Tube Dynamics, Lobe Dynamics, & Low Energy Tour of Jupiter's Moons

Koon, Lo, Marsden, and Ross

Wang Sang Koon Control and Dynamical Systems, Caltech

koon @cds.caltech.edu

Acknowledgements

- ► H. Poincaré, J. Moser
- ► C. Conley, R. McGehee, D. Appleyard
- ► C. Simó, J. Llibre, R. Martinez
- ▶ B. Farquhar, D. Dunham
- **E.** Belbruno, B. Marsden, J. Miller
- ► K. Howell, B. Barden, R. Wilson
- ► S. Wiggins, L. Wiesenfeld, C. Jaffé, T. Uzer
- ▶ V. Rom-Kedar, F. Lekien, L. Vela-Arevalo
- ▶ M. Dellnitz, O. Junge, and Paderborn group

Outline of Presentation

► Main Theme

• how to use dynamical systems theory of 3-body problem in space mission design.

Background and **Motivation**:

- NASA's Genesis Discovery Mission.
- Jupiter Comets.
- ► Circular Restricted 3-Body Problem.
- ► Major Results on Tube Dynamics.
- ► Lobe Dynamics & Navigating in Phase Space.
 - A Low Energy Tour of Jupiter's Moons.
- **Conclusion** and **Ongoing Work**.
 - Two Full Body Problem and Astroid Pairs.
 - Set Oriented Method.

Genesis Discovery Mission

► Genesis spacecraft

- is collecting solar wind sample from a L_1 halo orbit,
- will **return** them to Earth next year.

► Halo orbit, transfer/ return trajectories in rotating frame.

Genesis Discovery Mission

▶ Follows natural dynamics, little propulsion after launch.

Return-to-Earth portion utilizes heteroclinic dynamics.

Jupiter Comets

Rapid transition from outside to inside Jupiter's orbit.
 Captured temporarily by Jupiter during transition.

 $\blacktriangleright Exterior (2:3 resonance). Interior (3:2 resonance).$

Jupiter Comets

▶ Belbruno and B. Marsden [1997]

▶ Lo and Ross [1997]

• Comet in **rotating frame** follows **invariant manifolds**.

▶ Jupiter comets make **resonance transition** near L_1 and L_2 .

Circular Restricted 3-Body Problem

▶ **Planar CR3BP**. is a good starting model:

- Comets mostly **heliocentric**, but their perturbation dominated by **Jupiter's gravitation**.
- Jupiter's small **eccentricity** plays little role during transition.
- Their motion nearly in Jupiter's **orbital plane**.

► Results generalized to **spatial CR3BP** (**planar** for illustration.)

Planar Circular Restricted 3-Body Problem

- \triangleright 2 main bodies: **Sun** and **Jupiter**.
 - Total mass normalized to 1: $m_J = \mu$, $m_S = 1 \mu$.
 - Rotate about center of mass, angular velocity normalized to 1.
- ► Choose **rotating** coordinate system with origin at center of mass, **S** and **J** fixed at $(-\mu, 0)$ and $(1 - \mu, 0)$.

Equilibrium Points

► Comet's equations of motion are

$$\ddot{x} - 2\dot{y} = -\frac{\partial U}{\partial x}, \qquad \ddot{y} + 2\dot{x} = -\frac{\partial U}{\partial y},$$

where $U(x, y) = -\frac{x^2 + y^2}{2} - \frac{1 - \mu}{r_s} - \frac{\mu}{r_j}.$

► Five equilibrium points:

• 3 **unstable** equilbrium points on S-J line, L_1, L_2, L_3 .

• 2 equilateral equilibrium points, L_4, L_5 .

Hill's Realm

► Energy integral: $E(x, y, \dot{x}, \dot{y}) = (\dot{x}^2 + \dot{y}^2)/2 + U(x, y).$

► E can be used to determine (**Hill's**) **realm** in position space where comet is energetically permitted to move.

► Effective potential: $U(x,y) = -\frac{x^2+y^2}{2} - \frac{1-\mu}{r_s} - \frac{\mu}{r_j}$.

Hill's Realm

► To fix energy value E is to fix height of plot of U(x, y). Contour plots give 5 cases of Hill's realm.

The Flow near L_1 and L_2

- For energy value just above that of L_2 , Hill's realm contains a "neck" about $L_1 \& L_2$.
- ▶ Comet can make **transition** through these equilibrium realms.
- ► Dynamics in equilibrium realm: **Saddle** X **Center**.
- ► 4 types of orbits:

periodic, asymptotic, transit & nontransit.

Planar: Invariant Manifold as Separatrix

- Asymptotic orbits form 2D invariant manifold tubes in 3D energy surface.
- ▶ They separate transit and non-transit orbits:
 - Transit orbits are those inside the tubes.
 - Non-transit orbits are those outside the tubes.

Spatial Restricted 3-Body Problem (CR3BP)

- ► Dynamics near equilibrium point: **Saddle** X **Center** X **Center**.
 - **NHIM** (periodic/quasi-periodic): 3-sphere S^3
 - asymptotic orbits to NHIM: $S^3 \times I$ ("tubes")
 - **transit** and **nontransit** orbits.

Spatial: Invariant Manifold as Separatrix

- Asymptotic orbits form **4D invariant manifold "tubes"** $(S^3 \times I)$ in **5D energy surface**.
- ▶ They separate transit and non-transit orbits:
 - Transit orbits are those inside the "tubes".
 - Non-transit orbits are those outside the "tubes".

Major Result (A): Heteroclinic Connection

- ► Found **heteroclinic connection** between pair of periodic orbits.
- ▶ Found a large class of **orbits** near this (homo/heteroclinic) *chain*.
- ▶ Comet can follow these *channels* in rapid transition.

Major Result (B): Existence of Transitional Orbits

- **Symbolic sequence** used to label itinerary of each comet orbit.
- Main Theorem: For any admissible itinerary,
 e.g., (..., X, J; S, J, X, ...), there exists an orbit whose whereabouts matches this itinerary.
- ► Can even specify **number of revolutions** the comet makes around Sun & Jupiter (plus $L_1 \& L_2$).

Major Result (C): Numerical Construction of Orbits

Developed procedure to construct orbit with prescribed itinerary.

 \blacktriangleright Example: An orbit with itinerary $(\mathbf{X}, \mathbf{J}; \mathbf{S}, \mathbf{J}, \mathbf{X})$.

Details: Construction of $(\mathbf{J}, \mathbf{X}; \mathbf{J}, \mathbf{S}, \mathbf{J})$ Orbits

- ▶ Invariant manifold **tubes** separate transit from nontransit orbits.
- ▶ Green curve (Poincaré cut of L_1 stable manifold). Red curve (cut of L_2 unstable manifold).
- ▶ Any point inside the intersection region Δ_J is a $(\mathbf{X}; \mathbf{J}, \mathbf{S})$ orbit.

Details: Construction of $(\mathbf{J}, \mathbf{X}; \mathbf{J}, \mathbf{S}, \mathbf{J})$ Orbits

- ► The desired orbit can be constructed by
 - Choosing appropriate **Poincaré sections** and
 - linking invariant **manifold tubes** in right order.

Computation of NHIM and Its Invariant Manifolds

▶ Lie Transform put CR3BP Hamiltonian into normal form

$$\bar{H}_N = \lambda q_1 p_1 + \frac{\nu}{2} (q_2^2 + p_2^2) + \frac{\omega}{2} (q_3^2 + p_3^2) + \sum_{n=3}^N H_n(q_1 p_1, q_2, p_2, q_3, p_3).$$

► Set $q_1 = p_1 = 0$, get **NHIM** (S³).

▶ Set $q_1 = 0$ ($p_1 = 0$) and integrate, get stable (unstable) manifold.

Petit Grand Tour of Jupiter's Moons (Planar Model)

Used invariant manifolds

to construct trajectories with interesting characteristics:

- Petit Grand Tour of Jupiter's moons.
 1 orbit around Ganymede. 4 orbits around Europa.
- A ΔV nudges the SC from
 Jupiter-Ganymede system to Jupiter-Europa system.

▶ Instead of **flybys**, can orbit several moons for **any duration**.

Extend from Planar Model to Spatial Model

Petit Grand Tour of Jupiter's Moons

- Jupiter-Ganymede-Europa-SC 4-body system approximated as 2 coupled 3-body systems
- ► **Invariant manifold tubes** of two 3-body systems are linked in right order to construct orbit with desired itinerary.
- ▶ Initial solution refined in **4-body model**.

Look for Natural Pathways to Bridge the Gap

- **Tubes** of two 3-body systems **may not intersect** for awhile. May need large ΔV to "jump" from one tube to another.
- Look for natural pathways to bridge the gap by "hopping" through phase space
 - between z_0 where tube of one system **enters** and z_2 where tube of another system **exits** (into Europa realm).

Transport in Phase Space via Tube & Lobe Dynamics

► By using

- \bullet ${\bf tubes}$ of rapid transition that connect different ${\bf realms}$
- **lobe dynamics** to hop through phase space within a **realm**,

New tour only needs $\Delta V = 20 \text{m/s}$ (50 times less).

Lobe Dynamics: Mixed Phase Space
 Poincaré section reveals mixed phase space:
 resonance regions and

• "chaotic sea".

Transport between Regions via Lobe Dynamics

- **Invariant manifolds** divide phase space into resonance regions.
- ► Transport between regions can be studied via **lobe dynamics**.

Transport between Regions via Lobe Dynamics

- Segments of **unstable** and **stable** manifolds form **partial barriers** between regions R_1 and R_2 .
- \blacktriangleright $L_{1,2}(1), L_{2,1}(1)$ are **lobes**; they form a **turnstile**.
 - In one iteration, only points from R₁ to R₂ are in L_{1,2}
 only points from R₂ to R₁ are in L_{2,1}(1).
- ▶ By studying pre-images of $L_{1,2}(1)$, one can find efficient way from R_1 to R_2 .

Hopping through Resonaces in Low Energy Tour

Guided by lobe dynamics, hopping through resonances (essential for low energy tour) can be performed.

Tube/Lobe Dynamics: Transport in Solar System

- To use tube/lobe dynamics of spatial 3-body problem to systematically design low-fuel trajectory.
- Part of our program to study transport in solar system using tube and lobe dynamics.

Tube/Lobe Dynamics: 2FBP/Asteroid Pairs

- ► To study dynamical interacton between 2 rigid bodies where their **rotational** and **translational** motions are coupled.
 - formation of binary asteroids (shown below are Ida and Dactyl)
 - evolution of asteroid rotational states

Techniques of Almost Invariant Sets (AIS)

- Combine techniques of almost invariant sets (tree structured box elimination/graph partitioning algorithms) with lobe dynamics techniques.
- Compute almost invariant sets, resonance regions, bottlenecks and transport rates (Sun-Jupiter system).
- Besides astronomy, applicable to multibody problems: molecular modeling, chemical reaction rates, etc.

