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Abstract. In 1991, the Japanese Hiten mission used a low energy transfer with a ballistic
capture at the Moon which required less1V than a standard Hohmann transfer. In this pa-
per, we apply the dynamical systems techniques developed in our earlier work to reproduce
systematically a Hiten-like mission. We approximate the Sun-Earth-Moon-spacecraft 4-body
system as two 3-body systems. Using the invariant manifold structures of the Lagrange points
of the 3-body systems, we are able to construct low energy transfer trajectories from the
Earth which execute ballistic capture at the Moon. The techniques used in the design and
construction of this trajectory may be applied in many situations.

Keywords: earth-moon transfer, invariant manifolds, three-body problem, space mission de-
sign.

1. How to Get to the Moon Cheaply.

Hiten mission. The traditional approach to construct a spacecraft transfer
trajectory to the moon from the Earth is by Hohmann transfer. This type of
transfer uses only 2-body dynamics. It is constructed by determining a two-
body Keplerian ellipse from an Earth parking orbit to the orbit of the moon.
See Figure 1(a). The two bodies involved are the Earth and a spacecraft. Such
a transfer requires a large1V for the spacecraft to catch up and get captured
by the moon.

In 1991, the Japanese mission, Muses-A, whose propellant budget did
not permit it to transfer to the moon via the usual method was given a new
life with an innovative trajectory design, based on the work of Belbruno and
Miller [1993]. Its re-incarnation, renamed Hiten, used a low energy transfer
with a ballistic capture at the moon. An Earth-to-Moon trajectory of this type,
which utilizes the perturbation by the Sun, requires less fuel than the usual
Hohmann transfer. See Figures 1(b) and (c).

Coupled Three-Body Model.In this paper, we present an approach to the
problem of the orbital dynamics of this interesting trajectory by implementing
in a systematic waythe view that the Sun-Earth-Moon-spacecraft 4-body
system can be approximated as two coupled 3-body systems. Below is a
schematic of this trajectory in the Sun-Earth rotating frame, showing the two
legs of the trajectory: (1) the Sun-Earth Lagrange point portion and (2) the
lunar capture portion. See Figure 2(a).
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Figure 1. (a) Hohmann transfer. (b) Low energy transfer trajectory in the geocentric inertial
frame. (c) Same trajectory in the Sun-Earth rotating frame.
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Figure 2. (a) Two legs of a Hiten-like trajectory in the Sun-Earth rotating frame. (b) The
interaction of invariant manifold tubes of the Sun-Earth and the Earth-Moon systems permits
a fuel efficient Earth-to-Moon transfer with the perturbation of the Sun.

Within each 3-body system, using our understanding of the invariant
manifold structures associated with the Lagrange pointsL1 andL2, we trans-
fer from a 200 km altitude Earth orbit into the region where the invariant
manifold structure of the Sun-Earth Lagrange points interact with the invari-
ant manifold structure of the Earth-Moon Lagrange points. See Figure 2(b).
We utilize the sensitivity of the “twisting” of trajectories near the invariant
manifold tubes in the Lagrange point region to find a fuel efficient transfer
from the Sun-Earth system to the Earth-Moon system. The invariant manifold
tubes of the Earth-Moon system provide the dynamical channels in phase
space that enable ballistic captures of the spacecraft by the Moon.

The final Earth-to-Moon trajectory is integrated in the bi-circular 4-body
model where both the Moon and the Earth are assumed to move in circular or-
bits about the Earth and the Sun respectively in the ecliptic, and the spacecraft
is an infinitesimal mass point. This bi-circular solution has been differentially
corrected to a fully integrated trajectory with the JPL ephemeris using JPL’s
LTool (Libration Point Mission Design Tool). LTool is JPL’s new mission de-
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Figure 3. (a) Equilibrium points of the PCR3BP in the rotating frame. (b) Hill’s region
(schematic, the region in white), which contains a “neck” aboutL1 and L2. (c) The flow
in the region nearL2, showing a periodic orbit aroundL2, a typical asymptotic orbit winding
onto the periodic orbit, two transit orbits and two non-transit orbits. A similar figure holds for
the region aroundL1.

sign tool currently under development which is based on dynamical systems
theory. This will be described in a subsequent paper.

2. Planar Circular Restricted Three Body Problem–PCR3BP

We start with the PCR3BP as our first model of the mission design space. Let
us recall some basic features of this model summarized in Koon, Lo, Marsden
and Ross [2000].

Three-Body Model. The PCR3BP describes the motion of a body moving
in the gravitational field of two main bodies (the primaries) that are moving
in circles. The two main bodies could be the Sun and Earth, or the Earth and
Moon, etc. The total mass is normalized to 1; they are denotedmS = 1−µ and
mE = µ. The two main bodies rotate in the plane in circles counterclockwise
about their common center of mass and with angular velocity also normalized
to 1. In the actual solar system: the Moon’s eccentricity is 0.055 and Earth’s
is 0.017 which are quite close to circular. The third body, the spacecraft, has
an infinitesimal mass and is free to move in the plane. The planar restricted
3-body problem is used for simplicity. Generalization to the 3-dimensional
problem is of course important, but many of the essential dynamics can be
captured well with the planar model.

Equations of Motion. Choose a rotating coordinate system so that the origin
is at the center of mass, the Sun and Earth are on thex-axis at the points
(−µ, 0) and(1 − µ, 0) respectively–i.e., the distance from the Sun to Earth
is normalized to be 1. See Figure 3(a). Let(x, y) be the position of the
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spacecraft in the plane, then the equations of motion are:

ẍ − 2ẏ = �x ÿ + 2ẋ = �y,

where� = x2+y2

2 + 1−µ

rs
+ µ

re
. Here, the subscripts of� denote partial dif-

ferentiation in the variable.rs, re are the distances from the spacecraft to the
Sun and the Earth respectively. See Szebehely [1967] for the derivation.

Energy Manifolds. The system of equations is autonomous and can be put
into Hamiltonian form with 2 degrees of freedom. It has an energy integral:

E = 1

2
(ẋ2 + ẏ2) − �(x, y)

which is related to the Jacobi constantC by C = −2E. Energy manifolds
are 3-dimensional surfaces foliating the 4-dimensional phase space. For fixed
energy, Poincaré sections are then 2-dimensional, making visualization of
intersections between sets in the phase space particularly simple.

Our main concern is the behavior of orbits whose energy is just above
that of L2. Roughly, we refer to this small energy range as the temporary
capture energy range. Fortunately, the temporary capture energy manifolds
for the Sun-Earth and Earth-Moon systems intersect in phase space, making
a fuel efficient transfer possible.

Equilibrium Points. The PCR3BP has 3 collinear equilibrium (Lagrange)
points which are unstable, but for the cases of interest to mission design, we
examine onlyL1 andL2 in this paper. Eigenvalues of the linearized equations
at L1 and L2 have one real and one imaginary pair. Roughly speaking, the
equilibrium region has the dynamics of a saddle× harmonic oscillator.

Hill’s Regions. The Hill’s region which is the projection of the energy mani-
fold onto the position space is the region in thexy-plane where the spacecraft
is energetically permitted to move around. The forbidden region is the re-
gion which is not accessible for the given energy. For an energy value just
above that ofL2, the Hill’s region contains a “neck” aboutL1 and L2 and
the spacecraft can make transition through these necks. See Figure 3(b). This
equilibrium neck region and its relation to the global orbit structure is criti-
cal: it was studied in detail by Conley [1968], McGehee [1969], and Llibre,
Martinez and Simó [1985].

The Flow near L1 and L2. More precisely, in each region aroundL1 and
L2, there exist 4 types of orbits (see Figure 3(c)): (1) an unstable periodic
Lyapunov orbit (black oval); (2) 4 cylinders of asymptotic orbits that wind
onto or off this period orbit; they form pieces of stable and unstable mani-
folds; (3) transit orbits which the spacecraft can use to make a transition from
one region to the other; e.g., passing from the exterior region (outside Earth’s
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Figure 4. (a) Trajectories inside the stable manifold tube will transit from outside Moon’s
orbit to Moon capture region. (b) Trajectory that ends in ballistic capture at the Moon.

orbit) into the Earth temporary capture region (bubble surrounding Earth) via
the neck region; (4) non-transit orbits where the spacecraft bounces back to
its original region.

Invariant Manifolds as Separatrices.Furthermore, invariant manifold tubes
are global objects — they extend far beyond the vicinity ofL1 andL2. These
tubes partition the energy manifold and act as separatrices for the flow through
the equilibrium region: those inside the tubes are transit orbits and those out-
side the tubes are non-transit orbits. For example in the Earth-Moon system,
for a spacecraft to transit from outside the Moon’s orbit to the Moon capture
region, it is possibleonly through theL2 periodic orbit stable manifold tube.
Hence, stable and unstable manifold tubes control the transport of material
to and from the capture region. These tubes can be utilized also for ballistic
capture. See Figure 4.

3. Low Energy Transfer to the Moon with Ballistic Capture

Two Coupled Three-Body Model.By taking full advantage of the dynamics
of the 4-body system (Earth, Moon, Sun, and spacecraft), the fuel necessary
to transfer from the Earth to the Moon can be significantly less than that
required by a Hohmann transfer. However, since the structure of the phase
space of the 4-body system is poorly understood in comparison with the 3-
body system, we initially model it as two coupled planar circular restricted
3-body systems. By doing this, we can utilize the Lagrange point dynamics
of both the Earth-Moon-spacecraft and Sun-Earth-spacecraft systems. In this
simplified model, the Moon is on a circular orbit about the Earth, the Earth
(or rather the Earth-Moon center of mass) is on a circular orbit about the
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Sun, and the systems are coplanar. In the actual solar system: the Moon’s
eccentricity is 0.055, Earth’s is 0.017. and the Moon’s orbit is inclined to
Earth’s orbit by 5◦. These values are low, so the coupled planar circular 3-
body problem is considered a good starting model. An orbit which becomes
a real mission is typically obtained first in such an approximate system and
then later refined through more precise models which include effects such as
out-of-plane motion, eccentricity, the other planets, solar wind, etc. However,
tremendous insight is gained by considering a simpler model which reveals
the essence of the transfer dynamics.

This is similar to the more standard approach in mission design where
the solar system is viewed as a series of 2-body problems where Keplerian
theory applies. JPL’s spectacular multiple fly-by missions such as Voyager
and Galileo are based on this Keplerian decomposition of the Solar System.
But when one needs to deal with the ballistic capture regime of motion, a
3-body decomposition of the Solar System is absolutely necessary.

However, the success of this approach depends greatly on the configu-
ration of the specific 4 bodies of interest. In order for low energy transfers to
take place, the invariant manifold structures of the two 3-body systems must
intersect within a reasonable time. Otherwise, the transfer may require an im-
practically long time of flight. For the Sun-Earth-Moon-spacecraft case, this
is not a problem. The overlap of these invariant manifold structures provide
the low energy transfers between the Earth and the Moon.

Construction of Earth-to-Moon Transfer. The construction is done mainly
in the Sun-Earth rotating frame using the Poincaré section0 (along a line of
constantx-position passing through the Earth). This Poincaré section helps
to glue the Sun-Earth Lagrange point portion of the trajectory with the lunar
ballistic capture portion. See Figures 7(c) and (d).

The basic strategy is to find an initial condition (position and velocity)
for a spacecraft on the Poincaré section such that when integrating forward,
the spacecraft will be guided by theL2 Earth-Moon manifold and get ballis-
tically captured by the Moon; when integrating backward, the spacecraft will
hug the Sun-Earth manifolds and return to Earth.

We utilize two important properties of the Lagrange point dynamics of
the 3-body problem. The stable manifold tube is key in targeting a capture
orbit for the Earth-Moon portion of the design. The twisting of orbits in
the equilibrium region is key in finding a fuel efficient transfer for the Sun-
Earth Lagrange point portion of the trajectory. For more details, see Koon,
Lo, Marsden and Ross [2000].

Lunar Ballistic Capture Portion. Recall that by targeting the region en-
closed by the stable manifold tube of theL2 Lyapunov orbit in the Earth-
Moon system, we can construct an orbit which will get ballistically captured
by the Moon. When we transform this Poincaré cut of the stable manifold
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Figure 5. (a) The stable manifold cut of an Earth-MoonL2 orbit in the Poincarè section of
the Sun-Earth system. (b) A point interior to this cut, with the correct phasing of the Moon,
will reach the Moon’s ballistic capture region when integrated forward.

of an Earth-MoonL2 Lyapunov orbit into the Poincaré section of the Sun-
Earth system, we obtain a closed curve. A point interior to this curve will
approach the Moon when integrated forward. See Figure 5. Assuming the Sun
is a negligible perturbation to the Earth-Moon-spacecraft 3-body dynamics
during this leg of the trajectory, any spacecraft with initial conditions within
this closed curve will be ballistically captured by the Moon. “Ballistic cap-
ture by the Moon” means an orbit which under natural dynamics gets within
the sphere of influence of the Moon (20,000 km) and performs at least one
revolution around the Moon. In such a state, a slight1V will result in a stable
capture (closing off the necks atL1 andL2).

Twisting of Orbits and Sun-Earth Lagrange Point Portion Since the twist-
ing of orbits in the equilibrium region is key in finding the Sun-Earth La-
grange point portion of the design, we would like to review this property
briefly. In Koon, Lo, Marsden and Ross [2000], we learn that orbits twist in
the equilibrium region following roughly the Lyapunov orbit. The amount
of twist of an orbit depends sensitively on its distance from the manifold
tube. The closer to the manifold tube an orbit begins on its approach to the
equilibrium region, the more it will be twisted when it exits the equilibrium
region. Hence, with small change in the initial condition (such as a small
change in velocity at a fixed point), we can change the destination of an orbit
dramatically. In fact, we can use this sensitivity to target the spacecraft back
to a 200 km Earth parking orbit.

Look at the Poincaré section0 in Figure 6(a). Notice that how a minute
line strip q2q1 of orbits just outside of the unstable manifold cut, when in-
tegrated backward, gets stretched into a long stripP−1(q2)P−1(q1) of orbits
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Figure 6. (a) Line stripq2q1 outside of unstable manifold cut gets stretched into a long strip
P−1(q2)P−1(q1) that wraps around stable manifold cut. (b) With infinitesimal changes in
velocity, any point near lower tube cross-section can be targeted (integrating backward).

that wraps around the whole stable manifold cut. Recall that points onq2q1

represent orbits which have the same position but slightly different velocity.
But their pre-imageP−1(q2)P−1(q1) can reach any position on the lower line
where the stable manifold tube intersects (see Figure 6(b)).

Pick an energy in the temporary capture range of the Sun-Earth system
which hasL2 orbit manifolds that come near a 200 km altitude Earth parking
orbit. Compute the Poincaré section0 (see Figure 6(a)). The curve on the
right is the Poincaré cut of the unstable manifold of the Lyapunov orbit around
the Sun-EarthL2. Picking an appropriate initial condition just outside this
curve, we can backward integrate to produce a trajectory coming back to the
Earth parking orbit.

Connecting the Two PortionsWe can vary the phase of the Moon until the
Earth-MoonL2 manifold cut intersects the Sun-EarthL2 manifold cut. See
Figures 7(a) and (b). In the region which is in the interior of the gray curve
but in the exterior of the black curve, an orbit will get ballistically captured
by the Moon when integrated forward; when integrated backward, the orbit
will hug the unstable manifold back to the Sun-EarthL2 equilibrium region
with a twist, and then hug the stable manifold back towards the position of
the Earth parking orbit. See Figures 7(c) and (d).

With only a slight modification (a small mid-course1V of 34 m/s at the
patch point), this procedure produces a genuine solution integrated in the bi-
circular 4-body problem. Since the capture at the Moon is natural (zero1V),
the amount of on-board fuel necessary is lowered by about 20% compared
to a traditional Hohmann transfer. This bi-circular solution has been differ-
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when integrated backward, orbit will hug the invariant manifolds back to the Earth.

entially corrected to a fully integrated trajectory with JPL ephemeris using
JPL’s LTool. This is the subject of a future paper.

Why Does It Work? What follows is a couple of heuristic arguments for
using the coupled 3-body model. When outside the Moon’s small sphere
of influence (20,000 km), which is most of the pre-capture flight, we can
consider the Moon’s perturbation on the Sun-Earth-spacecraft 3-body system
to be negligible. Thus, we can utilize Sun-Earth Lagrange point invariant
manifold structures. The mid-course1V is performed at a point where the
spacecraft is re-entering the Earth’s sphere of influence (900,000 km), where
we can consider the Sun’s perturbation on the Earth-Moon-spacecraft 3-body
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system to be negligible. Thus, Earth-Moon Lagrange point structures can be
utilized for the lunar portion of the trajectory.

Moreover, the fact that the patch point1V is so small and may even be
eliminated can be understood by considering the following. From a 200 km
circular orbit around the Earth, it requires approximately 3150 m/s (provided
by the launch vehicle) to reach the Earth-MoonL1 and L2. For another 50
m/s, you can reach the Sun-EarthL1 and L2! In other words, a spacecraft
needs roughly the same amount of energy to reach the Sun-Earth and the
Earth-MoonL1 and L2. This fortuitous coincidence is what enables these
low energy lunar transfer and capture orbits.

4. Conclusion.

We have laid bare the dynamical mechanism for a Hiten-like mission. The
theory of Lagrange point dynamics of the 3-body system developed in Koon,
Lo, Marsden and Ross [2000] is crucial in understanding this problem. In
many previous applications of dynamical systems theory to mission design,
the focus has been on using the trajectory arcs on the invariant manifolds as
initial guesses for the desired end-to-end trajectory. In this paper, we have
shown that the tubular regions enclosed by the manifolds, the regions exte-
rior to the manifolds, as well as the manifolds themselves all may be used
to advantage depending on the desired characteristics of the final trajectory.
Mission designers with this knowledge can pick and choose to their hearts’
content, an infinite variety of trajectories to suit almost any purpose at hand.
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