable for control theoretical purposes.

Finding the Reduced Equations on the Lagrangian Side As shown in the proof of

Theorem 3.2, we can derive the reduced Lagrange-d’Alembert equations in two ways. Here

we will first use the equations (3.41).

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bb

αβ ṙ
β + F bipi), (3.53)

where

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α

F biα =
∂Γbi

∂rα
− CbadA

a
αΓ

di.

From the Lagrangian L, we find the reduced Lagrangian

l(r, ṙ, ξ) =
1
2
m((ξ1)2 + (ξ2)2) +

1
2
mr2(ξ3)2 +

1
2
J0ψ̇

2 + +J0ψ̇(ξ3) + J1φ̇
2,

where ξ = g−1ġ. After plugging in the constraints (3.47), we have the constrained reduced

Lagrangian

lc(r, ṙ, p) = − J2
0

2mr2
sin2 φψ̇2 +

1
8mr2

sec2 φp2 +
1
2
J0ψ̇

2 + +J1φ̇
2.

Let us find all the ingredients of the above equations:

∂l

∂ξ1
= mξ1 = m

(
J0

2mr
sin 2φψ̇ − 1

2mr
p

)
∂l

∂ξ2
= mξ2 = 0

∂l

∂ξ3
= mr2

(
− J0

mr2
sin2 φψ̇ +

tan φ
2mr2

p

)
+ J0ψ̇;
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since ∂l
∂ξ2 = 0, we do not need to compute B2

αβ and F 2
α (notice that i = 1). Also it is

straightforward to find

B1
12 =

∂

∂φ

(
− J0

2mr
sin 2φ

)
= − J0

mr
cos 2φ

B3
12 =

∂

∂φ

(
J0

mr
sin2 φ

)
=

J0

mr
sin 2φ

F 3
2 =

∂

∂φ

(
tan φ
2mr2

)
=

sec2 φ

2mr2
,

and F 1
1 = F 3

1 = F 1
2 = 0. Substituting into (3.53), we get the reduced equations after some

computations (
1 − J0

mr2
sin2 φ

)
ψ̈ =

J0

2mr2
sin 2φψ̇φ̇− J0

2mr2
φ̇p (3.54)

J1φ̈ = 0 (3.55)

It is easy to check that these two equations are equivalent to the set of reduced equations

(3.49)-(3.52) on the Hamiltonian side through the constrained Legendre transformation

FL|D.

Next we will find the reduced equations use the equations (3.45)

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= −(Kjl
α pjpl + Kj

αβ ṙ
βpj + Kαβδ ṙ

β ṙδ) (3.56)

where

Kjl
α =

∂Ijl

∂rα
− CjbhA

b
αI

hl + γjhαI
hl

Kj
αβ = λa′β(−Ca

′
bhA

b
αI

hj + γa
′
hαI

hj) +Bj
αβ

Kαβδ = λa′δB
a′
αβ.

Here

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα.

First we need to construct the orthogonal body frame. Recall that

(e1(g, r))Q = gade
d
1∂ga = −2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ.

Hence

e1 = −2r cos2 φex + sin 2φeθ,
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where ex, ey, eθ are the generators of ∂x, ∂y, ∂θ. Using the kinetic energy metric, we find

e2 = − 1
m

sinφex +
1
m

cos φey − 1
mr

cosφeθ

e3 =
1
m

sinφex +
1
m

cosφey +
1
mr

cos φeθ

Recall that we only need e1 to be orthogonal to e2 and e3.

Let ηb be the components of ξ in the new basis, i.e., ξ = ξ1ex+ ξ22y + ξ3eθ = ηaea,

then

ξ1 = −2r cos2 φη1 − 1
m

sinφη2 +
1
m

sinφη3

ξ2 =
1
m

cosφη2 +
1
m

cos φη3

ξ1 = sin 2φη1 − 1
mr

cos φη2 +
1
mr

cos φη3,

and l̄(r, ṙ, ηa) = l(r, ṙ, T baηa) where T ab is defined as above by ξb = T baη
a.

Notice that in the new basis, the constraints (3.47) become



η1

η2

η3


 = −




J0

2mr2
tanφψ̇

0

0


+




1
4mr2

sec2 φp

0

0


 , (3.57)

but the constrained reduced equation l̄c(r, ṙ, p) remains the same and is equal to lc(r, ṙ, p).

Let us find all the ingredients of equations (3.56). After finding from (3.57) that

A1
1 =

J0

2mr2
tan φ

I11 =
1

4mr2
sec2 φ

and the rest of Abα equal to zero (which is not true in general), it is straightforward to
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calculate

K11
1 = 0

K11
2 =

1
4mr2

sec2 φ tan φ

K1
11 = 0

K1
12 =

J0

2mr2

K1
21 = 0

K1
22 = 0

K121 =
J2

0
2mr2

sin 2φ

K122 = 0

After substituting into (3.56) we get the same reduced equations as (3.54) and (3.55).

3.3.6 Example: The Bicycle

Control of the bicycle is a rich problem offering a number of considerable challenges

of current research interest in the area of mechanical and robotic control. The bicycle

is an underactuated system, subject to nonholonomic contact constraints associated with

the rolling constraints on the front and rear wheels. It is unstable (except under certain

combinations of fork geometry and speed) when not controlled. It is also, when considered

to traverse flat ground, a system subject to symmetries; its Lagrangian and constraints are

invariant with respect to translations and rotations in the ground plane.

Here a simplified bicycle model will be considered. The wheels of the bicycle are

considered to have negligible inertia moments, mass, radii, and width, and roll without side

or longitudinal slip. The vehicle is assumed to have a fixed steering axis that is perpendicular

to the flat ground when the bicycle is upright. For simplicity we concern ourselves with a

point mass bicycle. The rigid frame of the bicycle will be assumed to be symmetric about

a plane containing the rear wheel.

Consider a ground fixed inertial reference frame with x and y axis in the ground

plane and z-axis perpendicular to the ground plane in the direction opposite to gravity.

The intersection of the vehicle’s plane of symmetry with the ground plane forms a contact

line. The contact line is rotated about the z-direction by a yaw angle θ. The contact line is

considered directed, with its positive direction from the rear to the front of the vehicle. The
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ψ

σ

x

y

θ

m

(x, y)

z

a

bc

Figure 3.3: Notation for the bike.

yaw angle θ is zero when the contact line is in the x-direction. The angle that the bicycle’s

plane of symmetry makes with the vertical direction is the roll angle ψ ∈ (−π
2 ,

π
2 ). Front and

rear wheel contacts are constrained to have velocities parallel to the lines of intersection of

their respective wheel planes and the ground plane, but free to turn about an axis through

the wheel/ground contact and parallel to the z-axis. Let σ ∈ (−π
2 ,

π
2 ) be the steering angle

between the front wheel plane/ground plane intersection and the contact line. With σ we

associate a moment of inertia J which depends both on ψ and σ. We will parametrize the

steering angle by φ := tanσ/b. For more details, see Getz and Marsden [1995] and Getz

[1996]. See figure 3.3.

The configuration space is Q = SE(2) × S1 × S1 and the Lagrangian L : TQ → R

is the total kinetic energy minus potential energy of the system and is given by

L = −mga cosψ +
1
2
J(ψ, φ)φ̇2

+
m

2
(cos θẋ+ sin θẏ + a sinψθ̇)2

+
m

2

(
(− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)2 + (−a sinψψ̇)2

)

where m is the mass of the bicycle, considered for simplicity to be a point mass, and J(ψ, φ)

is the moment of inertia associated with the steering action. The nonholonomic constraints

associated with the front and rear wheels, assumed to roll without slipping, are expressed
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by

θ̇ − φ(cos θẋ+ sin θẏ) = 0

− sin θẋ+ cos θẏ = 0.

Clearly both the Lagrangian and the constraints are invariant under the SE(2) action.

Notice that the Legendre transform FL is singular but by the remark following

Theorem 8 the Hamiltonian procedure still works because the constrained Legendre trans-

form FL|D is invertible.

The Constraint Submanifold The constraints above give rise to the constraint one

forms

ω1(q) = dθ − φ cos θdx− φ sin θdy

ω2(q) = − sin θdx+ cos θdy

which determine the kinematic distribution Dq:

Dq = span{∂ψ, ∂φ, cos θ∂x + sin θ∂y + φ∂θ}.

The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ},

and the intersection between the tangent space to the group orbits and the constraint

distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{cos θ∂x + sin θ∂y + φ∂θ}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded

as a bundle over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to

be

ξqQ = cos θ∂x + sin θ∂y + φ∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic momentum map is
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thus given by

p =
∂L

∂q̇i
(ξqQ)i

= m(ẋ+ a sinψ cos θθ̇ + a cosψ sin θψ̇ − c sin θθ̇) cos θ

+m(ẏ + a sinψ sin θθ̇ − a cosψ cos θψ̇ + c cos θθ̇) sin θ

+m(cos θẋ+ sin θẏ + a sinψθ̇)aφ sinψ

+m(− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)cφ.

The kinematic constraints plus the momentum are given by

0 = ξ3 − φξ1

0 = ξ2

p = m(ξ1 + a sinψξ3) +maφ sinψ(ξ1 + a sinψξ3)

mφ(cξ2 − ca cosψψ̇ + c2ξ3)

where

ξ1 = cos θẋ+ sin θẏ

ξ2 = − sin θẋ+ cos θẏ

ξ3 = θ̇

Adding, subtracting, and scaling these equations, we can write



ξ1

ξ2

ξ3


+




−caφ cosψ
K

ψ̇

0

−caφ
2 cosψ
K

ψ̇


 =




1
mK

p

0
φ

mK
p


 (3.58)

where

K = (1 + aφ sinψ)2 + c2φ2. (3.59)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p.
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Next find the Legendre transform FL and restrict it to the constraint submanifold

D ⊂ TQ, we get

px = m(1 + aφ sinψ)ξ1 cos θ −m(cφξ1 − a cosψψ̇) sin θ

py = m(1 + aφ sinψ)ξ1 sin θ +m(cφξ1 − a cosψψ̇) cos θ

pθ = ma sinψ(1 + aφ sinψ)ξ1 +m(c2φξ1 − ca cosψψ̇)

pψ = ma2ψ̇ −mac cosψφξ1

pφ = J(ψ, φ)φ̇.

After applying the constrained Legendre transformation FL|D and its inverse to the con-

straint equations (3.58), we have



µ1

µ2

µ3


+




−cφ cosψ(1 + aφ sinψ)
F

pψ
a

(1 + aφ sinψ)2 cosψ
F

pψ
a

c cosψ(1 + aφ sinψ)
F

pψ
a


 =




1 + aφ sinψ
F

p

cφ sin2 ψ

F
p

(1 + aφ sinψ)a sinψ + c2φ sin2 ψ

F
p


 ,

where

µ1 = cos θpx + sin θpy

µ2 = − sin θpx + cos θpy

µ3 = pθ

and

F = (1 + aφ sinψ)2 + c2φ2 sin2 ψ (3.60)

p = px cos θ + py sin θ + pθφ. (3.61)

Therefore, the constraint submanifold M ⊂ T ∗Q is defined by

px = µ1 cos θ − µ2 sin θ

py = µ1 sin θ + µ2 cos θ

pθ = µ3.

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ , pφ, p) as its induced local coor-

dinates.
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The Distributions H,V ∩ H and U . Using the induced coordinates, the distribution H
on M is

H = span{cos θ∂x + sin θ∂y + φ∂θ, ∂ψ, ∂φ, ∂pψ , ∂pφ , ∂p}

and the subdistribution V ∩ H is

V ∩ H = span{cos θ∂x + sin θ∂y + φ∂θ}.

Notice that in the case of the bicycle, the constraints are independent of the veloc-

ities of the shape variables and hence the simplified procedure employed in the snakeboard

is also used here.

As for the subdistribution U , we first calculate the two form ΩM. After pulling

back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= (cos θdx+ sin θdy) ∧ dµ1 + µ1(− sin θdx+ cos θdy) ∧ dθ

+(− sin θdx+ cos θdy) ∧ dµ2 − µ2(cos θdx+ sin θdy) ∧ dθ

+dθ ∧ dµ3 + dψ ∧ dpψ + dφ ∧ dpφ

Since U = (V ∩ H)⊥ = ker{(V ∩ H) ΩH}, we need to calculate (V ∩ H) ΩM,

and restrict it to H:

(V ∩ H) ΩH = dµ1 − µ1φ(− sin θdx+ cos θdy)

−µ2dθ + µ2φ(cos θdx+ sin θdy) + φdµ3

= dµ1 + φdµ3

= dp +
c cosψ(1 + aφ sinψ)

F

pψ
a
dφ− a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ.

Hence,

U = ker
{
dp+

c cosψ(1 + aφ sinψ)
F

pψ
a
dφ− a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ

}
.

(3.62)

The Reconstruction and Momentum Equations A vector field XU taking values in

U must be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p
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where

ẋ = ξ1 cos θ − ξ2 sin θ =
(
caφ cosψ

K
ψ̇ +

1
mK

p

)
cos θ

ẏ = ξ1 sin θ + ξ2 cos θ =
(
caφ cosψ

K
ψ̇ +

1
mK

p

)
sin θ

θ̇ = φξ1 =
(
caφ2 cosψ

K
ψ̇ +

φ

mK
p

)
and

ṗ = −c cosψ(1 + aφ sinψ)
F

pψ
a
φ̇+

a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pφ̇.

(3.63)

The equations for ẋ, ẏ and θ̇ are the same reconstruction equations as equations (3.58) and

the last one for ṗ is the momentum equation on the Hamiltonian side. Similar to the example

of the snakeboard, the momentum p equals the angular momentum of the system about a

fixed point P that can be determined in the same way as in the case of the snakeboard.

Notice also that the last equation can be written simply as ṗ = µ3φ̇.

The Reduced Hamilton Equations. To find the remaining reduced equations, we need

to compute

XH ΩM = dHM,

restrict it to the subdistribution U and then push it down to the reduced constraint sub-

manifold M. Let us first compute XH ΩM

XH ΩM =

(cos θẋ+ sin θẏ)dµ1 + µ1(− sin θẋ+ cos θẏ)dθ − µ1θ̇(− sin θdx+ cos θdy)

+(− sin θẋ+ cos θẏ)dµ2 − µ2(cos θẋ+ sin θẏ)dθ + µ2θ̇(cos θdx+ sin θdy)

+θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−((ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p) dµ1)(cos θdx+ sin θdy)

−((ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p) dµ2)(− sin θdx+ cos θdy)

As for dHH, we can find the constrained Hamiltonian HM via the constrained

Legendre transform and have

HM = mga cosψ +
1
2J
p2
φ +

1
2m

(
µ2

1 + µ2
2 +

(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

)2
)
.
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Notice that HM is SE(2)-invariant and hence HM = hM. Compute dHM = dhM and we

have

dhM =

−mga sinψdψ +
1
J
pφdpφ − 1

2J2 p
2
φ

(
∂J

∂ψ
dψ +

∂J

∂φ
dφ

)

+
1
m

(µ1dµ1 + µ2dµ2)

+
1
m

(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

)
d

(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

)
.

It can be checked that XH ΩM = dHM is SE(2)-invariant, and vanishes on V∩H
when restricted to U . Hence both sides push down to H. The push down of XH ΩM is

given by

XH ΩH = (cos θẋ+ sin θẏ)dµ1 + θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

= ξ1dµ1 + ξ3dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

Equating the terms of dhH = dhM with those of the push down of XH ΩM gives

the remaining reduced Hamilton equations:

ψ̇ =
1
ma

(
K

F

pψ
a

+
cφ cosψ
F

p

)

φ̇ =
pφ
J

ṗψ = mga sinψ +
1

2J2 p
2
φ

∂J

∂ψ
+m(1 + aφ sinψ)aφ cosψ(ξ1)2 +mcaφ sinψξ1ψ̇

ṗφ =
1

2J2
∂J

∂φ
p2
φ,

where

ξ1 =
cφ cosψ
K

ψ̇ +
1
mK

p =
cφ cosψ
mF

pψ
a

+
1
mF

p

as defined earlier in (3.58). The first two equations are nothing but the inverse of the

constrained Legendre transform. Notice that both the momentum equation (3.63) and the

above set of reduced equations are independent of the group elements of the symmetry

group SE(2). If we add in the set of reconstruction equations (3.58), we recover the full

dynamics of the system, and in a form that is suitable for control theoretical purposes.

3.3.7 Example: A Nonholonomically Constrained Particle

In [BS], the example of a nonholonomically constrained particle has been used to

illustrate its theory. Here, we would like to modify this example slightly in order to show
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concretely what need to be done to find the reduced equations of motion if the constraints

involve also the velocities of the shape variables.

Consider a particle with the Lagrangian

L =
1
2
(ẋ2 + ẏ2 + ż2)

and the nonholonomic constraint

ż = yẋ+ ẏ.

The constraint and the Lagrangian are invariant under the R
2 action on R

3 given by

(x, y, z) 7→ (x+ λ, y, z + µ).

Notice that in the original example used in [BS], the constraint does not involve the ẏ-term

and hence it also satisfies the special condition that the constraints are independent of the

velocities of the shape variables. But the slight modification changes all these.

The Constraint Submanifold The constraint above gives rise to the constraint one

form

ω(q) = dz − ydx− dy.

The tangent space to the orbits of this group action is given by

Tq(Orb(q)) = span{∂x, ∂z},

and the intersection between the tangent space to the group orbits and the constraint

distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{∂x + y∂z}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded

as a bundle over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to

be

ξqQ = ∂x + y∂z.

The nonholonomic momentum map is thus given by

p =
∂L

∂q̇i
(ξqQ)i = ẋ+ yż.
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The kinematic constraint plus the momentum are

−yẋ+ ż = ẏ

ẋ+ yż = p.

Solving for ẋ and ż, we get

ẋ = − y

1 + y2 ẏ +
1

1 + y2 p

ż =
1

1 + y2 ẏ +
y

1 + y2 p.

After applying the constrained Legendre transform, we find that the constraint submanifold

M ⊂ T ∗Q is defined by

px = − y

1 + y2 py +
1

1 + y2 p (3.64)

pz =
1

1 + y2 py +
y

1 + y2 p. (3.65)

It is a submanifold in T ∗Q and we can use (x, y, z, py, p) as its induced local coordinates.

The Distributions H,V ∩ H and U . With the induced coordinates, the distribution H
on M is

H = span
{
∂x + y∂z,−

y

1 + y2∂x +
1

1 + y2∂z + ∂y, ∂py , ∂p

}
(3.66)

Notice that we are using −gabAbα∂ga +∂rα , i.e, − y
1+y2 ∂x+ 1

1+y2 ∂z +∂y instead of ∂y. In fact,

∂y does not even lie in the distribution H.

The subdistribution V ∩ H is

V ∩ H = span{∂x + y∂x}. (3.67)

As for the subdistribution U , we first calculate the two form ΩM. After pulling

back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz

= dx ∧ d
(

− y

1 + y2 py +
1

1 + y2 p

)

+dy ∧ dpy + dz ∧ d
(

1
1 + y2 py +

y

1 + y2 p

)
.
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Since U = (V ∩ H)⊥ = ker{(V ∩ H) ΩH}, we need to calculate (V ∩ H) ΩM,

and restrict it to H:

(∂x + y∂z) ΩH = − y

1 + y2dpy − 1 − y2

(1 + y2)2
pydy +

1
1 + y2 dp− 2y

(1 + y2)2
pdy

+
y

1 + y2dpy − 2y2

(1 + y2)2
pydy +

y2

1 + y2 dp+
y(1 − y2)
(1 + y2)2

pdy

= dp − 1
1 + y2 pydy − y

1 + y2 pdy

Hence,

U = ker
{
dp− 1

1 + y2 pydy − y

1 + y2 pdy

}
. (3.68)

The Reconstruction and Momentum Equations A vector field XU taking values in

U must be of the form

XU = ẋ∂x + ẏ∂y + ż∂z + ṗy∂py + ṗ∂p

where

ẋ = − y

1 + y2 ẏ +
1

1 + y2 p (3.69)

ż =
1

1 + y2 ẏ +
y

1 + y2 p. (3.70)

and

ṗ− 1
1 + y2 pyẏ − y

1 + y2 pẏ = 0 (3.71)

The first set are the reconstruction equations and the last one is the momentum equation

on the Hamiltonian side.

The Reduced Hamilton Equations. To find the remaining reduced equations, we need

to compute

XH ΩM = dHM, (3.72)
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restrict it to the subdistribution U and then push it down to the reduced constraint sub-

manifold M. Let us first compute XH ΩM

XH ΩM =
(

1 − y2

(1 + y2)2
ẏpy +

2y(1 − y2)
(1 + y2)2

ẏp+
y

1 + y2 ṗy − 1
1 + y2 ṗ

)
dx

+
(

2y
(1 + y2)2

ẏpy − 1 − y2

(1 + y2)2
ẏp− 1

1 + y2 ṗy − y

1 + y2 ṗ

)
dz

+
(

− 1 − y2

(1 + y2)2
ẋpy − 2y

(1 + y2)2
ẋp− 2y

(1 + y2)2
żpy +

1 − y2

(1 + y2)2
żp− ṗy

)
dy

+
(

− y

1 + y2 ẋ+ ẏ +
1

1 + y2 ż

)
dpy +

(
1

1 + y2 ẋ+
y

1 + y2 ż

)
dp

Notice that in pushing down XH ΩM, we cannot simply just throw away the terms involv-

ing dx and dz, instead we have to replace them by −Aaαdrα, i.e.,by − y
1+y2 dy and 1

1+y2 dy

respectively, as it has been done in the proof of Theorem 8.

As for dHH, we first find the constrained Hamiltonian HM

HM =
1
2

((
− y

1 + y2 py +
1

1 + y2 p

)2

+ p2
y +

(
1

1 + y2 py +
y

1 + y2 p

)2
)

=
1
2

(
p2

1 + y2 + p2
y +

p2
y

1 + y2

)

Clearly HM is R
2-invariant and hence HM = hM. Compute dHM = dhM and we have

dhM =
1

1 + y2 pdp− y

(1 + y2)2
p2dy + pydpy +

1
1 + y2 pydpy − y

(1 + y2)2
p2
ydy

Equating the terms of dhH = dhM with those of the push down of XH ΩM gives

the remaining reduced Hamilton equations:

ẏ = py (3.73)

ṗy = − 1
2 + y2 pxpy, (3.74)

where

px = − y

1 + y2 py +
1

1 + y2 p,

as defined earlier in equation (3.64).

Conclusions.

In this chapter we have analyzed the relation between the Lagrangian and Hamil-

tonian approaches to problems in nonholonomic mechanics. In the course of doing this,
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we have clarified each of the pictures. For example, we have shown how the momentum

equation first found on the Lagrangian side fits into the Hamiltonian approach. We have

also explored the reduced Lagrange-d’Alembert equations in greater detail than was known

previously. An example, a simplified model of the bicycle is used to illustrate the ideas.

This chapter concentrates in comparing different but equivalent formulations of

mechanics with nonholonomic constraints from the intrinsic point of view. While a further

comparison with the extrinsic point of view taken in Dezord [1994] and Marle [1995] would

be interesting, we will leave it to the future.
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Chapter 4

Poisson Geometry of

Nonholonomic Systems

4.1 Introduction

The General Setting. On the Hamiltonian side, besides the symplectic point of view,

one can also develop the Poisson point of view. Because of the momentum equation, it is

natural to let the value of momentum be a variable and for this a Poisson rather than a

symplectic viewpoint is more natural. Some of this theory has been started in van der Schaft

and Maschke [1994], hereafter denoted [VM]. In this chapter, we build on their work and

develop the Poisson reduction for the nonholonomic systems with symmetry. We use this

Poisson reduction procedure to obtain specific formulas for the nonholonomic Hamiltonian

dynamics. We also show that the equations given by the Poisson reduction are equivalent

to those given by the Lagrangian reduction via a reduced constrained Legendre transform.

Two interesting complications make this effort especially interesting. First of all, it

is well known that symmetry need not lead to conservation laws but rather to a momentum

equation. Second, the natural Poisson bracket fails to satisfy the Jacobi identity. In fact,

the so-called Jacobiizer (the cyclic sum that vanishes when the Jacobi identity holds) is

an interesting expression involving the curvature of the underlying distribution describing

the nonholonomic constraints. We shall explore these in detail in the forthcoming paper

“Poisson Reduction of Nonholonomic Mechanical Systems with Symmetry”.

These results are important for the future development of the stability theory for
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nonholonomic mechanical systems with symmetry. In particular, they will be required for

the development of the powerful block diagonalization properties of the energy-momentum

method developed by Simo, Lewis and Marsden [1991]. This technique is very important

for the development of systematic methods for stability criteria.

Outline of the Chapter. In Section 2, we first consider general nonholonomic systems

without symmetry assumptions. In this section,

1. we review the Poisson formulation of nonholonomic systems in [VM] which includes

a procedure for finding the equations of motion for nonholonomic systems from the

Poisson point of view.

2. With the help of the Ehresmann connection, we use the Poisson procedure to write

a compact formula for the equations of motion of the nonholonomic Hamiltonian

dynamics.

3. We prove the equivalence of the Poisson and Lagrange-d’Alembert formulations for

the nonholonomic mechanics.

4. We apply the Poisson procedure to the example of the snakeboard.

In Section 3, we add the hypothesis of symmetry to the preceding development.

In this section,

1. we build on the work of [VM] and develop the Poisson reduction, using the tools like

the nonholonomic connection and nonholonomic momentum. We write the equations

of motion for the reduced constrained Hamiltonian dynamics using a reduced Poisson

bracket. This Poisson reduction procedure breaks the Hamiltonian nonholonomic

dynamics into a reconstruction equation, a momentum equation and a set of reduced

Hamilton equations.

2. We prove that the set of equations given by the Poisson reduction is equivalent to

those given by the Lagrangian reduction via a reduced Legendre transform.

3. We apply the Poisson reduction procedure to the example of the snakeboard.



CHAPTER 4. POISSON GEOMETRY OF NONHOLONOMIC SYSTEMS 105

4.2 General Nonholonomic Mechanical Systems

Following the approaches of [BKMM], we first consider mechanics in the presence of

homogeneous linear nonholonomic velocity constraints. For now, no symmetry assumptions

are made; we add such assumptions in the following section.

4.2.1 Review of the Poisson Formulation

The approach of [VM] starts on the Lagrangian side with a configuration space Q

and a Lagrangian L (possibly of the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1
2
〈〈q̇, q̇〉〉 − V (q),

where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a potential energy

function.)

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ. We

also let Do ⊂ T ∗Q denote the annihilator of this distribution. Using a basis ωa of the

annihilator Do, we can write the constraints as

ωa(q̇) = 0.

where a = 1, . . . , k.

As above, the basic equations are given by the Lagrange d’Alembert principle and

are written as
d

dt

∂L

∂q̇i
− ∂L

∂qi
= λaω

a
i ,

where λa is a set of Lagrange multipliers.

The Legendre transformation FL : TQ → T ∗Q, assuming that it is a diffeomor-

phism, is used to define the Hamiltonian H : T ∗Q → R in the standard fashion (ignoring

the constraints for the moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of variables, the equations

of motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
. (4.1)

ṗi = −∂H
∂qi

+ λaω
a
i , (4.2)
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where i = 1, . . . , n, together with the constraint equations

ωai q̇
i = ωai

∂H

∂pi
= 0.

The preceding constrained Hamiltonian equations can be rewritten as
 q̇i

ṗi


 = J


 ∂H

∂qj

∂H
∂pj


+


 0

λaω
a
i


 , ωai

∂H

∂pi
= 0. (4.3)

Recall that the cotangent bundle T ∗Q is equipped with a canonical Poisson bracket and is

expressed in the canonical coordinates (q, p) as

{F,G}(q, p) =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=
(
∂F T

∂q
,
∂F T

∂p

)
J


 ∂G

∂q

∂G
∂p


 .

Here J is the canonical Poisson tensor

J =


 0n In

−In 0n


 ,

which is intrinsically determined by the Poisson bracket {, } as

J =


 {qi, qj} {qi, pj}

{pi, qj} {pi, pj}


 . (4.4)

On Lagrangian side, we saw that one can get rid of the Lagrangian multipliers.

On the Hamiltonian side, it is also desirable to model the Hamiltonian equations without

the Lagrange multipliers by a vector field on a submanifold of T ∗Q. In [VM], it is done

through a clever change of coordinates.

First, a constraint phase space M = FL(D) ⊂ T ∗Q is defined in the same way

as in [BS] so that the constraints on the Hamiltonian side are given by p ∈ M. In local

co-ordinates,

M =
{

(q, p) ∈ T ∗Q | ωai
∂H

∂pi
= 0
}
.

Let {Xα} be a local basis for the constraint distribution D and let {ωa} be a local basis for

the annihilator D0. Let {ωa} span the complementary subspace to D such that 〈ωa, ωb〉 = δab

where δab is the usual Kronecker delta. Here a = 1, . . . , k and α = 1, . . . , n − k. Define a

coordinate transformation (q, p) → (q, p̃α, p̃a) by

p̃α = Xi
αpi, p̃a = ωiapi. (4.5)



CHAPTER 4. POISSON GEOMETRY OF NONHOLONOMIC SYSTEMS 107

[VM] shows that in the new (generally not canonical) coordinates (q, p̃α, p̃a), the Poisson

tensor becomes

J̃(q, p̃) =


 {qi, qj} {qi, p̃j}

{p̃i, qj} {p̃i, p̃j}


 . (4.6)

and the constrained Hamiltonian equations (4.3) transform into


q̇i

˙̃pα
˙̃pa


 = J̃(q, p̃)




∂H̃
∂qj

∂H̃
∂p̃β
∂H̃
∂p̃b


+




0

0

λbK
b
a(q)


 ,

∂H̃

∂p̃a
(q, p̃) = 0. (4.7)

with Kb
a(q) := ωiaω

b
i and where H̃(q, p̃) is the Hamiltonian H(q, p) expressed in the new

coordinates (q, p̃).

Then, let (p̃α, p̃a) satisfy the constraint equations ∂H̃
∂p̃a

(q, p̃) = 0. Since

M =

{
(q, p̃α, p̃a) | ∂H̃

∂p̃a
(q, p̃α, p̃a) = 0

}
,

[VM] uses (q, p̃α) as an induced local coordinates for M. It is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM
∂qj

(q, p̃α)

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM
∂p̃β

(q, p̃α)

where HM is the constrained Hamiltonian on M expressed in the induced coordinates.

Now we are ready to eliminate the Lagrange multipliers. Notice that ∂H̃
∂p̃b

(q, p̃) = 0

on M, and by restricting the dynamics on M, we can disregard the last equations involving

λ in equations (4.7). In fact, we can also truncate the Poisson tensor J̃ in (4.6) by leaving

out its last k columns and last k rows and then describe the constrained dynamics on M
expressed in the induced coordinates (qi, p̃α) as follows

 q̇i

˙̃pα


 = JM(q, p̃α)


 ∂HM

∂qj
(q, p̃α)

∂HM
∂p̃β

(q, p̃α)


 ,


 qi

p̃α


 ∈ M. (4.8)

Here JM is the (2n− k) × (2n− k) truncated matrix of J̃ restricted to M and is expressed

in the induced coordinates.

The matrix JM defines a bracket {, }M on the constraint submanifold M as follows

{FM, GM}M(q, p̃α) :=
(
∂F TM
∂qi

∂F TM
∂p̃α

)
JM(qi, p̃α)


 ∂GM

∂qj

∂GM
∂p̃β
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for any two smooth functions FM, GM on the constraint submanifold M. Clearly this

bracket satisfies the first two defining properties of a Poisson bracket, namely, skew sym-

metry and Leibniz rule, and it is shown in [VM] that it satisfies the Jacobi identity if and

only if the constraints are holonomic.

In the coming paper, we will develop a general formula for the Jacobiizer (the

cyclic sum that vanishes when the Jacobi identity holds) which is an interesting expression

involving the curvature of the underlying distribution that describes the nonholonomic

constraints. From this formula, we can see clearly that the Poisson bracket defined here

satisfies the Jacobi identity if and only if the constraints are holonomic.

4.2.2 A Formula for the Constrained Hamilton Equations

In holonomic mechanics, it is well known that the Poisson and the Lagrangian

formulations are equivalent via a Legendre transform. And it is natural to ask whether the

same relation holds for the nonholonomic mechanics as developed in [VM] and [BKMM]. But

before we answer this question in the next subsection, we would like to first use the general

procedures of [VM] to write down a compact formula for the nonholonomic equations of

motion.

Theorem 9 Assume that we have same setup as in the preceding subsection. Let qi =

(rα, sa) be the local coordinates in which ωa has the form

ωa(q) = dsa +Aaα(r, s)drα (4.9)

where Aaα(r, s) is the coordinate expression of the Ehresmann connection described in section

2.1 in Chapter 3. Then the nonholonomic constrained Hamilton equation of motion on M
can be written as

ṙα =
∂HM
∂p̃α

(4.10)

ṡa = −Aaβ
∂HM
∂p̃β

(4.11)

˙̃pα = −∂HM
∂rα

+Abα
∂HM
∂sb

− pbB
b
αβ

∂HM
∂p̃β

(4.12)

where Bb
αβ are the coefficients of the curvature of the Ehresmann connection given in equa-

tion (3.5) in Chapter 3. Here, pb should be understood as pb restricted to M and more

precisely should be denoted as (pb)M.
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Proof As mentioned in subsection 2.1 in Chapter 3, no additional assumption is needed

since one can always choose a local coordinates where

ωa(q) = dsa +Aaα(r, s)drα.

In this local coordinate system,

D = span{∂rα −Aaα∂sa}. (4.13)

Then the new coordinates (rα, sa, p̃α, p̃a) of [VM] are defined by

p̃α = pα −Aaαpa, p̃a = pa +Aαapα (4.14)

and we can use (rα, sa, p̃α) as the induced coordinates on M.

Moreover, we can find the constrained Poisson structure matrix JM(rα, sa, p̃α)

by computing {qi, qj}, {qi, p̃α}, {p̃α, p̃β} and then restrict them to M. Recall that JM is

constructed out of the Poisson tensor J̃ in equation (4.6) by leaving out its last k columns

and last k rows and restricting its remaining elements to M.

Clearly

{qi, qj} = 0.

And we have

{rβ, p̃α} = {rβ, pα −Aaαpa} = {rβ, pα} − {rβ, Aaαpa} = δβα

{sb, p̃α} = {sb, pα −Aaαpa} = {sb, pα} − {sb, Aaαpa} = −Abα,

where δβα is the usual Kronecker delta. It is also straightforward to find

{p̃α, p̃β} = {pα −Aaαpa, pβ −Abβpb}

= −{pα, Abβpb} − {Aaαpa, pβ} + {Aaαpa, Abβpb}

=
∂Abβ
∂rα

pb − ∂Abα
∂rβ

pb +
∂Aaα
∂sb

paA
b
β −Aaα

∂Abβ
∂sa

pb

=

(
∂Abβ
∂rα

− ∂Abα
∂rβ

+Aaβ
∂Abα
∂sa

−Aaα
∂Abβ
∂sa

)
pb

= −Bb
αβpb.

After restricting the above results to M, all other terms remain the same but the last

line should be understood as −Bb
αβ(pb)M. But for notational simplicity, we keep writing
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it as −Bb
αβpb. Putting the above computations together, we can write the nonholonomic

equations of motion as follows



ṙα

ṡa

˙̃pα


 =




0 0 δαβ

0 0 −Aaβ
−δβα (Abα)T −pcBc

αβ






∂HM
∂rβ

∂HM
∂sb

∂HM
∂p̃β


 (4.15)

which is the desired result.

4.2.3 The Equivalence of the Poisson and the Lagrange-d’Alembert For-

mulations

Now we are ready to state and prove the equivalence of the Poisson and Lagrange-

d’Alembert formulations.

Theorem 10 The Lagrange-d’Alembert equations

ṡa = −Aaαṙα (4.16)
d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L

∂ṡb
Bb
αβ ṙ

β (4.17)

are equivalent to the constrained Hamilton equations

ṙα =
∂HM
∂p̃α

(4.18)

ṡa = −Aaβ
∂HM
∂p̃β

(4.19)

˙̃pα = −∂HM
∂rα

+Abα
∂HM
∂sb

− pbB
b
αβ

∂HM
∂p̃β

(4.20)

via a constrained Legendre transform which are given by

p̃α =
∂Lc
∂ṙα

ṙα =
∂HM
∂p̃α

. (4.21)

Proof Recall that

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aaαṙ
α = 0}.

And we can use (r, s, ṙ) as the induced coordinates for the submanifold D. Since the

constrained Lagrangian is given by

Lc(rα, sa, ṙα) = L(rα, sa, ṙα,−Aaα(r, s)ṙα),
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We have

∂Lc
∂ṙα

=
∂L

∂ṙα
− ∂L

∂sa
Aaα = pα − paA

a
α = p̃α. (4.22)

Hence, ∂Lc
∂ṙα = p̃α does define the right constrained Legendre transform between the sub-

manifolds D and M with the corresponding induced coordinates (rα, sa, ṙα) and (rα, sa, p̃α).

Now notice that if E = ∂L
∂q̇i
q̇i − L, then restricting it to D we will get

ED =
(
∂L

∂ṙα
ṙα +

∂L

∂ṡa
ṡa
)∣∣∣∣

D
− Lc

=
∂Lc
∂ṙα

ṙα +Aaα
∂L

∂ṡa
ṙα −Aaα

∂L

∂ṡa
ṙα − Lc

=
∂Lc
∂ṙα

ṙα − Lc.

Hence, the constrained Hamiltonian is given by

HM = p̃αṙ
α − Lc. (4.23)

And it is straightforward to show that

∂HM
∂p̃α

= ṙα + p̃β
∂ṙβ

∂p̃α
− ∂Lc
∂ṙβ

∂ṙβ

∂p̃α
= ṙα

which gives the equation (4.18). Clearly, ṡa = −Aaβ ṙβ together with equation (4.18) gives

equation (4.19).

Furthermore, we have

∂HM
∂rβ

= p̃α
∂ṙα

∂rβ
− ∂Lc
∂rβ

− ∂Lc
∂ṙα

∂ṙα

∂rβ
= −∂Lc

∂rβ
, (4.24)

and

∂HM
∂sb

= p̃α
∂ṙα

∂sb
− ∂Lc
∂sb

− ∂Lc
∂ṙα

∂ṙα

∂sb
= −∂Lc

∂sb
. (4.25)

Substituting the results of (4.24) and (4.25) into equation (4.17), we get the remaining

equation (4.20).

4.2.4 Example: The Snakeboard

The snakeboard is a modified version of a skateboard in which the front and back

pairs of wheels are independently actuated. The extra degree of freedom enables the rider
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to generate forward motion by twisting their body back and forth, while simultaneously

moving the wheels with the proper phase relationship. For details, see [BKMM] and the

references listed there.

The snakeboard is modeled as a rigid body (the board) with two sets of indepen-

dently actuated wheels, one on each end of the board. The human rider is modeled as a

momentum wheel which sits in the middle of the board and is allowed to spin about the

vertical axis. Spinning the momentum wheel causes a counter-torque to be exerted on the

board. The configuration of the board is given by the position and orientation of the board

in the plane, the angle of the momentum wheel, and the angles of the back and front wheels.

Let (x, y, θ) represent the position and orientation of the center of the board, ψ the angle

of the momentum wheel relative to the board, and φ1 and φ2 the angles of the back and

front wheels, also relative to the board. Take the distance between the center of the board

and the wheels to be r. See figure 3.1 in Chapter 3.

In [BKMM], a simplification is made which we shall also assume in this paper,

namely φ1 = −φ2, J1 = J2. The parameters are also chosen such that J+J0+J1+J2 = mr2,

where m is the total mass of the board, J is the inertia of the board, J0 is the inertia of

the rotor and J1, J2 are the inertia of the wheels. This simplification eliminates some

terms in the derivation but does not affect the essential geometry of the problem. Setting

φ = φ1 = −φ2, then the configuration space becomes Q = SE(2) × S1 × S1 and the

Lagrangian L : TQ → R is the total kinetic energy of the system and is given by

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2.

The Constraints. The rolling of the front and rear wheels of the snakeboard is modeled

using nonholonomic constraints which allow the wheels to spin about the vertical axis and

roll in the direction that they are pointing. The wheels are not allowed to slide in the

sideways direction. The constraints are defined by

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cos φθ̇ = 0

− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cos φθ̇ = 0

and can be simplified as

ẋ = −r cotφ cos θθ̇

ẏ = −r cotφ sin θθ̇.
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Since the coordinate expressions of the Ehresmann connection Aaα are zeroes except

A1
1 = r cotφ cos θ A2

1 = r cotφ sin θ,

the coefficients of the curvature of this connection are zeroes except

B1
13 = −B1

31 = −r csc2 φ cos θ

B2
13 = −B2

31 = −r csc2 φ sin θ.

Also, the constrained Lagrangian is given by

Lc = L(rα, sa, ṙα,−Aaαṙα)

=
1
2
mr2 csc2 φθ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2

The Constrained Hamiltonian. The constrained Legendre transform on the constraint

D is given by

p̃θ =
∂Lc

∂θ̇
= mr2 csc2 φθ̇ + J0ψ̇

p̃ψ =
∂Lc

∂ψ̇
= J0ψ̇ + J0θ̇

p̃φ =
∂Lc

∂φ̇
= 2J1φ̇.

Its inverse are

θ̇ =
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

ψ̇ =
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1

,

And we can find the corresponding constrained Hamiltonian on the submanifold

M via the inverse of the constrained Legendre transform in the following way

HM = p̃θθ̇ + p̃ψψ̇ + p̃φφ̇− (
1
2
mr2 csc2 φθ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2)

=
sin2 φ

2(mr2 − J0 sin2 φ)2
(p̃θ − p̃ψ)2 +

1
2J0

p̃2
ψ +

1
4J1

p̃2
φ.
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The Equations of Motion. Now we can write the constrained Hamilton equations of

motion using the constrained Poisson matrix as follow




θ̇

ψ̇

φ̇

ẋ

ẏ

˙̃pθ
˙̃pψ
˙̃pφ




=




0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 −A1
1 0 0

0 0 0 0 0 −A2
1 0 0

−1 0 0 A1
1 A2

1 0 0 −pbBb
13

0 −1 0 0 0 0 0 0

0 0 −1 0 0 −pbBb
31 0 0







0

0
∂HM
∂φ

0

0
∂HM
∂p̃θ
∂HM
∂p̃ψ
∂HM
∂p̃φ




where A1
1 = r cot φ cos θ,A2

1 = r cotφ sin θ and

∂HM
∂φ

=
mr2 sinφ cos φ

(mr2 − J0 sin2 φ)2
(p̃θ − p̃ψ)2

∂HM
∂p̃θ

=
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

∂HM
∂p̃ψ

=
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)
∂HM
∂p̃φ

=
1

2J1
p̃φ.

As for pbBb
13, notice first that

px =
∂L

∂ẋ
= mẋ py =

∂L

∂ẏ
= mẏ.

Restricting them to M is the same as restricting them to D and then applying the con-

strained Legendre transform, i.e.,

px = −mr cotφ cos θθ̇ = − mr sinφ cos φ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) cos θ

py = −mr cotφ sin θθ̇ = − mr sinφ cos φ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) sin θ.

Therefore,

pbB
b
13 = px(−r csc2 φ cos θ) + py(−r csc2 φ sin θ)

=
mr2 cotφ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ).
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After simplification, we have the constrained Hamilton equations

θ̇ =
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

ψ̇ =
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1

˙̃pθ = − mr2 cotφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ)
p̃φ
2J1

˙̃pψ = 0

˙̃pφ = 0

together with the constrained equations

ẋ = − r sinφ cos φ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) cos θ

ẏ = − r sinφ cos φ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) sin θ

4.3 Nonholonomic Mechanical Systems with Symmetry

Now we add the hypothesis of symmetry to the preceding development. Assume

that we have a configuration manifold Q, a Lagrangian of the form kinetic minus potential,

and a distribution D that describes the kinematic nonholonomic constraints. We also assume

there is a symmetry group G (a Lie group) that leaves the Lagrangian invariant, and that

acts on Q (by isometries) and also leaves the distribution invariant, i.e., the tangent of the

group action maps Dq to Dgq (for more details, see [BKMM].) Later, we shall refer this

as a simple nonholonomic mechanical system. Furthermore, this section uses many

results of the Lagrangian reduction developed in [BKMM]. For a brief review of Lagrangian

reduction, see subsection 3.1 in Chapter 3 of this thesis.

4.3.1 Poisson Reduction

Now let G be the symmetry group of the system and assume that the quotient space

M̄ = M/G of the G-orbit in M is a quotient manifold with projection map ρ : M −→ M̄.

Since G is a symmetry group, all intrinsically defined vector fields push down to M. In this

subsection, we will write the equations of motion for the reduced constrained Hamiltonian
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dynamics using a reduced ”Poisson” bracket on the reduced constraint phrase space M̄.

Moreover, an explicit expression for this bracket will be provided.

The crucial step here is how to represent the constraint distribution D in a way

that is both intrinsic and ready for reduction. The work in both [BKMM] and Koon and

Marsden [1997] suggest that we should use the tools like nonholonomic momentum p and

the nonholonomic connection A in [BKMM] to describe D
Recall that in [BKMM], a body fixed basis

eb(g, r) = Adg · eb(r)

has been constructed such that the infinitesimal generators (ei(g, r))Q of its first m elements

at a point q span Sq = Dq ∩ Tq(Orb(q)). Assume that G is a matrix group and edi is the

component of ei(r) with respect to a fixed basis {ba} of the Lie algebra g where (ba)Q = ∂ga ,

then

(ei(g, r))Q = gade
d
i ∂ga .

Since Dq is the direct sum of Sq and the horizontal space of the nonholonomic connection

A, it can be represented by

D = span{gadedi ∂ga ,−gabAbα∂ga + ∂rα}. (4.26)

Before we state the theorem and do some computations, we want to make sure

that the readers understand the index convention used in this subsection:

1. The first batch of indices is denoted a, b, c, ... and range from 1 to k corresponding to

the symmetry direction (k = dim g).

2. The second batch of indices will be denoted i, j, k, ... and range from 1 to m cor-

responding to the symmetry direction along constraint space (m is the number of

momentum functions).

3. The indices α, β, ... on the shape variables r range from 1 to n−k (n−k = dim (Q/G),

i.e., the dimension of the shape space).

Then the induced coordinates (ga, rα, p̃i, p̃α) for the constraint submanifold M are

defined by

p̃i = gade
d
i pa = µde

d
i (4.27)

p̃α = pα − gabA
b
αpa = pα − µbA

b
α. (4.28)
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Here µ is an element of the dual of the Lie algebra g∗ and µa is its coordinates with respect

to a fixed dual basis. Notice that p̃i are nothing but the corresponding momentum functions

on the Hamiltonian side.

We can find the constrained Poisson structure matrix JM(ga, rα, p̃i, p̃α) by com-

puting {ga, gb}, etc. and then restrict them to M. Recall that JM is constructed out of the

Poisson tensor J̃ in (4.6) by leaving out its last k columns and last k rows and restricting

its remaining elements to M.

Clearly

{ga, gb} = 0, {ga, rα} = 0, {rα, rβ} = 0.

And we also have

{ga, p̃i} = {ga, gbcecipb} = gac e
c
i

{ga, p̃α} = {ga, pα − gcbA
b
αpc} = −gabAbα

{rα, p̃i} = {rβ , gbcecipb} = 0

{rα, p̃β} = {rα, pβ − gcbA
b
βpc} = δαβ

It is also straightforward to find

{p̃i, p̃j} = {gac ecipa, gbdedjpb}

= pb
∂gbc
∂gσ

ecig
σ
d e
d
j − pb

∂gbd
∂gτ

ecig
τ
c e
d
j

= pb

(
∂gbc
∂gσ

gσd − ∂gbd
∂gτ

gτc

)
ecie

d
j

= −pagabCbcdeciedj
= −µaCacdeciedj ,

where Cacd is the structure coefficients of the Lie algebra g. Similarly, we have

{p̃i, p̃α} = {gac ecipa, pα − gbdA
b
αpd}

= {gac ecipa, pα} − {gac ecipa, gbdAbαpd}

= µa
∂eai
∂rα

+ µaC
a
bde

b
iA

d
α
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and

{p̃α, p̃β} = {pα − gabA
b
αpa, pβ − gcdA

d
βpc}

= −{pα, gcdAdβpc} − {gabAbαpa, pβ} + {gabAbαpa, gcdAdβpc}

= µb
∂Abβ
∂rα

− µb
∂Abα
∂rβ

− µbC
b
acA

a
αA

c
β

= −µbBb
αβ,

where Bb
αβ are the coefficients of the curvature of the nonholonomic connection and are

given by

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

+CbacA
a
αA

c
β .

Therefore the constrained Hamilton equations can be written as follows


ġa

ṙα

˙̃pi
˙̃pα


 =




0 0 gac e
c
j −gacAcβ

0 0 0 δαβ

−(gbceci )
T 0 −µaCabdebiedj µaF

a
iβ

(gbcAcα)T −δβα −(µaF ajα)T −µaBa
αβ







∂HM
∂gb

∂HM
∂rβ

∂HM
∂p̃j
∂HM
∂p̃β


 (4.29)

where F aiβ is defined by

F aiβ =
∂eai
∂rβ

+ Cabde
b
iA

d
β (4.30)

SinceG is the symmetry group of the system and the Hamiltonian H isG-invariant,

we have HM = hM̄. Hence

∂HM
∂gb

= 0

∂HM
∂rβ

=
∂hM
∂rβ

∂HM
∂p̃j

=
∂hM
∂p̃j

∂HM
∂p̃β

=
∂hM
∂p̃β

.

After the reduction by the symmetry group G, we have


ξb

ṙα

˙̃pi
˙̃pα


 =




0 0 ebj −Abβ
0 0 0 δαβ

−(eci )
T 0 −µaCabdebiedj µaF

a
iβ

(Acα)T −δβα −µa(F ajα)T −µaBa
αβ







0
∂hM̄
∂rβ

∂hM̄
∂p̃j
∂hM̄
∂p̃β


 (4.31)
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where ξb = (g−1)baġa.

From the above computations, we have proved the following theorem

Theorem 11 The momentum equation and the reduced Hamilton equations on the reduced

constraint submanifold M̄ can be written as follows

˙̃pi = −µaCabdebiedj
∂hM̄
∂p̃j

+ µaF
a
iβ

∂hM̄
∂p̃β

(4.32)

ṙα =
∂hM̄
∂p̃α

(4.33)

˙̃pα = −∂hM̄
∂rα

− µaF
a
jα

∂hM̄
∂p̃j

− µaB
a
αβ

∂hM̄
∂p̃β

. (4.34)

Adding in the following reconstruction equation

ξ̇b = −Abβ
∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

, (4.35)

we recover the full dynamics of the system.

Notice that equation (4.32) can be considered as the momentum equation on the

Hamiltonian side which corresponds to the momentum equation developed in [BKMM]. It

generalizes the Lie-Poisson equation to the nonholonomic case.

Moreover, if we now truncate the reduced Poisson matrix J̃ in equation (4.31) by

leaving out its first column and first row, the new matrix JM̄ given by

JM̄ =




0 0 δαβ

0 −µaCabdebiedj µaF
a
iβ

−δβα −µa(F ajα)T −µaBa
αβ


 (4.36)

defines a bracket {, }M̄ on the reduced constraint submanifold M̄ as follows

{FM̄, GM̄}M̄(rα, p̃i, p̃α) :=

(
∂F TM̄
∂rα

∂F TM̄
∂p̃i

∂F TM̄
∂p̃α

)
JM̄(rα, p̃i, p̃α)




∂GM̄
∂rβ

∂GM̄
∂p̃j
∂GM̄
∂p̃β




for any two smooth functions FM̄, GM̄ on the reduced constraint submanifold M̄ whose

induced coordinates are (rα, p̃i, p̃α). Clearly this bracket satisfies the first two defining

properties of a Poisson bracket, namely, skew-symmetry and Leibniz rule.
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4.3.2 The equivalence of Poisson and Lagrangian Reduction

Theorem 12 The equations (4.33) to (4.35) given by the Poisson reduction are equivalent

to the equations given by the Lagrangian reduction

ξb = −Abβ ṙβ + Γbipi = −Abβ ṙβ + ebjΩ
j (4.37)

ṗi =
∂l

∂ξb

(
Cabdξ

aedi +
∂eai
∂rβ

ṙβ
)

(4.38)

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bb

αβ ṙ
β + F bαiΩ

i), (4.39)

via a reduced Legendre transform

p̃α =
∂lc
∂ṙα

p̃i =
∂lc
∂Ωi

.

Proof Define the reduced constrained Lagrangian

lc(r, ṙ,Ω) = l(r, ṙ,−Aṙ + Ωe).

where Ω is the body angular velocity and e(r) is the body fixed basis at the identity defined

earlier. Notice first that
∂l

∂ṙα
=

∂L

∂ṙα
= pα.

Since

pb =
∂L

∂ġb
=

∂l

∂ξa
∂ξa

∂ġb
=

∂l

∂ξa
(g−1)ab ,

we have
∂l

∂ξa
= µa.

Hence,

∂lc
∂ṙα

=
∂l

∂ṙα
+

∂l

∂ξa
∂ξa

∂ṙα

=
∂l

∂ṙα
− ∂l

∂ξa
Aaα

= pα − µaA
a
α

= p̃α,

and
∂lc
∂Ωi

=
∂l

∂ξa
∂ξa

∂Ωi
=

∂l

∂ξa
eai = p̃i.



CHAPTER 4. POISSON GEOMETRY OF NONHOLONOMIC SYSTEMS 121

That is, p̃α = ∂lc
∂ṙα and p̃i = ∂lc

∂Ωi do define the right reduced constrained Legendre transform

between the reduced constraint submanifolds D̄ and M̄ with the corresponding reduced

coordinates (rα, ṙα,Ωi) and (rα, p̃α, p̃i).

To find the reduced constrained Hamiltonian hM, notice first that since E is G-

invariant, we have

E =
∂L

∂q̇i
q̇i − L

=
∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L

=
∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l

After restricting it to the submanifold D, we have

ED =
∂l

∂ξa
(−Aaαṙα + Ωieai ) +

(
∂lc
∂ṙα

+Aaα
∂l

∂ξa

)
ṙα − lc

=
∂l

∂ξa
Ωieai +

∂lc
∂ṙα

ṙα − lc

=
∂lc
∂Ωi

Ωi +
∂lc
∂ṙα

ṙα − lc

Therefore, we have

hM̄ = p̃iΩi + p̃αṙ
α − lc, (4.40)

via the Legendre transform (rα, ṙα,Ωi) −→ (rα, p̃α, p̃i). Differentiate hM̄ with respect to

p̃α and p̃j and use the Legendre transform, we have

∂hM̄
∂p̃α

= p̃i
∂Ωi

∂p̃α
+ p̃β

∂ṙβ

∂p̃α
+ ṙα − ∂lc

∂ṙβ

∂ṙβ

∂p̃α
− ∂lc
∂Ωi

∂Ωi

∂p̃α
= ṙα

which is equation (4.33). Also, we have

∂hM̄
∂p̃j

= Ωj + p̃i
∂Ωi

∂p̃j
+ p̃α

∂ṙα

∂p̃j
− ∂lc
∂ṙα

∂ṙα

∂p̃j
− ∂lc
∂Ωi

∂Ωi

∂p̃j
= Ωj,

which, together with equation (4.37), gives equation (4.35). Moreover, since ∂l
∂ξb

= gab
∂L
∂ġa =

µb and p̃i = pi, we have

˙̃pi =
∂l

∂ξb

(
Cabdξ

aedi +
∂eai
∂rβ

ṙβ
)

= µa

(
Cabde

d
i

(
−Abβ ṙβ + ebjΩ

j
)

+
∂eai
∂rβ

ṙβ
)

= µa

(
Cabde

d
i

(
−Abβ

∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

)
+
∂eai
∂rβ

∂hM̄
∂p̃β

)

= µaC
a
bde

d
i e
d
j

∂hM̄
∂p̃j

+ µa

(
Cabde

b
iA

d
β +

∂eai
∂rβ

)
∂hM̄
∂p̃β

,
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which is equation (4.32).

Finally, differentiate hM̄ with respect to rα, we have

∂hM̄
∂rα

= p̃i
∂Ωi

∂r̃α
+ p̃β

∂ṙβ

∂rα
− ∂lc
∂rα

− ∂l̃c
∂ṙβ

∂ṙβ

∂rα
− ∂lc
∂Ωi

∂Ωi

∂rα
= − ∂lc

∂rα

which together with equation (4.39) gives

˙̃pα = −∂hM̄
∂rα

− µaF
a
jα

∂hM̄
∂p̃j

− µaB
a
αβ

∂hM̄
∂p̃β

which is equation (4.34).

Remark: Notice that equations (4.39) are the same as the reduced Lagrange-d’Alembert

equations in [BKMM]. The only difference is that in this chapter, the reduced constrained

Lagrangian lc is a function of r, ṙ,Ω where in [BKMM] (and in Chapter 3) it is considered as

a function of r, ṙ, p. Since it is more natural to use the body angular velocity as a variable

on the Lagrangian side, the formulation here looks better.

4.3.3 Example: The Snakeboard Revisited

Now we return to the snakeboard and discuss the role of the symmetry group

G = SE(2). Recall from our earlier discussion that the Lagrangian is

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 + +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2
1, (4.41)

which is independent of the configuration of the board and hence it is invariant to all possible

group actions.

The Constraint Submanifold. The condition of rolling without slipping gives rise to

the constraint one forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cos φdθ

ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cos φdθ,

which are invariant under the SE(2) action. The constraints determine the kinematic

distribution Dq:

Dq = span{∂ψ, ∂φ, a∂x + b∂y + c∂θ},
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where a = −2r cos2 φ cos θ, b = −2r cos2 φ sin θ, c = sin 2φ. The tangent space to the orbits

of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ}

The intersection between the tangent space to the group orbits and the constraint distribu-

tion is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂x + b∂y + c∂θ}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded

as a bundle over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to

be

ξqQ = a∂x + b∂y + c∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic momentum is thus

given by

p =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ +mr2cθ̇ + J0cψ̇.

The kinematic constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cos φθ̇

0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cos φθ̇

p = −2mr cos2 φ cos θẋ− 2mr cos2 φ sin θẏ

+mr2 sin 2φθ̇ + J0 sin 2φψ̇.

Adding, subtracting, and scaling these equations, we can write (away from the point φ =

π/2),




cos θẋ+ sin θẏ

− sin θẋ+ cos θẏ

θ̇


+




− J0

2mr
sin 2φψ̇

0
J0

mr2
sin2 φψ̇


 =




−1
2mr

p

0
tan φ
2mr2

p


 . (4.42)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p
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where

A(r) = − J0

2mr
sin 2φex dψ +

J0

mr2
sin2 φeθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tan φ eθ.

These are precisely the terms which appear in the nonholonomic connection relative to the

(global) trivialization (r, g).

Since Γp = Ωe, we can rewrite the constraints using the angular momentum Ω as

follows 

ξ1

ξ2

ξ3


 =




J0

2mr
sin 2φψ̇

0

− J0

mr2
sin2 φψ̇


+




−2r cos2 φΩ

0

sin 2φΩ


 . (4.43)

The Reduced Constrained Hamiltonian From the Lagrangian L, we find the reduced

Lagrangian

l(r, ṙ, ξ) =
1
2
m((ξ1)2 + (ξ2)2) +

1
2
mr2(ξ3)2 +

1
2
J0ψ̇

2 + +J0ψ̇(ξ3) + J1φ̇
2,

where ξ = g−1ġ. After plugging in the constraints (4.43), we have the reduced constrained

Lagrangian

lc(r, ṙ,Ω) = − J2
0

2mr2
sin2 φψ̇2 + 2mr2 cos2 φΩ2 +

1
2
J0ψ̇

2 + +J1φ̇
2. (4.44)

Then the reduced constrained Legendre transform is given by

p =
∂lc
∂Ω

= 4mr2 cos2 φΩ

p̃ψ =
∂lc

∂ψ̇
= − J2

0
mr2

sin2 φψ̇ + J0ψ̇

p̃φ =
∂lc

∂φ̇
= 2J1φ̇.

And its inverse is

Ω =
p

4mr2 cos2 φ

ψ̇ =
mr2p̃ψ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1



CHAPTER 4. POISSON GEOMETRY OF NONHOLONOMIC SYSTEMS 125

Therefore, the reduced constrained Hamiltonian hM̄ is

hM̄ = pΩ + p̃ψψ̇ + p̃φφ̇− lc

=
sec2 φ

8mr2
p2 +

mr2

2J0(mr2 − J0 sin2 φ)
p2
ψ +

1
4J1

p2
φ

The Reduced Poisson Structure Matrix Recall that in computing the reduced struc-

tural matrix, we only need to calculate {p̃α, p̃β}, etc. and then restrict them to M̄. Since

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

p̃ψ =
J0

2mr2
sin 2φ cos θpx +

J0

2mr2
sin 2φ sin θpy − J0

mr2
sin2 φpθ + pψ

p̃φ = pφ,

we have

{p, p̃φ} = {−2r cos2 φµ1, pφ} + {sin 2φµ3, pφ} = 2r sin 2φµ1 + 2cos 2φµ3.

(4.45)

Similarly, we find

{p̃ψ, p̃φ} =
J0

mr
cos 2φµ1 − J0

mr
sin 2φµ3 (4.46)

{p, p̃ψ} = 0. (4.47)

As for µ1, µ2, µ3 (restricted to M̄), recall that

µ1 = cos θpx + sin θpy

= cos θ(mẋ) + sin θ(mẏ)

= −mr cotφθ̇

= −mr cotφ
(

− J0

mr2
sin2 φψ̇ +

tan φ
2mr2

p

)

=
J0

r
cos φ sinφψ̇ − 1

2r
p

=
mr sinφ cos φ
mr2 − J0 sin2 φ

p̃ψ − 1
2r
p.

We can also find µ2, µ3 in a similar way. Therefore



µ1

µ2

µ3


 =




mr sinφ cos φ
(mr2 − J0 sin2 φ)

p̃ψ

0

mr2 cos2 φ

(mr2 − J0 sin2 φ)
p̃ψ


+




−1
2r
p

0
tanφ

2
p


 . (4.48)
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So after substituting the constraints (4.48) into equations (4.45) to (4.47), we have

{p, p̃φ}M̄ = − tanφp+
2mr2 cos2 φ

mr2 − J0 sin2 φ
p̃ψ (4.49)

{p̃ψ, p̃φ}M̄ = − J0

2mr2
p− J0 sinφ cos φ

mr2 − J0 sin2 p̃φ
pψ (4.50)

{p, p̃ψ}M̄ = 0. (4.51)

Therefore the reduced Poisson structure matrix is given by




0 0 0 0 0 −2r cos2 φ J0
2mr sin 2φ 0

0 0 0 0 0 0 0 0

0 0 0 0 0 sin 2φ − J0
mr2

sin2 φ 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2r cos2 φ 0 − sin 2φ 0 0 0 0 {p, p̃φ}M̄
− J0

2mr sin 2φ 0 J0
mr2

sin2 φ −1 0 0 0 {p̃ψ, p̃φ}M̄
0 0 0 0 −1 −{p, p̃φ}M̄ −{p̃ψ, p̃φ}M̄ 0




where {p, p̃φ}M̄ and {p̃ψ, p̃φ}M̄ are given as above by (4.49) and (4.50).

The Reduced Constrained Hamilton Equations It is straightforward to find that

∂hM̄
∂ψ

= 0

∂hM̄
∂φ

=
sec2 φ tan φ

4mr2
p2 +

mr2 sin 2φ
2(mr2 − J0 sin2 φ)2

p̃2
ψ

∂hM̄
∂p

=
sec2 φ

4mr2
p

∂hM̄
∂p̃ψ

=
mr2

J0(mr2 − J0 sin2 φ)
p̃ψ

∂hM̄
∂p̃φ

=
1

2J1
p̃φ.
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Then by using the formula in (4.31) and after some computations, we obtain the momentum

equation and the reduced constrained Hamilton equations as follows

ṗ =
(

− tanφp+
2mr2 cos2 φ

mr2 − J0 sin2 φ
p̃ψ

)
1

2J1
p̃φ (4.52)

ψ̇ =
mr2

J0(mr2 − J0 sin2 φ)
p̃ψ (4.53)

φ̇ =
1

2J1
p̃φ (4.54)

˙̃pψ = −
(
J0

mr2
p+

J0 sin 2φ
2(mr2 − J0 sin2 φ)

p̃ψ

)
1

2J1
p̃φ (4.55)

˙̃pψ = 0. (4.56)

Also, we can obtain the following reconstruction equations on the Hamiltonian side

ẋ = ξ1 cos θ − ξ2 sin θ =
(

− 1
2mr

p+
r sin 2φ

2(mr2 − J0 sin2 φ)
p̃ψ

)
cos θ (4.57)

ẏ = ξ1 sin θ − ξ2 cos θ =
(

− 1
2mr

p+
r sin 2φ

2(mr2 − J0 sin2 φ)
p̃ψ

)
sin θ (4.58)

θ̇ = ξ3 =
tan φ
2mr2

p− sin2 φ

mr2 − J0 sin2 φ
p̃ψ. (4.59)

Together, these two sets of equations give us the dynamics of the full constrained systems

but in a form that is suitable for control theoretical purposes.
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Chapter 5

Conclusions and Future Work

This thesis builds on the recent advances made by Bates and Sniatycki [1993],

van der Schaft and Maschke [1994], Bloch, Krishnaprasad, Marsden and Murray [1996] and

others in the study of nonholonomic systems. It helps to lay a firm foundation for a gauge

viewpoint of such systems.

[BKMM] has started this work on the Lagrangian side and generalized the use of

connections and momentum maps associated with a given symmetry group to nonholonomic

systems. It has shown how Ehresmann connections can be used to write the kinematic

constraints as the condition of horizontality with respect to the connection and shown how

the equations of motion can be written in terms of base variables and that these equations

involve the curvature of the connection. It has also shown that the presence of symmetries

in the nonholonomic case may or may not lead to conservation laws and has developed the

momentum equation, which plays an important role in control problems of such systems.

The process of reduction and reconstruction for these systems is worked out by making use

of a nonholonomic connection which is obtained by synthesizing the mechanical connection

and constraint connection. Moreover, using the tools of Lagrangian reduction, it developed

the reduced Lagrange-d’Alembert equations.

The major part of this thesis extends this gauge viewpoint of such systems to the

Hamiltonian side, building on the works of [BS] and [VM]. With the help of nonholonomic

connections and momentum maps, we have developed the Poisson reduction of nonholo-

nomic systems with symmetry. We have shown that the Lagrangian reduction for the

nonholonomic mechanics is equivalent to both the symplectic reduction and the Poisson

reduction via a reduced constrained Legendre transform. But most importantly, we have
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shown where the momentum equation is lurking on the Hamiltonian side and how this is

related to the breaking up the Hamiltonian dynamics of such systems into a reconstruction

equation, a momentum equation and the reduced Hamilton equations.

Furthermore, we have developed in the first part of this thesis a “reduced La-

grangian optimization” procedure which can be used to find the optimal controls for such

systems. The techniques use the framework obtained in [BKMM] for studying nonholo-

nomic mechanical control systems with symmetry that might have a nontrivial momentum

equation. The snakeboard has been used to illustrate the method.

Future Work

In the immediate future, we will finish the work started in Chapter 4 in exploring

the failure of the Jacobi identity when the constraints are nonholonomic. As pointed out in

that chapter, the so-called Jacobiizer (the cyclic sum that vanishes when the Jacobi identity

holds) is an interesting expression involving the curvature of the underlying distribution

describing the nonholonomic constraints. From this formula, we can see clearly that the

Poisson bracket satisfies the Jacobi identity if and only if the constraints are holonomic.

Besides this, some other interesting topics for future work are

Optimal Control and Numerical Method In our work, we have initiated the in-

vestigation of optimal control for nonholonomic systems like the snakeboard, using the

Lagrangian framework developed in [BKMM] and coupling it with the method of Lagrange

multipliers and Lagrangian reduction. Interestingly, Gregory and Lin [1992] has used the

same method of Lagrange multipliers to devise a general, accurate and efficient numerical

method to solve the constrained optimal control problem. Ostrowski, Desai and Kumar

[1997] has built on these advances to study the optimal gait selection for nonholonomic

locomotion systems. This kind of finite element method applied to the variational problem

in integral form developed in Gregory and Lin [1992] fits well with the Lagrangian frame-

work and gives good and interesting results in the case of a relatively complicated problem,

namely the optimal control of a snakeboard. We would like to use this Lagrangian approach

to study the optimal control of a simplified model of the bicycles, which is an underactuated

balance system.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 130

Geometric Phase for Nonholonomic Systems The geometric effect of holonomy plays

an important role in the understanding of phase drifts and is a crucial ingredient in problems

of stabilization and tracking. The basic idea of holonomy is that if the system undergoes

cyclic motion in the shape space (this is sometimes the control space), then it need not

undergo cyclic motion in the configuration space. The difference between the beginning

and the end of the motion is given by a drift in the group variables and this is the geometric

phase. But the basic theory for the holonomy is not as well developed in the case of

nonholonomic systems as for holonomic ones.

The geometric tools to further develop the theory for systems with nonholonomic

constraints are laid in Marsden, Montgomery and Ratiu [1990] and in [BKMM]. We aim

to develop the theory by combining the approach in these two papers and also by making

the calculations more concrete and accessible. In particular, in [BKMM] the notion of the

nonholonomic connection is defined and this is what replaces the mechanical connection

in the case of holonomic constraints. What makes this theory more interesting is the

presence of of the constraint distribution as well as the fact that the momentum need not

be conserved.

Stability and (eventually) Bifurcation theories for Nonholonomic Systems Be-

cause of the momentum equation, it is natural to let the value of the momentum be a variable

and for this a Poisson rather than a symplectic viewpoint is more natural. This approach is

also natural for understanding the block diagonalization procedure in the energy-momentum

method developed by Simo, Lewis and Marsden [1991]. With the development of the Pois-

son geometry in this thesis, we hope that these results will lead to further progress on the

stability issues started by Zenkov, Bloch and Marsden [1997].
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