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B Outline of Presentation

» Main Theme

e how to use dynamical systems theory of 3-body problem
In space mission design.

» Background and Motivation:
e NASA’s Genesis Discovery Mission.

e Jupiter Comets.
» Planar Circular Restricted 3-Body Problem.
» Major Results and Some Technical Details.
» Low Energy Transfer to the Moon.
» Conclusion and Ongoing Work.



B Genesis Discovery Mission

» Genesis spacecraft will

e collect solar wind from a Ly halo orbit for 2 years,

e return those samples to Earth in 2003 for analysis.

» Halo orbit, transfer/ return trajectories in rotating frame.
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B Genesis Discovery Mission

» Must return in Utah during daytime.

» Return-to-Earth portion utilizes heteroclinic dynamics.
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B Jupiter Comets

» Rapid transition from outside to inside Jupiter’s orbit.
» Captured temporarily by Jupiter during transition.

» Exterior (2:3 resonance). Interior (3:2 resonance).
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B Jupiter Comets
» Belbruno/B. Marsden [1997]
» Lo/Ross [1997] :

e Comet in rotating frame follows invariant manifolds.

» Jupiter comets make resonance transition near L1 and Lo.
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B Planar Circular Restricted 3-Body Problem
» PCR3BP is a good starting model:

e Comets mostly heliocentric, but
their perturbation dominated by Jupiter’s gravitation.

e Their motion nearly in Jupiter’s orbital plane.

e Jupiter’s small eccentricity plays little role during transition.
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B Planar Circular Restricted 3-Body Problem

» 2 main bodies: Sun and Jupiter.

e Total mass normalized to 1:  mj=u, mg=1— pu.

e Rotate about center of mass, angular velocity normalized to 1.

» Choose a rotating coordinate system with (0, 0) at center of mass,
S and J fixed at (—pu,0) and (1 — pu,0).

: comet.i
6 1 ........................... L4 ........ \ P
% R :
= // N
.gos ......................... /. .. \ ..............
=g ) N
B \
(@] .
= / SN
%) i
£ Ls S L g Lo
> .
® rnS_ 1- U \ . / mJ = U.
c :
o \ A /
‘D \ : /
%_05 ........................ \ e / .............
g \ ./
2 N2
2 o
— oAb L5j ........ L
- Jupiter's orbit
1 -0.5 0 0.5 1

X (nondi mensional units, rotating frame)



B Equilibrium Points (PCR3BP)

» Comet’s equations of motion are
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» Five equilibrium points:

e 3 unstable equilbrium points on S-J line, Ly, Lo, Ls.

e 2 equilateral equilibrium points, L, Ls.
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B Hill’s Region (PCR3BP)

» Energy integral: E(z,y,z,7) = (&% + 3°)/2 + Uz, y).

» E can be used to determine (Hill’s ) region in position space
where comet is energetically permitted to move.

» Effective potential: U(z,y) = -5 — o n




B Hill’s Region (PCR3BP)

» To fix energy value FE is to fix height of plot of U(z,y).
Contour plots give 5 cases of Hill’s region.
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B The Flow near L{ and L»

» For energy value just above that of Lo,
Hill’s region contains a “neck” about L & Lo.

» Comet can make transition through these equilibrium regions.

» 4 types of orbits:
periodic,

y (nondimensional units, rotating frame)

=

o
a1
T

o

o
[

'
[y

. transit & nontransit.

forbidden

interior

region

Zero velocity curve
; bound| ng forb| dden

exterl or

ol pui

<4 A‘\

\'/’

|
|
Jupiter | % !
region |

g

y (nondimensional units, rotating frame)

-1 .05 0 . 0.5, 1
X (nondimensional units, rotating frame)

(@)

(b)

X (nondimensional units, rotating frame)



B Major Result (A): Heteroclinic Connection

» Found heteroclinic connection between pair of periodic orbits.

» Found a large class of orbits near this (homo /heteroclinic) chain.

» Comet can follow these channels in rapid transition.
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B Major Result (B): Existence of Transitional Orbits

» Symbolic sequence used to label itinerary of each comet orbit.

» Main Theorem: For any admissible itinerary,
e.g., (..., X, J;S,J, X ...), there exists an orbit whose
whereabouts matches this itinerary.

» Can even specify number of revolutions the comet makes
around Sun & Jupiter (plus Ly & Log).




B Major Result (C): Numerical Construction of Orbits

» Developed procedure to construct orbit
with prescribed itinerary.

» Example: An orbit with itinerary (X, J; S, J, X).
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B Details: Construction of (J,X;J,S,J) Orbits

» Invariant manifold tubes separate transit from nontransit orbits.

» Green curve (Poincaré cut of L stable manifold).
Red curve (cut of Ly unstable manifold).

» Any point inside the intersection region A is a (X;J,S) orbit.
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B Details: Construction of (J,X;J,S,J) Orbits

» The desired orbit can be constructed by

e Choosing appropriate Poincaré sections and

e linking invariant manifold tubes in right order.




B Low Energy Transfer to the Moon

» Traditional transfer from Earth to Moon is
by Hohmann transfer. See Apollo mission.

» 2 body Keplerian ellipse from Earth to Moon. Need 2 AV's.

Transfer
Ellipse

-
--——

Moon's Orbit



B Low Energy Transfer to the Moon

» In 1991, Muses-A did not have enough propellant
to reach Moon by Hohmann transfer.

» Belbruno/Miller designed a Sun-assisted
Earth-to-Moon transfer with ballistic capture at Moon.

» Similar techniques used by Japanese team to save mission.
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direction indicated at Earth injection. (from Belbruno and Miller [1993])






B Two Coupled 3-Body Systems

» We provide a theoretical basis and a numerical procedure
for constructing such ballistic capture transfer.

» By considering Sun-Earth-Moon-SC 4-body system

as 2 coupled 3-body systems.

» Better seen in Sun-Earth rotating frame.
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B Two Coupled 3-Body Systems

» Find position/velocity for spacecraft
e integrating forward, SC guided by Earth-Moon manifold
and get ballistically captured at Moon;

e integrating backward, SC hugs Sun-Earth manifolds
with a twist and return to Earth.
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B Two Coupled 3-Body Systems

» In Sun-Earth rotating frame, we have

e Sun-Earth libration point portion.
e Lunar ballistic capture portion.
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B Lunar Ballistic Capture Portion

» Stable manifold tube provides
temporary ballistic capture mechanism by the Moon.

» Picking a point inside stable manifold cut and integrating for-
ward, spacecraft gets ballistic capture by Moon.
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B Lunar Ballistic Capture Portion

» By saving (on-board) fuel for lunar ballistic capture portion,

this design uses less fuel
than Earth-to-Moon Hohmann transfer.
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B Sun-Earth Libration Point Portion

» Pick initial condition outside Poincaré cut,
backward integrate to produce a trajectory:

e hugs unstable manifold back to Lo region with a twist,

e hugs stable manifold back towards Earth.
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B Sun-Earth Libration Point Portion

» Amount of twist depends sensitively on distance from manifold,
can change dramatically with small AV

» With small AV,
can target back to (200 km) Earth parking orbit.
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B Connecting Two Portions

» Recall: Sun-Earth-Moon-SC 4-body system
as 2 coupled 3-body systems.
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B Connecting Two Portions

» Vary phase of Moon until Earth-Moon Lo manifold cut
intersects Sun-Earth Lo manifold cut.
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B Connecting Two Portions

» Pick
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B Connecting Two Portions

» With slight modification ( a 34 m/s AV at patch point),
this produces a solution in bicircular 4-body problem.

» Since capture at Moon is natural (zero AV'),
amount of on-board AV needed is lowered (by about 20%).
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B Conclusion

» Review: theory of libration point dynamics of 3-body system.

e Invariant manifold structure determines
material transport (comets) in 3-body system,

e [t can be used in space mission design.
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B Conclusion

» Reveal the dynamics for “Low Energy Transfer to Moon.”

e [ubular regions, regions exterior to manifolds,
and manifolds themselves all may be used.

e Can pick and choose a variety of trajectories

to suit almost any purpose at hand.
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B Ongoing Work: Extension to 3 Dimensions

» Find chains/dynamical channels for 3D periodic orbits,
use them for low fuel deployment of spacecraft.

» Understand phase space geometry near L1 & Lo;
use it to design/control constellations of spacecraft.




B Ongoing Work: Coupling Two 3-Body Systems

» To understand
dynamics governing transport between adjacent planets.

» Preliminary result on a “Petit Grand Tour” of Jupiter’s moons.

e 1 orbit around Ganymede.
e 4 orbits around Furopa, etc.

e Less than half of Hohmann transter.
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B Ongoing Work: Coupling Two 3-Body Systems

» Using differential correction,
can utilize this trajectory as initial guess

e to find 3-dimensional “Petit Grand Tour” trajectory,

e with full solar system model.
» Optimize trajectory
e by applying optimal control (e.g., COOPT),

e with continuous (low) thrust.
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B Ongoing Work: 4 or More Body Problems

» Interplanetary transport and distribution of material.
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