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� Outline of Presentation

IMain Theme

• how to use dynamical systems theory of 3-body problem
in space mission design.

IBackground and Motivation:

• NASA’s Genesis Discovery Mission.
• Jupiter Comets.

I Planar Circular Restricted 3-Body Problem.

IMajor Results and Some Technical Details.

I Low Energy Transfer to the Moon.

IConclusion and Ongoing Work.



� Genesis Discovery Mission

IGenesis spacecraft will

• collect solar wind from a L1 halo orbit for 2 years,
• return those samples to Earth in 2003 for analysis.

IHalo orbit, transfer/ return trajectories in rotating frame.
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� Genesis Discovery Mission

IMust return in Utah during daytime.

IReturn-to-Earth portion utilizes heteroclinic dynamics.
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� Jupiter Comets

IRapid transition from outside to inside Jupiter’s orbit.

ICaptured temporarily by Jupiter during transition.

I Exterior (2:3 resonance). Interior (3:2 resonance).
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� Jupiter Comets

I Belbruno/B. Marsden [1997]

I Lo/Ross [1997] :

• Comet in rotating frame follows invariant manifolds.

I Jupiter comets make resonance transition near L1 and L2.
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� Planar Circular Restricted 3-Body Problem

I PCR3BP is a good starting model:

• Comets mostly heliocentric, but
their perturbation dominated by Jupiter’s gravitation.
• Their motion nearly in Jupiter’s orbital plane.
• Jupiter’s small eccentricity plays little role during transition.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x (nondimensional units, rotating frame)

y 
(n

on
di

m
en

si
on

al
 u

ni
ts

, r
ot

at
in

g 
fr

am
e)

mS = 1 - µ mJ = µ

S J

Jupiter's orbit

L2

L4

L5

L3 L1  

comet



� Planar Circular Restricted 3-Body Problem

I 2 main bodies: Sun and Jupiter.

• Total mass normalized to 1: mJ = µ, mS = 1− µ.
• Rotate about center of mass, angular velocity normalized to 1.

I Choose a rotating coordinate system with (0, 0) at center of mass,
S and J fixed at (−µ, 0) and (1− µ, 0).
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� Equilibrium Points (PCR3BP)

I Comet’s equations of motion are

ẍ− 2ẏ = −∂U
∂x

ÿ + 2ẋ = −∂U
∂y

U = −x
2 + y2

2
− 1− µ

rs
− µ

rj

I Five equilibrium points:

• 3 unstable equilbrium points on S-J line, L1, L2, L3.
• 2 equilateral equilibrium points, L4, L5.
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� Hill’s Region (PCR3BP)

I Energy integral: E(x, y, ẋ, ẏ) = (ẋ2 + ẏ2)/2 + U(x, y).

I E can be used to determine (Hill’s ) region in position space
where comet is energetically permitted to move.

I Effective potential: U(x, y) = −x
2+y2

2 − 1−µ
rs
− µ
rj
.



� Hill’s Region (PCR3BP)

I To fix energy value E is to fix height of plot of U(x, y).
Contour plots give 5 cases of Hill’s region.
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� The Flow near L1 and L2

I For energy value just above that of L2,
Hill’s region contains a “neck” about L1 & L2.

I Comet can make transition through these equilibrium regions.

I 4 types of orbits:
periodic, asymptotic, transit & nontransit.
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� Major Result (A): Heteroclinic Connection

I Found heteroclinic connection between pair of periodic orbits.

I Found a large class of orbits near this (homo/heteroclinic) chain.

I Comet can follow these channels in rapid transition.
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� Major Result (B): Existence of Transitional Orbits

I Symbolic sequence used to label itinerary of each comet orbit.

IMain Theorem: For any admissible itinerary,
e.g., (. . . ,X,J; S,J,X, . . . ), there exists an orbit whose
whereabouts matches this itinerary.

I Can even specify number of revolutions the comet makes
around Sun & Jupiter (plus L1 & L2).
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� Major Result (C): Numerical Construction of Orbits

I Developed procedure to construct orbit
with prescribed itinerary.

I Example: An orbit with itinerary (X,J; S,J,X).

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

x (rotating frame)

y
(r
o
ta
ti
n
g
fr
am

e)

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Jupiter

Forbidden Region

Forbidden Region

L1 L2

Sun

x (rotating frame)

y
(r
o
ta
ti
n
g
fr
am

e)

(X,J,S,J,X)
Orbit





� Details: Construction of (J,X; J,S,J) Orbits

I Invariant manifold tubes separate transit from nontransit orbits.

IGreen curve (Poincaré cut of L1 stable manifold).
Red curve (cut of L2 unstable manifold).

I Any point inside the intersection region ∆J is a (X; J,S) orbit.
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� Details: Construction of (J,X; J,S,J) Orbits

I The desired orbit can be constructed by

• Choosing appropriate Poincaré sections and
• linking invariant manifold tubes in right order.
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� Low Energy Transfer to the Moon

I Traditional transfer from Earth to Moon is
by Hohmann transfer. See Apollo mission.

I 2 body Keplerian ellipse from Earth to Moon. Need 2 ∆V s.
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� Low Energy Transfer to the Moon

I In 1991, Muses-A did not have enough propellant
to reach Moon by Hohmann transfer.

I Belbruno/Miller designed a Sun-assisted
Earth-to-Moon transfer with ballistic capture at Moon.

I Similar techniques used by Japanese team to save mission.

(from Belbruno and Miller [1993])





� Two Coupled 3-Body Systems

IWe provide a theoretical basis and a numerical procedure
for constructing such ballistic capture transfer.

I By considering Sun-Earth-Moon-SC 4-body system
as 2 coupled 3-body systems.

I Better seen in Sun-Earth rotating frame.
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� Two Coupled 3-Body Systems

I Find position/velocity for spacecraft

• integrating forward, SC guided by Earth-Moon manifold
and get ballistically captured at Moon;
• integrating backward, SC hugs Sun-Earth manifolds

with a twist and return to Earth.
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� Two Coupled 3-Body Systems

I In Sun-Earth rotating frame, we have

• Sun-Earth libration point portion.
• Lunar ballistic capture portion.
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� Lunar Ballistic Capture Portion

I Stable manifold tube provides
temporary ballistic capture mechanism by the Moon.

I Picking a point inside stable manifold cut and integrating for-
ward, spacecraft gets ballistic capture by Moon.
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� Lunar Ballistic Capture Portion

I By saving (on-board) fuel for lunar ballistic capture portion,
this design uses less fuel
than Earth-to-Moon Hohmann transfer.
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� Sun-Earth Libration Point Portion

I Pick initial condition outside Poincaré cut,
backward integrate to produce a trajectory:

• hugs unstable manifold back to L2 region with a twist,
• hugs stable manifold back towards Earth.
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� Sun-Earth Libration Point Portion

I Amount of twist depends sensitively on distance from manifold,
can change dramatically with small ∆V .

IWith small ∆V ,
can target back to (200 km) Earth parking orbit.
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� Connecting Two Portions

I Recall: Sun-Earth-Moon-SC 4-body system
as 2 coupled 3-body systems.
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� Connecting Two Portions

I Vary phase of Moon until Earth-Moon L2 manifold cut
intersects Sun-Earth L2 manifold cut.
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� Connecting Two Portions

I Pick initial condition in region

• in interior of green curve
• but in exterior of red curves.
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� Connecting Two Portions

IWith slight modification ( a 34 m/s ∆V at patch point),
this produces a solution in bicircular 4-body problem.

I Since capture at Moon is natural (zero ∆V ),
amount of on-board ∆V needed is lowered (by about 20%).
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� Conclusion

I Review: theory of libration point dynamics of 3-body system.

• Invariant manifold structure determines
material transport (comets) in 3-body system,
• It can be used in space mission design.
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� Conclusion

I Reveal the dynamics for “Low Energy Transfer to Moon.”

• Tubular regions, regions exterior to manifolds,
and manifolds themselves all may be used.
• Can pick and choose a variety of trajectories

to suit almost any purpose at hand.
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� Ongoing Work: Extension to 3 Dimensions

I Find chains/dynamical channels for 3D periodic orbits,
use them for low fuel deployment of spacecraft.

I Understand phase space geometry near L1 & L2;
use it to design/control constellations of spacecraft.
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� Ongoing Work: Coupling Two 3-Body Systems

I To understand
dynamics governing transport between adjacent planets.

I Preliminary result on a “Petit Grand Tour” of Jupiter’s moons.

• 1 orbit around Ganymede.
• 4 orbits around Europa, etc.
• Less than half of Hohmann transfer.
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� Ongoing Work: Coupling Two 3-Body Systems

I Using differential correction,
can utilize this trajectory as initial guess

• to find 3-dimensional “Petit Grand Tour” trajectory,
• with full solar system model.

IOptimize trajectory

• by applying optimal control (e.g., COOPT),
• with continuous (low) thrust.
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� Ongoing Work: 4 or More Body Problems

I Interplanetary transport and distribution of material.
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