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B Qutline
» Main Theme

e how to use dynamical systems theory of 3-body problem
in low energy trajectory design.

» Background and Motivation:

e NASA’s Genesis Discovery Mission.
e A Low Energy Tour of Jupiter's Moons.

» Restricted 3-Body Problem.
» Main Results.
» Ongoing Work.

e Low Thrust Trajectories in a Multi-Body Environment.

e Parking a Satellite near an Asteroid Pair.



B DMotivation: Genesis Discovery Mission

» Genesis spacecraft

e collected solar wind sample from a L1 halo orbit,

e returned them to Earth.

» Halo orbit, transfer/ return trajectories in rotating frame.
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B DMotivation: Genesis Discovery Mission

» Designed using dynamical systems theory
(Barden, Howell, and Lo).

» Followed natural dynamics, little propulsion after launch.

» Return-to-Earth portion utilized heteroclinic dynamics.
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B DMotivation: Petit Grand Tour of Jupiter’s Moons

» Construct a low energy trajectory
to visit several moons in one mission.

» Instead of flybys, can orbit each moon for any duration.
» NASA is considering a Jupiter Iecy Moon Orbiter (JIMO).

Callisto



B Design Strategy: Patched 3-Body Solutions

» Jupiter-Ganymede-Europa-SC 4-body system approximated
as 2 coupled 3-body systems

» 3-body solutions of each 3-body systems
are linked in right order to construct orbit with desired itinerary:.

» Try to minimize AV at each transfer patch point.
» Initial solution refined in 4-body model.

» 3-body solutions offer a large class of low energy trajectories.
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B Planar Circular Restricted 3-Body Problem

» 2 main bodies

e Total mass normalized to 1:  mj=pn, mg=1— p.

e Rotate about center of mass, angular velocity normalized to 1.

» Choose rotating coordinate system with origin at center of mass,
2 main bodies fixed at (—u,0) and (1 — u,0).
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B Equilibrium Points

» Equations of motion for SC are
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» Five equilibrium points:
e 3 unstable collinear equilbrium points, Ly, Lo, L3.

e 2 equilateral equilibrium points, L4, Ls.
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B _Hill’s Realm
» Energy integral: E(x,y, &, 7) = (#° + §°)/2+ Ul(x,y).

» E can be used to determine (Hill’s ) realm in position space
where SC is energetically permitted to move.

» Effective potential: U(z,y) = ——=*~ — —F — =




To fix energy value F is to fix height of plot of U(z,y).
Contour plots give 5 cases of Hill’s realm.

Case 1: C>C, Case 2 : C>C>G,

-1 0 1 -1 0 1

Case 4 : C3>C>C4:C5




For energy value just above that of Lo,
Hill’s realm contains a “neck” about L{ & Lo.

SC can make transition through these equilibrium realms.

4 types ot orbits:
periodic,

, transit & nontransit.
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B Invariant Manifold as Separatrix

» Asymptotic orbits form 2D invariant manifold tubes
in 3D energy surface.

» They separate transit and non-transit orbits:

e Transit orbits are those inside the tubes.

e Non-transit orbits are those outside the tubes.
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B Invariant Manifold as Separatrix

» Invariant Manifold Tubes associated with periodic orbits about
L1, Lo control ballistic capture and escape.
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B Heteroclinic Connection

» Found heteroclinic connection between pair of periodic orbits.

» Found a large class of orbits near this (homo/heteroclinic) chain.

» SC can follow these channels in rapid transition.
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B Existence of Transitional Orbits

» Mawn Theorem: For any admissible itinerary,
e.g., (..., X, J;S,J, X ...), there exists an orbit whose
whereabouts matches this itinerary.

» Can even specify number of revolutions the comet makes
around Sun & Jupiter (plus Ly & Lo).

» 3-Body trajectories much richer than 2-body trajectories.




Developed procedure to construct orbit
with prescribed itinerary.

Example: An orbit with itinerary (X, J; S, J, X).
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B Construction of (M, X; M, I, M) Orbits

» Invariant mfd. tubes (S x I) separate transit/nontransit orbits.

» Red curve (S') (Poincaré cut of Ly unstable manifold).
Green curve (S') (cut of L1 stable manifold).

» Any point inside the intersection region Ay is a (X; M, I) orbit.
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B Construction of (M,X;M,I,M) Orbits

» The desired orbit can be constructed by

e Choosing appropriate Poincaré sections and

e linking invariant manifold tubes in right order.
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B Petit Grand Tour of Jupiter’s Moon

» Petit Grand Tour can be constructed similarly

e Approximate 4-body system as 2 nested 3-body systems.

e Choose appropriate Poinaré section.

e Link invariant manifold tubes in right order.

e Refine initial solution in 4-body model.
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B Petit Grand Tour of Jupiter’s Moons (Planar Model)

» Used invariant manifolds
to construct trajectories with interesting characteristics:

e Petit Grand Tour of Jupiter’s moons.
1 orbit around GGanymede. 4 orbits around

e A AV nudges the SC from

Jupiter-Ganymede system to Jupiter- system.

» Instead of flybys, can orbit several moons for any duration.
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Extend from Planar Model to Spatial Model

Ganymede's orbit

Jupiter

Europa's orbit

Injection into
(a) high inclination
Close approach orbit around Europa
to Ganymede -
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B Look for Natural Pathways to Bridge the Gap

» Tubes of two 3-body systems may not intersect for awhile.
May need large AV to “jump” from one tube to another.

» Look for natural pathways to bridge the gap

e between 2y where tube of one system (Ganymede) enters
and >> where tube of another system exits (into Furopa realm)
by “hopping” through phase space (z]).
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B Transport in Phase Space via Tube & Lobe Dynamics

» By using
e tubes of rapid transition that connect realms

e lobe dynamics to hop through phase space,
New tour only needs AV = 20m/s (50 times less).

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame
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B Lobe Dynamics: Mixed Phase Space

» Poincaré section reveals mixed phase space:

e resonance regions and
¢ “chaotic sea’.
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B Transport between Regions via Lobe Dynamics

» Invariant manifolds divide phase space into resonance regions.

» Transport between regions can be studied via lobe dynamics.
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B Transport between Regions via Lobe Dynamics

» Segments of unstable and stable manifolds
form partial barriers between regions R and Rs.

» Ljo(1), Lo (1) are lobes; they form a turnstile.

e In one iteration, only points from Ry to Ry are in Ly o(1)

o only points from Ry to R are in L9 1(1).

» By studying pre-images of Ly o(1),
one can find efficient way from Ry to Rs.

Ly 1(1) Ry




B Hopping through Resonaces in Low Energy Tour

» Guided by lobe dynamics, hopping through resonances
(essential for low energy tour) can be performed.

» To get SC captured by secondary (ms),
need to decrease semi-major axis passing through resonances.
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B Tube/Lobe Dynamics: Transport in Solar System

» To use tube dynamics/lobe dynamics of spatial 3-body problem
to systematically design low-tuel trajectory.

» Part of our program to study transport in solar system
using tube and lobe dynamics.

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame
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B Low Thrust Trajectories in a Multi-Body Environment

» Incorporation of low thrust.

» Design to take best advantage of natural dynamics.
» See Shane D. Ross.
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B Parking a Satellite near an Asteroid Pair

» Find stable periodic/quasi-periodic orbits for SC
to observe binary as it orbits the Sun.

e Model for asteroid pair:
sphere and rigid body (3 connected masses).

e Model for SC motion: binary in relative equilibrium.

» See Gabern, Koon, and Marsden [2004].
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