J2 Dynamics and Formation Flight of Micro-satellites

Koon, Marsden, Masdemont and Murray

Wang Sang Koon Control and Dynamical Systems, Caltech Acknowledgments

- ► R.A. Broucke
- ► D. Brouwer
- ► A. Deprit and A. Rom
- ▶ R.J. Sedwick, E.M.C. Kong and D.W. Miller
- ▶ H. Shaub and K.T. Alfriend
- ▶ D.E. Chang, M.B. Milam and N. Petit

Motivation

- Distribute functions of single large satellite among several small cooperative units.
- ▶ Many potential applications: Earth observation.
- ► A **cluster** can synthesize **larger aperture** providing much **better image resolution** via interferometry.

Main Results

- ▶ Study dynamics of relative motion in Earth's gravitational field.
 - At 800 km, J_2 effect much larger than atmospheric drag, solar pressure, electro-magnetic effects.
- ► Use symmetry reduction/Poincaré section tools to find orbits
 - cluster remains close for many years, with very little dispersion, even with no controls.

Triangular Cluster

- ► Plot of **relative motions** of 3 satellites
 - in moving frame whose origin at instantaneous center of mass whose **yz-plane** is **local horizontal**
 - for **100 revolutions** around Earth (for a week).

Triangular Cluster

- Plot of relative motions of 3 satellites in local horizontal yz-plane
 - for **100 revolutions** around Earth (for a week)
 - for **5000 revolutions** around Earth (for a year)

▶ Notice how small is the **dispersion** in a year (only in **meters**).

Main Results

- ► Instead of **orbital elements**, analysis done in **physical space**, make connection with **physical requirements** more direct.
- ► If coupled with **optimal control** techniques, will provide a **fuel-efficient** way to deal with
 - formation **maintenance**
 - formation **reconfiguration**

Find Initial Conditions for a Cluster

Find initial conditions for a cluster that will stay together for long time under natural dynamics.

▶ In meridian coord. (r, z, ϕ) ,

$$U = -\frac{\mu}{\rho} + \frac{\mu R_e^2 J_2}{\rho^3} \left(\frac{3}{2} \left(\frac{z}{r}\right)^2 - \frac{1}{2}\right), \qquad \rho = \sqrt{r^2 + z^2}$$

is symmetric w.r.t. *z*-axis (no ϕ).

Symmetry Reduction

▶ Since no ϕ , equations of motion

$$\ddot{r} = f(r, z), \qquad \ddot{z} = g(r, z), \qquad \dot{\phi} = \frac{H_z}{r^2},$$

where H_z (z-component of angular momentum) is conserved.

Symmetry reduction allows to study first

- reduced dynamics in **meridian plane** of satellite
- before dealing with dynamics in ϕ direction.

Poincaré Section

► Consider **4D** reduced phase space (r, z, \dot{r}, \dot{z}) .

• Since **energy** *E* is conserved, for fixed *E*, reduced dynamics is **3D**: $\dot{z} = \dot{z}(r, \dot{r}, z, E)$.

• For z = 0, obtain a **2D** Poincaré section: (r, \dot{r}) .

▶ Poincaré section made by plotting a point (r, \dot{r}) whenever SC crosses equator from south to north.

Poincaré Section

- Each $(\mathbf{r}, \dot{\mathbf{r}})$ gives **initial conditions** $(\mathbf{r}, z, \phi, \dot{\mathbf{r}}, \dot{z}, \dot{\phi})$ for an orbit of **full system**.
 - z = 0. $\dot{z} = \dot{z}(r, \dot{r}, 0, E)$ and $\dot{\phi} = H_z/r^2$ can be computed from E and H_z .
 - ϕ (symmetry) can be chosen arbitrary: $\phi = 0$ at t = 0.
 - Hence, $(\mathbf{r}, 0, \phi, \dot{\mathbf{r}}, E, \mathbf{H}_{z})$ provides all the informations.

Almost-Circular Orbit.

- ► Stable fixed point gives **almost-circular** orbit:
 - **periodic** in reduced system (r, z, \dot{r}, \dot{z}) ,
 - modulo procession in ϕ , trajectory repeats itself (**almost periodic**),
 - mean eccentricity nearly **zero**.

Triangular Cluster near Almost-Circular Orbit

- ► Can construct **cluster** that stay toghether for long time
 - using **fixed point** and **nearby points**,
 - making **slight changes** in ϕ or in t,
- ► Find initial conditions for a **triangular cluster**
 - about **710** km above Earth, with **inclination** near 58^{o}
 - each side in the order of 100 meters.

Triangular Cluster near Almost-Circular Orbit

- ▶ Plot of **relative motions** of 3 satellites in moving frame.
- Even after 5000 revs, cluster remain in same box. Dispersion in a year measured in meters.

Why the Method Works So Well

- ▶ Recall budge of Earth $(J_2 \text{ term})$ causes 3 secular drifts:
 - regression of nodes Ω (orbital plane)
 - rotation of apsides ω (semi-major axis)
 - mean anomaly θ (mean distance since last perigee passage)
- ► For tracking SC, should use **mean distance** to node $\omega + \theta$.

Why the Method Works So Well

- \triangleright 3 main conditions for the cluster
 - same energy E
 - same polar component of angular momentum H_z
 - close to **almost-circular orbit** (nearly zero eccentricity)
- ▶ Using **Brouwer's theory**, 3 conditions imply microsats
 - same **drift rate** in node Ω
 - same **drift rate** in mean distance to node $\omega + \theta$

Conclusion and Future Work

- ► Use **dynamical systems** ideas to find orbits
 - cluster remains close for many years, with very little dispersion, even with no controls.
- ► Will couple with **optimal control** for **fuel-efficient** way in
 - formation **maintenance** and formation **reconfiguration**.

References and Other Informations

► Koon, W., J. Marsden, J. Masdemont, R. Murray, J2 Dynamics and Formation Flight,

Proceedings of AIAA Guidance, Navigation, and Control Conference, Montreal, Canada, August, 2001. AIAA 2001-4090.

• http://www.cds.caltech.edu/~koon/

► Email: koon@cds.caltech.edu