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The invariant manifold structures of the collinear libration points particular,
the stable and unstable invariant manifold “tubes” associated to for the spatial
restricted three-body problem provide the framework for understanding com-
plex dynamical phenomena from a geometric point of view. In libration point
periodic orbits are phase space structures that provide a conduit for orbits
between the primary bodies in separate three-body systems. These invariant

This paper is a summary of a longer paper, “Invariant Manifolds, the Spatial Three-Body
Problem and Space Mission Design,”! which received the award for the Best Paper at
the ATAA Astrodynamics Specialist Conference, Quebec City, Canada, August 2001.
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manifold tubes can be used to construct new spacecraft trajectories, such as
a “Petit Grand Tour” of the moons of Jupiter. Previous work focused on the
planar circular restricted three-body problem. The current work extends the
results to the spatial case.

1. Introduction

New space missions are increasingly more complex, requiring new and un-
usual kinds of orbits to meet their scientific goals, orbits which are not
easily found by the traditional conic approach. The delicate heteroclinic
dynamics employed by the Genesis Discovery Mission dramatically illus-
trates the need for a new paradigm: study of the three-body problem using
dynamical systems theory as laid out by Poincaré.?:3:

It appears that the dynamical structures of the three-body problem
(such as stable and unstable manifolds, and bounding surfaces), reveal
much about the morphology and transport of particles within the solar
system, whether they are asteroids, dust grains, or spacecraft. The cross-
fertilization between the study of the natural dynamics in the solar system
and engineering applications has produced a number of new techniques for
constructing spacecraft trajectories with desired behaviors, such as rapid
transition between the interior and exterior Hill’s regions, resonance hop-
ping, temporary capture, and collision.’

The invariant manifold structures associated to the collinear libration
points for the restricted three-body problem, which exist for an interesting
range of energies, provide a framework for understanding these dynamical
phenomena from a geometric point of view. In particular, the stable and
unstable invariant manifold tubes associated to L; and L» orbits are phase
space structures that conduct particles to and from the smaller primary
body (e.g., Jupiter in the Sun-Jupiter-comet three-body system), and be-
tween primary bodies for separate three-body systems (e.g., Saturn and
Jupiter in the Sun-Saturn-comet and the Sun-Jupiter-comet three-body
systems).

Furthermore, these invariant manifold tubes can be used to produce new
techniques for constructing spacecraft trajectories with interesting charac-
teristics. These may include mission concepts such as a low energy transfer
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from the Earth to the Moon” and a “Petit Grand Tour” of the moons of
Jupiter.® Using the phase space tubes in each 3-body system, we were able
to construct a transfer trajectory from the Earth which executes an unpro-
pelled (i.e., ballistic) capture at the Moon. An Earth-to-Moon trajectory
of this type, which utilizes the perturbation by the Sun, requires less fuel
than the usual Hohmann transfer.’

Moreover, by decoupling the Jovian moon n-body system into several
three-body systems, we can design an orbit which follows a prescribed
itinerary in its visit to Jupiter’s many moons. In an earlier study of a
transfer from Ganymede to Europa,? we found our transfer AV to be half
the Hohmann transfer value. As an example, we generated a tour of the
Jovian moons: starting beyond Ganymede’s orbit, the spacecraft is ballis-
tically captured by Ganymede, orbits it once and escapes, and ends in a
ballistic capture at Europa. One advantage of this Petit Grand Tour as
compared with the Voyager-type flybys is the “leap-frogging” strategy. In
this new approach to space mission design, the spacecraft can circle a moon
in a loose temporary capture orbit for a desired number of orbits, perform
a transfer AV and become ballistically captured by another adjacent moon
for some number of orbits, etc. Instead of flybys lasting only seconds, a sci-
entific spacecraft can orbit several different moons for any desired duration.

The design of the Petit Grand Tour in the planar case is guided by
two main ideas. First, the Jupiter-Ganymede-Europa-spacecraft four-body
system is approximated as two coupled planar three-body systems. Then,
as shown in Figure 1, the invariant manifold tubes of the two planar three-
body systems are used to construct an orbit with the desired behaviors.
This initial solution is then refined to obtain a trajectory in a more accurate
4-body model.

The coupled 3-body model considers the two adjacent moons com-
peting for control of the same spacecraft as two nested 3-body systems
(e.g., Jupiter-Ganymede-spacecraft and Jupiter-Europa-spacecraft). When
close to the orbit of one of the moons, the spacecraft’s motion is domi-
nated by the 3-body dynamics of the corresponding planet-moon system.
Between the two moons, the spacecraft’s motion is mostly planet-centered
Keplerian, but is precariously poised between two competing 3-body dy-
namics. In this region, orbits connecting unstable libration point orbits of
the two different 3-body systems may exist, leading to complicated transfer
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dynamics between the two adjacent moons. We seek intersections between
invariant manifold tubes which connect the capture regions around each
moon. In the planar case, these tubes separate transit orbits (inside the
tube) from non-transit orbits (outside the tube). They are the phase space
structures that provide a conduit for orbits between regions within each
three-body systems as well as between primary bodies for separate three-
body systems.?

Extending Results from Planar Model to Spatial Model. Pre-
vious work based on the planar circular restricted three-body problem
(PCR3BP) revealed the basic structures controlling the dynamics.?%:7-8
But current missions (such as Genesis?) and future missions will require
three-dimensional capabilities, such as control of the latitude and longi-
tude of a spacecraft’s escape from and entry into a planetary or moon
orbit. For example, the proposed Europa Orbiter mission desires a cap-
ture into a high inclination polar orbit around Europa. Three-dimensional
capability is also required when decomposing an n-body system into three-
body systems that are not co-planar, such as the Earth-Sun-spacecraft and
Earth-Moon-spacecraft systems. These demands necessitate the extension
of earlier results to the spatial model (CR3BP).

Intersection
point

Poincare
section

Spacecraft Europa’s
transfer stable manifold
trajectory

AVat transfer /N
patch point

L
stable manifold

Ganymede’s Ly p.o.

Ganyn unstable manifold

unstable manifold

(2) (b)

Fig. 1. The Coupled 3-Body Model. (a) Find an intersection between dynamical
channel enclosed by Ganymede’s L; periodic orbit unstable manifold and dynamical
channel enclosed by Europa’s Ly periodic orbit stable manifold (shown in schematic).
(b) Integrate forward and backward from patch point (with AV to take into account
velocity discontinuity) to generate desired transfer between the moons (schematic).
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In our current work on the spatial three-body problem,! we are able to
show that the invariant manifold structures of the collinear libration points
still act as the separatrices for two types of motion, those inside the in-
variant manifold “tubes” are transit orbits and those outside the “tubes”
are non-transit orbits. We have also designed an algorithm for construct-
ing orbits with any prescribed itinerary and obtained some initial results
on the basic itinerary. Furthermore, we have applied the new techniques
to the construction of a three dimensional Petit Grand Tour of the Jo-
vian moon system. By approximating the dynamics of the Jupiter-Europa-
Ganymede-spacecraft 4-body problem as two 3-body subproblems, we seek
intersections between the channels of transit orbits enclosed by the stable
and unstable manifold tubes of different moons. In our example, we have
designed a low energy transfer trajectory from Ganymede to Europa that
ends in a high inclination orbit around Europa. See Figure 2.

Focus of this Paper. In this paper, we will mainly focus on the key ideas
that lead to the construction of the Petit Grand Tour. For more details of
this work, the reader can consult our full paper published in Advances in
the Astronautical Sciences.!

2. Invariant Manifold as Separatrix

Review of Planar Case. Recall that in the planar Jupiter-Moon-
spacecraft 3-body system (PCR3BP), for an energy value just above that of
Lo, the Hill’s region contains a “neck” about L; and Ly and the spacecraft
can make transition through these necks. More precisely, in each equilib-
rium region around L; and L, the dynamics of the spacecraft is of the
form saddle and center and there exist 4 types of orbits: 10-1!

(1) an unstable periodic orbit (black oval);

(2) four cylinders of asymptotic orbits that wind onto or off this periodic
orbit; they form pieces of stable and unstable manifolds;

(3) transit orbits which the spacecraft can use to make a transition from
one region to the other; for example, passing from the exterior region
(outside moon’s orbit) into the moon temporary capture region (bubble
surrounding moon) via the neck region;
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Ganymede's orbit
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performed Europa’s orbit

45 - Injection into
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to Ganymede
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Fig. 2. The three dimensional Petit Grand Tour space mission concept for the Jo-
vian moons. (a) We show a spacecraft trajectory coming into the Jupiter system and
transferring from Ganymede to Europa using a single impulsive maneuver, shown in a
Jupiter-centered inertial frame. (b) The spacecraft performs one loop around Ganymede,
using no propulsion at all, as shown here in the Jupiter-Ganymede rotating frame. (c)
The spacecraft arrives in Europa’s vicinity at the end of its journey and performs a fi-
nal propulsion maneuver to get into a high inclination circular orbit around Europa, as
shown here in the Jupiter-Europa rotating frame.

(4) nontransit orbit where the spacecraft bounces back to its original re-
gion.

Furthermore, these two-dimensional tubes partition the three-
dimensional energy manifold and act as separatrices for the flow through
the equilibrium region: those inside the tubes are transit orbits and those
outside the tubes are non-transit orbits. For example in the Jupiter-moon
system, for a spacecraft to transit from outside the moon’s orbit to the
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Fig. 3. (a) Hill’s region (schematic, the region in white), which contains a “neck” about
Ly and Ls. (b) The flow in the region near Lo, showing a periodic orbit around Ls, an
asymptotic orbit winding onto the periodic orbit, two transit orbits and two non-transit
orbits. A similar figure holds for the region around Lj.

moon capture region, it is possible only through the L, periodic orbit sta-
ble manifold tube. Hence, stable and unstable manifold tubes control the
transport of material to and from the capture region.

Results of the Spatial Case. This planar result generalizes readily to
the spatial case.!? For the dynamics near the equilibrium point, instead of
the form saddle and center, we have saddle, center, and center. The last
part corresponds to the harmonic motion in the z-direction. Since it is more
difficult to draw spatial figures, we will still use the planar case to do the
illustration. Again, there are 4 types of orbits, as depcited in Figure 4:

(1) a large number of bounded orbits, both periodic and quasi-periodic,
which together form a 3-sphere, i.e., instead of a periodic orbit S! in
the planar case, you have a S® of bounded orbits in the spatial case;
it is an example of a normally hyperbolic invariant manifold (NHIM)!3
where the stretching and contraction rates under the linearized dynam-
ics transverse to the 3-sphere dominate those tangent to the 3-sphere;

(2) four cylinders of asymptotic orbits that wind onto and off this 3-
sphere; the only difference from the planar case is that, instead of
two-dimensional invariant manifold tubes, one has four-dimensional in-
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variant manifold tube: S% x R;
(3) transit and nontransit orbits.

Now, since the invariant manifold tubes are four-dimensional tubes in a five-
dimensional energy manifold, they again act as separatrices for the flow
through the equilibrium region: those inside the tubes are transit orbits
and they transit from one region to another; those outside the tubes are
non-transit orbits and they bounce back to their original region.

In fact, it can be shown that for a energy value just above that
of Ly (Ls), the nonlinear dynamics in the equilibrium region R; (R2)
is qualitatively the same as the linearized picture that we have shown
above.1415:16,17,18,19 Thig geometric insight will be used below to guide our
numerical explorations in constructing orbits with prescribed itineraries.

3. Constructing Orbits with Desired Itinerary

A key difficulty in the spatial case is to figure out how to link appropriate
invariant manifold tubes together to construct orbit that visits the desired
regions in a desired order.

Review of Planar Case. In the planar case, it is quite straightforward.
Let us take constructing an (X; M, I) orbit as an example. This orbit goes
from the exterior region (X) to the interior region (I) passing through the
moon region (M). Recall that for the planar case: the invariant manifold
tubes separate two types of motion. The orbits inside the tube transit from
one region to another; those outside the tubes bounce back to their original
region.

Since the upper curve in Figure 4(b) is the Poincaré cut of the stable
manifold of the periodic orbit around L in the Uz plane, a point inside that
curve is an orbit that goes from the moon region to the interior region, so
this region can be described by the label (; M, I). Similarly, a point inside
the lower curve of Figure 4(b) came from the exterior region into the moon
region, and so has the label (X; M). A point inside the intersection A of
both curves is an (X; M, I) orbit, so it makes a transition from the exterior
region to the interior region, passing through the moon region. Other more
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Fig. 4. (a) The projection of invariant manifolds WZ;{‘;}_O_ and W}:‘;{‘;o_ in the region
M of the position space. (b) A close-up of the intersection region between the Poincaré
cuts of the invariant manifolds on the Us section (zx = 1 — u,y > 0). (c) Location
of Lagrange point orbit invariant manifold tubes in position space. Stable manifolds
are lightly shaded, unstable manifolds are darkly. The location of the Poincaré sections
(U, UTJ Us, and Uy) are also shown. (d) A close-up near the moon. . .

complicated orbits can be constructed by choosing appropriate Poincare

sections and linking invariant manifold tubes in right order.

Extension to Spatial Case. Since the key step in the planar case is to
find the intersection region inside the two Poincaré cuts, a key difficulty
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is to determine how to extend this technique to the spatial case. Take as
an example the construction of a transit orbit with the itinerary (X; M, I)
that goes from the exterior region to the interior region of the Jupiter-
moon system. Recall that in the spatial case, the unstable manifold “tube”
of the NHIM around L» which separates the transit and non-transit orbits
is topologically S® x R. For a transversal cut at £ = 1 — u (a hyperplane
through the moon), the Poincaré cut is a topological 3-sphere S* (in R?). It
is not obvious how to find the intersection region inside these two Poincaré
cuts (S3) since both its projections on the (y, 7)-plane and the (z, )-plane
are (2-dimensional) disks D2. (One easy way to visualize this is to look at
the equation: £2 + £2 + 72 + 72 = r2 = rg + 5. that describes a 3-sphere
in R*. Clearly, its projections on the (£,€)-plane and the (1,7)-plane are
2-disks as r¢ and 7, vary from 0 to r and from r to 0 respectively.)

However, in constructing an orbit which transitions from the outside to
the inside of a moon’s orbit, suppose that we might also want it to have
other characteristics above and beyond this gross behavior. We may want to
have an orbit which has a particular z-amplitude when it is near the moon.
If we set z = ¢,2 = 0 where c is the desired z-amplitude, the problem of
finding the intersection region inside two Poincaré cuts suddenly becomes
tractable. Now, the projection of the Poincaré cut of the above unstable
manifold tube on the (y,y)-plane will be a closed curve and any point
inside this curve is a (X; M) orbit which has transited from the exterior
region to the moon region passing through the Lo equilibrium region. See
Figure 5.

Similarly, we can apply the same techniques to the Poincaré cut of the
stable manifold tube to the NHIM around L; and find all (M,I) orbits
inside a closed curve in the (y,y)-plane. Hence, by using z and 2 as the
additional parameters, we can apply the similar techniques that we have
developed for the planar case in constructing spatial trajectories with de-
sired itineraries. See Figure 5(a).

4. Spatial Petit Grand Tour of Jovian Moons

We now apply the techniques we have developed to the construction of a
fully three dimensional Petit Grand Tour of the Jovian moons, extending
an earlier planar result.® We here outline how one systematically constructs
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Fig. 5. (a) Shown in black are the yy (left) and zz (right) projections of the
3-dimensional object C;™2, the intersection of W¥(M2) with the Poincaré section
z = 1 — u. The set of points in the yy projection which approximate a curve, 7,:;r,
all have (z,2) values within the small box shown in the zZ projection (which appears
as a thin strip), centered on (2’,2’). This example is computed in the Jupiter-Europa
system for C' = 3.0028. (b) The curves Ga“’y; ; and E‘“’yf , are shown, the intersections of
Ganpyu (M) and BurW§ (M?2) with the Poincaré section Uj in the Jupiter-Europa rotat-
ing frame, respectively. Note the small region of intersection, int(Gan’y; 2) ﬂint(Eur’yfz.),
where the patch point is labeled. (c) The (X, M, I) transit orbit corresponding to the
initial condition in (b). The orbit is shown in a 3D view. Europa is shown to scale.

a spacecraft tour which begins beyond Ganymede in orbit around Jupiter,
makes a close flyby of Ganymede, and finally reaches a high inclination
orbit around Europa, consuming less fuel than is possible from standard
two-body methods.

Our approach involves the following three key ideas:

(1) treat the Jupiter-Ganymede-Europa-spacecraft 4-body problem as two
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coupled circular restricted 3-body problems, the Jupiter-Ganymede-
spacecraft and Jupiter-Europa-spacecraft systems;

(2) use the stable and unstable manifolds of the NHIMs about the Jupiter-
Ganymede L; and Ly to find an uncontrolled trajectory from a jovicen-
tric orbit beyond Ganymede to a temporary capture around Ganymede,
which subsequently leaves Ganymede’s vicinity onto a jovicentric orbit
interior to Ganymede’s orbit;

(3) use the stable manifold of the NHIM around the Jupiter-Europa Lo
to find an uncontrolled trajectory from a jovicentric orbit between
Ganymede and Europa to a temporary capture around Europa. Once
the spacecraft is temporarily captured around Europa, a propulsion
maneuver can be performed when its trajectory is close to Europa (100
km altitude), taking it into a high inclination orbit about the moon.
Furthermore, a propulsion maneuver will be needed when transferring
from the Jupiter-Ganymede portion of the trajectory to the Jupiter-
Europa portion, since the respective transport tubes exist at different
energies.

Ganymede to Europa Transfer Mechanism. The construction begins
with the patch point, where we connect the Jupiter-Ganymede and Jupiter-
Europa portions, and works forward and backward in time toward each
moon’s vicinity. The construction is done mainly in the Jupiter-Europa ro-
tating frame using a Poincaré section. After selecting appropriate energies
in each 3-body system, respectively, the stable and unstable manifolds of
each system’s NHIMs are computed. Let G"‘“W_}:(/\/Il) denote the unstable
manifold of Ganymede’s Ly NHIM and ®**W$ (M?) denote the stable man-
ifold for Europa’s. Ly NHIM. We look at the intersection of “nW#(M?)
and FUW$ (M?) with a common Poincaré section, the surface Uy in the
Jupiter-Europa rotating frame, defined earlier. See Figure 5(b).

Note that we have the freedom to choose where the Poincaré section is
with respect to Ganymede, which determines the relative phases of Europa
and Ganymede at the patch point. For simplicity, we select the U; surface
in the Jupiter-Ganymede rotating frame to coincide with the Uy surface in
the Jupiter-Europa rotating frame at the patch point. Figure 5(b) shows
Ganpl and Bur42, on the (z,#)-plane in the Jupiter-Europa
rotating frame for all orbits in the Poincaré section with points (z, £) within
(0.0160 + 0.0008, £0.0008). The size of this range is about 1000 km in z

the curves
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position and 20 m/s in z velocity.

From Figure 5(b), an intersection region on the zi-projection is seen.
We pick a point within this intersection region, but with two differing y
velocities; one corresponding to "W (M?), the tube of transit orbits
coming from Ganymede, and the other corresponding to *"W¢ (M?), the
orbits heading toward Europa. The discrepancy between these two y veloc-
ities is the AV necessary for a propulsive maneuver to transfer between the
two tubes of transit orbits, which exist at different energies.

Four-Body System Approximated by Coupled PCR3BP. In order
to determine the transfer AV| we compute the transfer trajectory in the full
4-body system, taking into account the gravitational attraction of all three
massive bodies on the spacecraft. We use the dynamical channel intersection
region in the coupled 3-body model as an initial guess which we adjust finely
to obtain a true 4-body bi-circular model trajectory.

Figure 5(c) is the final end-to-end trajectory. A AV of 1214 m/s is
required at the location marked. We note that a traditional Hohmann
(patched 2-body) transfer from Ganymede to Europa requires a AV of
2822 m/s. Our value is only 43% of the Hohmann value, which is a sub-
stantial savings of on-board fuel. The transfer flight time is about 25 days,
well within conceivable mission constraints. This trajectory begins on a
jovicentric orbit beyond Ganymede, performs one loop around Ganymede,
achieving a close approach of 100 km above the moon’s surface. After the
transfer between the two moons, a final additional maneuver of 446 m/s is
necessary to enter a high inclination (48.6°) circular orbit around Europa
at an altitude of 100 km. Thus, the total AV for the trajectory is 1660 m/s,
still substantially lower than the Hohmann transfer value.

5. Conclusion

In our current work on the spatial three-body problem, we have shown that
the invariant manifold structures of the collinear libration points still act as
the separatrices for two types of motion, those inside the invariant manifold
“tubes” are transit orbits and those outside the “tubes” are non-transit
orbits. We have also designed a numerical algorithm for constructing orbits
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with any prescribed finite itinerary in the spatial three-body planet-moon-
spacecraft problem. As our example, we have shown how to construct a
spacecraft orbit with the basic itinerary (X; M, I) and it is straightforward
to extend these techniques to more complicated itineraries.

Furthermore, we have applied the techniques developed in this paper to-
ward the construction of a three dimensional Petit Grand Tour of the Jovian
moon system. Fortunately, the delicate dynamics of the Jupiter-Europa-
Ganymede-spacecraft 4-body problem are well approximated by consider-
ing it as two 3-body subproblems. One can seek intersections between the
channels of transit orbits enclosed by the stable and unstable manifold
tubes of the NHIM of different moons using the method of Poincaré sec-
tions. With maneuvers sizes (AV) much smaller than that necessary for
Hohmann transfers, transfers between moons are possible. In addition, the
three dimensional details of the encounter of each moon can be controlled.
In our example, we designed a trajectory that ends in a high inclination
orbit around Europa. In the future, we would like to explore the possibility
of injecting into orbits of all inclinations.
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