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Abstract. A number of Jupiter family comets such asOtermaandGehrels 3make a rapid
transition from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the
orbit of Jupiter and vice versa. During this transition, the comet can be captured temporarily
by Jupiter for one to several orbits around Jupiter. The interior heliocentric orbit is typically
close to the 3:2 resonance while the exterior heliocentric orbit is near the 2:3 resonance.

An important feature of the dynamics of these comets is that during the transition,
the orbit passes close to the libration pointsL1 and L2, two of the equilibrium points for
the restricted three-body problem for the Sun-Jupiter system. Studying the libration point
invariant manifold structures forL1 and L2 is a starting point for understanding the capture
and resonance transition of these comets. For example, the recently discovered heteroclinic
connection between pairs of unstable periodic orbits (one around theL1 and the other around
L2) implies a complicated dynamics for comets in a certain energy range.

Furthermore, the stable and unstable invariant manifold “tubes” associated to libration
point periodic orbits, of which the heteroclinic connections are a part, are phase space conduits
transporting material to and from Jupiter and between the interior and exterior of Jupiter’s
orbit.
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1. Introduction

A heteroclinic connection between periodic orbits aboutL1 and L2 was re-
cently discovered by Koon, Lo, Marsden, and Ross [2000]. The existence of
such a connection has important implications regarding the global dynamics
of the three-body problem, and for the motion of bodies in the solar sys-
tem experiencing such dynamics. The present paper summarizes earlier work
on libration point orbits and their manifolds (see Conley [1968], McGehee
[1969], Llibre, Martinez, and Simó [1985], and Koon, Lo, Marsden, and Ross
[2000]) and applies the geometrical point of view to the comet resonance tran-
sition problem. The goal is to clearly state the qualitative dynamical picture
that is forming, which any detailed investigation of transport between mean
motion resonances must build upon. In Section 4, the particular case of trans-
port between resonances interior and exterior to Jupiter’s orbit is covered,
following the example of the Jupiter family cometOterma.
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2. Jupiter Comets

Resonance Transition in Comet Orbits.Some Jupiter comets such asOterma
and Gehrels 3make a rapid transition from heliocentric orbits outside the
orbit of Jupiter to orbits inside that of Jupiter and vice versa. During this
transition, the comet may be captured temporarily by Jupiter for several or-
bits. The interior orbit is typically close to the 3:2 mean motion resonance
while the exterior orbit is near the 2:3 resonance. See Figure 1(a). During
the transition, the orbit passes close to the libration pointsL1 andL2, two of
the equilibrium points (in a rotating frame) for the planar circular restricted
3-body problem (PCR3BP) for the Sun-Jupiter system.
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Figure 1. (a) Orbit of cometOtermain Sun-centered inertial frame during time interval AD
1910–1980 (ecliptic projection). (b) The homoclinic-heteroclinic chain corresponding to the
Jupiter cometOterma. (c) The actual orbit ofOtermaoverlaying the chain.

The Relevance of Invariant Manifolds.Lo and Ross [1997] used the two
degree of freedom PCR3BP as the underlying model for resonance transition
and related the transition to invariant manifolds, noticing that the orbits of
OtermaandGehrels 3(in the Sun-Jupiter rotating frame) closely follow the
computed invariant manifolds ofL1 andL2.1 Koon, Lo, Marsden, and Ross
[2000] developed this viewpoint along with another key ingredient, a hete-
roclinic connection between unstable periodic orbits aroundL1 andL2 with
the same Jacobi constant (a multiple of the energy for the PCR3BP). The
dynamical consequences of such an orbit are covered in great mathematical
detail in that paper. Here, we focus on the study of exotic comet motion and
resonance transtion in terms of the libration point invariant manifolds.

Heteroclinic Connections.A numerical demonstration is given in Koon, Lo,
Marsden, and Ross [2000] of aheteroclinic connectionbetween pairs of equal

1 Belbruno and B. Marsden [1997] considered the comet transitions using a different ap-
proach, the “fuzzy boundary” (or “weak stability boundary”) concept, which they said “can
be viewed as a higher-dimensional analogue of the collinear Lagrange pointsL1 and L2 of
Jupiter.” During their investigation however, they suggested that resonance transition “does
not seem to occur in the planar circular restricted problem of two degrees of freedom.”
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energy periodic orbits, one aroundL1, the other aroundL2. This heteroclinic
connection augments the previously known homoclinic orbits associated with
the L1 and L2 periodic orbits (see McGehee [1969]). Linking these hete-
roclinic connections and homoclinic orbits leads todynamical homoclinic-
heteroclinic chainswhich form the backbone for temporary capture and rapid
resonance transition of Jupiter comets. See Figure 1.

Existence and Construction of Transition Orbits. Koon, Lo, Marsden, and
Ross [2000] prove the existence of a large class of interesting orbits in the
neighborhood of a chain which a comet can follow in its rapid transition
between the inside and outside of Jupiter’s orbit via a Jupiter encounter.
One can label orbits near a chain with an itinerary giving their past and
future whereabouts, making their classification and manipulation possible.
Furthermore, a systematic procedure for the numerical construction of orbits
with prescribed itineraries has been developed using the stable and unstable
invariant manifold tubes ofL1 andL2 periodic orbits.

3. A Few Key Features of the Three-Body Problem

Planar Circular Restricted Three-Body Problem. The comets of interest
are mostly heliocentric, and the perturbations of their motion away from Ke-
plerian ellipses are dominated by Jupiter’s gravitation. Moreover, their motion
is nearly in Jupiter’s orbital plane, and Jupiter’s small eccentricity (0.0483)
plays little role during the fast resonance transition (less than or equal to one
Jupiter period in duration). The PCR3BP is therefore an adequate starting
model for illuminating the essence of the resonance transition process.

The PCR3BP describes the motion of a body moving in the gravitational
field of two main bodies that are moving in circles. The two main bodies we
consider are the Sun and Jupiter. The total mass is normalized to 1; they are
denotedmS = 1 − µ andmJ = µ, whereµ = 9.537× 10−4. The Sun and
Jupiter rotate in the plane of their orbit in circles counterclockwise about their
common center of mass and with angular velocity also normalized to 1.

Equations of Motion. Choosing a rotating coordinate system so that the
origin is at the center of mass, the Sun and Jupiter are on thex-axis at the
points(−µ, 0) and(1 − µ, 0) respectively–i.e., the distance from the Sun to
Jupiter is normalized to be 1. Let(x, y) be the position of the comet in the
plane, then the equations of motion in this rotating frame are:

ẍ − 2ẏ = �x ÿ + 2ẋ = �y,

where� = x2+y2

2 + 1−µ

rS
+ µ

r J
. Here, the subscripts of� denote partial dif-

ferentiation in the variable.rS, r J are the distances from the comet to the Sun
and the Jupiter respectively. See Szebehely [1967] for the derivation.
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Energy Manifolds. These equations are autonomous and can be put into
Hamiltonian form. They have an energy integral:

E = 1

2
(ẋ2 + ẏ2) − �(x, y).

which is related to the Jacobi constantC by C = −2E. Energy manifolds
are 3-dimensional surfaces foliating the 4-dimensional phase space. For fixed
energy, Poincaré sections are 2-dimensional and therefore easily visualizable.
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Figure 2. (a) Equilibrium points of the PCR3BP in the rotating frame. (b) Energetically for-
bidden region is gray “C”. Hill’s region (region in white), contains a “neck” aboutL1 andL2.
(c) The flow in the region nearL2, showing a periodic orbit aroundL2 (labeled PO), a typical
asymptotic orbit winding onto the periodic orbit (A), two transit orbits (T) and two non-transit
orbits (NT). A similar figure holds for the region aroundL1.

Equilibrium Points. The PCR3BP has 3 collinear equilibrium (Lagrange)
points which are unstable, but for the comets of interest, we examine onlyL1

andL2. See Figure 2(a). Eigenvalues of the linearized equations atL1 andL2

have one real and one imaginary pair, having a saddle× center structure.

Region of Possible Motion.The projection of the energy manifold onto the
position space is the region in thexy-plane where the comet is energetically
permitted to move around (known as the “Hill’s region”). The forbidden
region is the region that is not accessible for a given energy. See Figure 2(b).

Our main concern is the behavior of orbits whose energy is just above
that of L2, for which the Hill’s region is a connected region with aninterior
region (inside Jupiter’s orbit),exterior region(outside Jupiter’s orbit), and
a Jupiter (capture) region(bubble surrounding Jupiter). These regions are
connected by “necks” aboutL1 and L2 and the comet can make transitions
between the regions only through these necks. This equilibrium neck region
and its relation to the global orbit structure is critical and is discussed next.

Four Types of Orbits in Equilibrium Regions. In each equilibrium region
(one aroundL1 and one aroundL2), there exist 4 types of orbits (see Figure
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2(c)) as given in Conley [1968]: (1) an unstableperiodic Lyapunov orbit;
(2) 4 cylinders ofasymptoticorbits that wind onto or off this period orbit,
which form pieces of stable and unstable manifolds; (3)transit orbits which
the comet must use to make a transition from one region to the other; and (4)
nontransitorbits where the comet bounces back to its original region.
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Figure 3. (a) Transit orbit from outside to inside Jupiter’s orbit, passing by Jupiter. The
tubes containing transit orbits (bounded by the cylindrical stable (lightly shaded) and unstable
(darkly shaded) manifolds) intersect such that a transition is possible. (b) Orbit, beginning
inside stable manifold tube in exterior region, is temporarily captured by Jupiter.

Invariant Manifolds as Separatrices. McGehee [1969] first observed that
the asymptotic orbits are pieces of the 2-dimensional stable and unstable
invariant manifold “tubes” associated to the Lyapunov orbit and they form
the boundary between transit and nontransit orbits. The transit orbits, passing
from one region to another, are those inside the cylindrical manifold tube. The
nontransit orbits, which bounce back to their region of origin, are those out-
side the tube. Most importantly, to transit from outside Jupiter’s orbit to inside
(or vice versa), or get temporarily captured, a cometmustbe inside a tube of
transit orbits, as in Figure 3. The invariant manifold tubes are global objects
— they extend far beyond the vicinity of the equilibrium region, partitioning
the energy manifold into regions of qualitatively different orbit behavior.

Numerical Computation of Invariant Manifolds. Periodic Lyapunov orbits
can be computed using a high order analytic expansion (see Llibre, Martinez,
and Simó [1985]). Their stable and unstable manifolds can be approximated
as given in Parker and Chua [1989]. The basic idea is to linearize the equa-
tions of motion about the periodic orbit and then use the monodromy matrix
provided by Floquet theory to generate a linear approximation of the periodic
orbit’s stable and unstable manifold. The linear approximation, in the form of
a state vector, is numerically integrated in the nonlinear equations of motion
to produce the approximation of the stable and unstable manifolds.

Rapid Transition Mechanism. The heart of the rapid transition mechanism
from outside to inside Jupiter’s orbit (or vice versa) is the intersection of
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transit orbit tubes. We can see the intersection clearly on a 2-dimensional
Poincaré section in the 3-dimensional energy manifold. We take our section
along a vertical line (parallel to they-axis) through Jupiter as in Figure 4(a).
Plotting ẏ versusy along this line, we see that the tube cross-sections are
distorted circles (see Figure 4(b)). Upon magnification, it is clear the tubes
indeed intersect (see Figure 4(c)).
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Figure 4. (a) Take a Poincaré section of theL1 andL2 periodic orbit invariant manifold tubes
— a vertical line through Jupiter (J). (b) Look at unstable tube cut forL2 and stable tube cut
for L1. (c) A small portion of the tubes intersect — this set in the phase space contains the
comet orbits which pass from the exterior to the interior region.

Any point within the region bounded by the curve corresponding to the
stable tube cut is on an orbit that will go from the Jupiter region into the
interior region. Similarly, a point within the unstable tube cut is on an orbit
that came from the exterior region into the Jupiter region. A point inside the
region bounded by the intersection of both curves (lightly shaded in Figure
4(c)) is on an orbit that makes the transition from the exterior region to the
interior region, via the Jupiter region. The timescale for such a transition is
short, less than one Jupiter period (Jupiter period≈ 12 years).

4. Invariant Manifold Tubes and Resonance Transition

Generic Transport Mechanism.This dynamical mechanism effecting trans-
fer between the interior and exterior regions has not been previously recog-
nized. It was previously believed that a third degree of freedom was necessary
or that “Arnold diffusion” was somehow involved. But clearly, only the planar
CR3BP is necessary. The dynamics and phase space geometry involved in the
heteroclinic connection now provide a language with which to discuss and
further explore resonance transition.

Transport Between Resonances.The dynamical channel discussed in the
previous section is a generic transport mechanism connecting the interior and
exterior regions. We now focus on the case of transport between resonances,
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and in particular, the rapid transport mechanism connecting inrerior and ex-
terior mean motion resonances (e.g., the 3:2 and 2:3 Jupiter resonances). By
numerically computing the connection between the interior and exterior reso-
nances, we will obtain a deeper understanding of the mean motion resonance
transition of actual Jupiter comets, such asOterma.

Tube Location. In Figure 5, the location of the tubes is shown schematically.
To perform anOterma-like transition from outside to inside Jupiter’s orbit, a
comet orbit would begin inside the stable manifold tube ofL2 on the outside,
then pass through theL2 equilibrium region to theL2 unstable manifold in
the Jupiter region (as in Figure 3(a)). Intersecting theL1 stable manifold tube
in the Jupiter region, the trajectory would pass byL1 into the interior region.
Note, we will occasionally refer to the interior, Jupiter, and exterior regions
with the lettersS, J, andX, respectively.
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Unstable

Stable

Stable

StableUnstable

Unstable

Stable
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Figure 5. Location ofL1 andL2 orbit invariant manifold tubes in position space (schemati-
cally). Stable manifolds are lightly shaded, unstable manifolds are darkly shaded. Location of
Poincaŕe sections (U1,U2,U3, andU4) also shown. Magnification of Jupiter region at right.

A comet orbit which circles the Sun once in the interior region of the
rotating frame (asOtermadoes as seen in Figure 1(c)) would have to be in a
part of phase space where theL1 stable and and unstable tubes intersect. We
can see such an intersection along theU1 section (see Figure 5).

Interior and Exterior Resonances. In Figure 6(a), we see a cross-section
of the stable and unstable tubes of theL1 Lyapunov orbit, transformed into
Delaunay variables (see Szebehely [1967]). The vertical axis is an angular
variable, thus we can identify the top and bottom boundaries. The background
points reveal the mixed character of the interior region phase space for this
energy surface: stable periodic and quasiperiodic tori “islands” embedded in
a bounded chaotic “sea.” The families of stable tori lie along strips of nearly
constant semimajor axis, and correspond to mean motion resonances.

The first cuts of the stable and unstable tubes intersect at the 3:2 reso-
nance. Any point inside the unstable curve is on an orbit which came fromJ
and any point inside the stable curve is on an orbit going towardJ. Their in-
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Figure 6. (a) The interior regionU1 Poincaŕe section showing the first cuts of the stable
and unstable manifold tubes of anL1 Lyapunov orbit. Notice their intersection at the 3:2
resonance. (b) The exterior regionU4 Poincaŕe section showing the first cuts of the stable and
unstable manifold tubes of anL2 Lyapunov orbit. Notice their intersections at the 2:3 and 1:2
resonances.

tersection (the small diamond) contains all orbits that have come fromJ, have
gone around the Sun once in the rotating frame, and will return toJ. Because
this intersection lies along the strip of 3:2 resonant orbits, we conclude that
any comet which has an energy similar toOterma’s and which circles around
the Sun once in the interior regionmustbe in 3:2 resonance with Jupiter.

Similar to Figure 6(a) for the interior region, Figure 6(b) shows the first
exterior region Poincaré cuts of the stable and unstable manifold tubes of an
L2 Lyapunov orbit with theU4 section for the same energy, plotted using
Delaunay variables. A similar mixed phase space structure is seen.

The stable and unstable tubes intersect at the region of the 2:3 resonance
(the diamond). Any point inside the unstable curve is on an orbit which came
from J and any point inside the stable curve is on an orbit going towardJ.
Although there is another intersection at the 1:2 resonance, the cross-section
of the tube is widest near the 2:3 resonance. These are close to canonical
coordinates, thus the vicinity of the 2:3 resonance is the more important.
Therefore, we expect any comet with this energy which just came fromJ
or is about to go toJ, to be in 2:3 resonance with Jupiter. Their intersection
(the diamond at the 2:3 resonance) contains the orbits that have come from
J, circled the Sun once in the rotating frame, and will return toJ.

Connection Between Resonances.These two resonances (the 3:2 in the inte-
rior and the 2:3 in the exterior) are dynamically linked for this energy via the
intersection between tubes in the Jupiter region. In Figure 7(b), we reproduce
Figure 4(c), showing the collection of orbits passing from the exterior to
interior region. Superimposed upon this large shaded region are pieces of
the image and pre-image of the 2:3 and 3:2 intersection diamonds, respec-
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Figure 7. (a) Interior region tube intersection1S. (b) The Jupiter regionU3 Poincaŕe section
showing a portion of the image of1X and the pre-image of1S. Notice their intersections, the
largest of which is labeled1. (c) Exterior region tube intersection1X .

tively (1X in the exterior region and1S in the interior region, respectively).
The diamonds are mapped to highly stretched and folded stripsP(1X) and
P−1(1S) in the Jupiter region. Here,P denotes the Poincaré map connecting
the sectionsU1, U2, U3, andU4.

Note thatP(1X) and P−1(1S) intersect; the largest of these intersec-
tions is labeled1. The image and pre-image of1 are small strips in the
interior and exterior regions respectively (see Figures 7(a) and (c)). This is
an open set in the energy surface which dynamically links the 3:2 and 2:3
resonances via the Jupiter region. One can pick any point inside the strip1

and integrate it forward and backward, generating anOterma-like transition
from the 2:3 to the 3:2 resonance. See Figure 8 and compare with Figure 1.

We conclude thatL1 andL2 invariant manifold tubes and their intersec-
tions lead to the resonance transition exhibited by comets likeOterma. We
expect thatOtermaexecutes a transition near the full model analogue of this
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Important mean motion resonances 3:2 and 2:3 are also shown for comparison.
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dynamical channel. For example, theL1 andL2 invariant manifold structures
in the three degree of freedom system are important for comets of similar
energy likeHelin-Roman-Crockett(see Howell, Marchand, and Lo [2000]).

Other Resonance Connections.A similar resonance connection should exist
for all nearby energies, as confirmed by numerical experiment. We have seen
a link between only first order resonances (p:q, where|p − q| = 1) because
we looked only at the first Poincaré cut of the tubes on our chosen surface in
this study. Looking at cuts beyond the first reveals transitions between higher
order resonances. In addition, higher energies have “larger,” more dispersive
tubes, which have more intersections for a given cut number.

5. Conclusions

We have applied dynamical systems techniques developed in Koon, Lo, Mars-
den, and Ross [2000] to the problem of resonance transitions and capture of
Jupiter comets with energies nearOterma’s. The fundamental mechanism is
the rapid transport between the outside and inside of Jupiter’s orbit viaL1

andL2 periodic orbit invariant manifold tubes containing transit orbits. This
mechanism provides a starting point for understanding the transport between
mean motion resonances in more complicated models. Furthermore, the in-
variant manifold structures associated withL1 and L2 periodic orbits may
prove valuable for understanding transport throughout the solar system.
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