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Kinematic effects associated with movements of molecular frames, which specify instantaneous
orientation of molecules, is investigated in structural isomerization dynamics of a triatomic cluster
whose total angular momentum is zero. The principal-axis frame is employed to introduce the
so-called principal-axis hyperspherical coordinates, with which the mechanism of structural
isomerization dynamics of the cluster is systematically analyzed. A force called “democratic
centrifugal force” is extracted from the associated kinematics. This force arises from an intrinsic
non-Euclidean metric in the internal space and has an effect of distorting the triatomic cluster to a
collapsed shape and of trapping the system around collinear transition states. The latter effect is
particularly important in that the kinematics effectively makes a basin at the Sadudisition state

on the potential surface. Based on this framework, we study the effect of the gauge field associated
with the Eckart frame in internal space, which has not been carefully examined in the conventional
reaction rate theories. Numerical comparison between the dynamics with and without the gauge field
has revealed that this field has an effect to suppress the rate of isomerization reaction to a
considerable amount. Thus a theory neglecting this effect will significantly overestimate the rate of
isomerization. We show the physical origin of this suppressing effect20@4 American Institute

of Physics. [DOI: 10.1063/1.1698616

I. INTRODUCTION momentum. It is often illustrated in terms of the “falling cat”
_ o _ effect® that an isolated deformable body with zero angular
_ Structural isomerization d_ynamlcs_ of small cl_usters Pro-momentum can change its orientation with a change of its
vides many a novel feature in chemical dynamics that argnane  This remarkable effect is quite universal in nature
still to be explored. They are characterized as a typical largeq o fundamental three-body systethgo various living

amplitude collec_tive .motion,. WhiCh also consti_tutes IMpOr-y, jje g1 Nonseparability between vibrational and rotational
tant processes in wide varieties of polyatomic mOIecmesmotions is also essential in the isomerization dynamics of

such as conformational change of polymers, crystals, glassé(lusters: A cluster with zero angular momentum actually

systems, and so on. Thergfore t_he Cll.JSte_r dynamlcs havﬁﬁ\anges its orientation gradually with the small vibration,
been approached from various viewpoints: microcanonica

AR " and this effect is even more vital in the large amplitude struc-
analog of solid-liquid phase transitidrfsand a prototype of . o . . ;
multichannel chemical reactionsThey are sometimes stud- tgral isomerization. Strictly spgaklng,. howeyer, the orienta-
ied with an emphasis on chaos and regularity in Hamiltoniar’}'or! (_)f a m_ol_ecule can be uniquely _|dent|f|ed only after_ a
many-body systents:® Since potential-energy topography is definite deC|s!0n of mo!ecular §hape is made. Therefore |fc is
considered to dominate reaction dynamics in the standar@ Usu@l practice to define an instantaneous molecular orien-
chemical reaction theoriéé the potential landscape for tation in terms of a continuous change of molecufzody)
cluster dynamics™® and the free-energy landscape for pro- frame. The falling cat effect .S|m'ply implies that a rotation-
tein folding'*'2 have been explored very extensively. How- free body frame does not exist in general. Nevertheless, re-
ever, it is too naive to attribute all the dynamics to the po-ferring to such a moving body frame, ar(3 6)-dimensional
tential topography alone. This is because a very significaninternal dynamics for molecular shape can be extracted.
both qualitatively and quantitatively, force can arise from the ~ The problem of separation of internal and rotational mo-
kinematics too, which can compete with the force due to thdions dates back to the 1930s due to the monumental work by
potential. Exploring and identifying such a force and its ef-Eckart'® He exploited the so-called “Eckart frame” for an
fects are among the major concerns in this paper. approximate separation of rotational and vibrational modes

In expressing the kinetic energy of amatom (0=3) for semirigid molecules around their local equilibrium
system in terms of 8—6 internal variables, one faces the structures.’~'° The Eckart frame is widely used for the
problem of separation of rotations and internal motions. Thisxormal-mode analysis in the vicinity of local equilibrium
problem remains even in a system of vanishing total angulastructure since it (approximately factors out a
(3n—6)-dimensional Euclidean subspace. The Eckart idea
3Electronic address: yanao@mns2.c.u-tokyo.ac.jp of constructing the internal subspace has been further devel-
YElectronic address: kaztak@mns2.c.u-tokyo.ac.jp oped in the theory of “reaction path Hamiltonian” due to
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Miller et al,?° where the Eckart condition is assigned along apossible error in such theoretical treatments that neglect the
reaction path. Hinde and Befrpalso employed a procedure gauge field, we compare two dynamics: one is a full dynam-
similar to the Eckart conditidt for the instantaneous ics under a correct gauge field and the other is a dynamics in
normal-mode analysis to eliminate the infinitesimal rota-which the gauge field is totally eliminated. It turns out that
tional degrees of freedom in the Morse and Lennard-Jonethe gauge field generally tends to suppress the rate of isomer-
clusters. ization reaction significantly. A theoretical mechanism of this

However, it should be recalled that the separation of in-suppressing effect is discussed in terms of the PAHC's.
ternal motions and rotational motions is not globally accom-  The present paper is organized as follows. In Sec. Il
plished by invoking the Eckart procedure. Thus more elaboafter introducing our model clusters, we briefly summarize
rated gauge-theoretical approaches have been developed the gauge-theoretical treatment of internal motions of general
Guichardet? Tachibana and Iw&?* and Littlejohn and n-atom systems following a similar manner as Littlejohn and
Reinsch?® These theories tell that a gauge field inevitably Reinsch?® In Sec. Ill, the mechanism of the isomerization
arises in internal space when a body frame is introducede€action is elucidated in terms of the principal-axis hyper-
Furthermore, the gauge field thus born couples with the Euspherical coordinate¢PAHC's). Roles of the democratic
clidean metric of configuration space resulting in a non-centrifugal force are highlighted. In Sec. IV, we investigate
Euclidean metric in the internal space. This means that dythe significant effect of the gauge field associated with the
namics in thus determined internal space is inevitablyEckart frame on the rate of the structural isomerization of a
influenced by “metric force,” which is different from the triatomic cluster. This paper concludes in Sec. V with some
usual potential force. An important relevant fact is that theremarks.
effect of such a metric force is never small as quantified in
this paper.

The aim of this paper studying the isomerization reaction|. A BRIEF SUMMARY OF A GAUGE-THEORETICAL
in a triatomic cluster is twofold. First, by employing a coor- FORMALISM FOR INTERNAL MOTIONS IN
dinate system called the principal-axis hyperspherical coorPRINCIPAL-AXIS HYPERSPHERICAL COORDINATES
dinates (PAHC's) developed earlier by Zickendraftand FOR ISOMERIZATION DYNAMICS
later by Chapuisaet al?’=29 and Kuppgrmapﬁ? where the A \iodel cluster: M
internal motion of a molecule is described in terms of gyra-
tion radii and hyperangles referring to the principal axes of ~We study a cluster composed of three identical atoms
moment of inertia tensor of the molecule at each instant, wéhat interact through the pairwise Morse potentiaj.Motal
identify the kinematic force explicitly that is called “demo- a@ngular momentum of the system is zero throughout. The
cratic centrifugal forcéDCF)” on the space of the gyration Hamiltonian7/s of this system has the following dimen-
radii. This force is generated by the change of the hyperanglgionless form:
called kinematic or democratic rotatiéh>'~3*We show that 1.3
this coordinate system is particularly suitable to describe the —= EE (it + >, [e2di~do)—2e~(dj=do)] (1)
collective motion of isomerization dynamics, since only a =1 =
couple of independent variables play a predominant role as @here a three-dimensional VECI%I(fsix,fsiy,rsiz)T rep-
collective coordinate. We clarify the kinematic effects of theresents the position of thgh particle with respect to a space-
DCF both theoretically and numerically. In particular, we fixed frame. The subscrigton r; represents a quantity re-
find that DCF drives a triatomic cluster to change its shapéerred to a space-fixed frame. As will be introduced later, a
from equilateral to collinear configurations, thus helpingvector p; without subscripts represents a position vector
isomerization to begin. In addition, the DCF works to trap arelative to a body frame. This convention is adopted for other
molecule in the region of the collinear transition state. Byquantities throughouts represents the depth of the Morse
constructing an effective potential, we give a geometricabotential andd;; is the interparticle distance between fkte
view of the origin of such a trapping motion, thereby ac-andjth atoms. The parametel, which corresponds to the
counting for the recrossing problem in chemical reaction dy-equilibrium distance of the pairwise Morse potential, con-
namics in a unified manner. trols the Hamiltonian and we set this parametedge- 6.0,

The second aim of the present paper is to elucidate theshich provides a potential topography similar to that of the
effects of the gauge field in the internal space associated withennard-Jones potential that is frequently used to model the
the Eckart frame in application to the isomerization reactionvan der Waals clusters. The masses of all particles can be set
of cluster. The motivation of this study lies in the fact that to unity. In what follows, our numerical results are presented
the gauge field arising from the Eckart frame is often disre-in the absolute units.
garded in many studies of molecular vibrations and that most The M; cluster has two local equilibrium structures on
attention tend to be concentrated on the effects of potentiaits potential-energy surface corresponding to the two permu-
energy topography. For small-amplitude vibrations around dationally distinct equilateral triangle structures whose poten-
reference molecular configuration, the gauge-field effect magial energy isV=—3.0C, whereas it bears three permuta-
be negligible since the Eckart frame makes the gauge fieltlonally distinct collinear saddle structures constituting a
vanish at the reference configuration. However, this is nobarrier heightv= —2.00%. These are summarized in Fig. 1.
necessarily the case with large-amplitude motions likeThe system is laid on the—y plane withrg,=rs,=rg3,
isomerizations and chemical reactions. In order to quantify a0 without loss of generality. Note that the two equilibrium
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(A) ] 2 ®B) : gular velocity of the body fram@eferred to the frame itself
whose relationship to the angular velocity mafl=R'R is
) — expressed as
2
0 — w3 wo w1
(a) (b) © O=| w3 0 —w; | o= w,|. (4)
3 1 2 1 2 3 2 3 1 —w, w1 0 w3
o—0—0O O0—0—0O O0—0—-0
0 =23 03 0 Equation(3) can be rewritten in a more compact form as

— ~ M
FIG. 1. Local equilibrium and saddle structures of triatomic Morse cluster L=M(w+ A#q )’ 5
Ms3. This cluster has two permutationally distinct local equilibrium struc- . . . .
tures (= —3.0¢) and three saddle structure¥ € —2.005). The equi- with M being the moment of inertia tensor referred to the
librium structure is equilateral triangle and the saddle structure is collinearbOdy frame
Values for the hyperangle that specify respective saddle structures are
denoted. n-1

Maﬁ: izl [(Pi'Pi)éaﬁ_PiaPiﬁ]’ (6)

structures(A) and (B) in Fig. 1 are mutually distinctive, where 8, is the Kronecker delta and the indicesand 8
since the molecular motion is confined to its plane undekpecify axes of the body framé., is a gauge potential de-
zero total angular momentum. fined by

-1
Ip;
> pX—

B. Internal motions under zero angular momentum A,=M -1
=1 &qM

: Y

n
i

To eliminate the translational degrees of freedom we be-
gin with the mass-weighted Jacobi vectors. We next reduce The kinetic energy in the Jacobi vectors can also be
the rotational degrees of freedom for the system of vanishingxpressed in terms of the quantities referred to the body
total angular momentum based on a gauge theoreticdétame using the time derivative of E(R) as
treatment® For a rather general argument, we consider an 1 1
n-atom molecule with §— 1)-Jacobi vector§pg, ,...,0sn 1} _ T T S TR e
in this subsection. Let a body fran{enolecular framg be K Z(w M)+ (@ MA,)G"+ Zh’”’q a ®
represented by a>383 proper rotation matrixRe SO(3),

whose three column vectors represent the three orthonormyhereh#” is defined as

axes of the frameR can be parametrized by the Euler angles n-1 ap Ip
{6°} (é=1,2,3 and thereby specifies the orientation of the ~ h, => —.—. (9)
axes. The body framR is assigned for each configuration in =1 99" 99"

a continuous manner and a rule of this assignment corre-

sponds to a choice of a gauge convention in the gaug%)] N e
5 L ; ) and the kinetic energEqg. (8)] are familiar in the con-
theory”® Among infinitely many possible choices of the body ventional theory of molecular vibratidfi:}” The first, sec-

frame, we stqdy the so-called principal-axis frame and theond, and third terms in the right-hand side of E8) are
Eckart frame in this paper.

We briefl ! basi isite facts th gsually referred to as rotational kinetic energy, the Coriolis
© briefly summarize Some basic prerequisite facts tha oupling term, and vibrational kinetic energy, respectively,
are common to any choice of the body frame. The mass:

_ . andh,,, looks like a metric tensor for molecular vibration.
weighted Jacobi vectors referred to a body fraRagpi}, are et it should be noted that the decomposition in Eq.
related to{ps;} as ’

(8) depends on the choice of body frame, that is, gauge de-
psi=R({ 6 pi({g*}) (i=1,.n—1), (2)  pendent. For example, the so-called Eckart fréimé is a

where {q“} (u=1,..,.31—6) are internal coordinates that frame that makes the gauge potenfigl disappear at a local

. . . .qquilibrium configuration and makes the Coriolis coupling
specify the molecular shape and are invariant under spati . . L
erm negligible for small-amplitude vibration around the

rotation of the system. The angular momentum of the systeni”_ ..~ . .
C on-1 . equilibrium. This Eckart procedure of the approximate sepa-
about the center of mas§,s=2=;_;psiXpsi, and that re- : . ) S .
ration of rotation and internal motion is convenient for the
ferred to the body framé are also related mutually by the

relationLs=RL. ThenL can be expressed by use of Eg) normal-mode analysis since the methgv happens to be
L - Euclidean for the normal-mode coordinafeg'}. However,
and its time derivative as

it is crucial to note thah ,, is not appropriate for the rigor-
n-1 n-1 ap; . ous description of molecular internal motions including
L= izl piX(wXp)+ .21 Pixa—ﬂqﬂ, (3 large-amplitude collective motions due to its dependence on
N N q the choice of body frame. For this reashp, is called a
where the sum convention is adopted for the ingefkom 1 pseudometrié® Significance of the distinction between the
to 3n—6. Likewise, we always adopt this convention for the pseudometrich,, and the true metric introduced below is
indices u and v. The three-dimensional vectes is the an-  scrutinized in Sec. IV.

The above expressions for the angular momenftii
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In Ref. 25, Littlejohn and Reinsch have shown a way of a, O .
rearranging the kinetic energy of E@8) into a gauge- B 0 a up
invariant form based on the fiber-bundle picture of configu- =@ & &) 2 ul) (16
ration space. The result is 0 0

1 1 where R is a 3x3 orthogonal matrix whose orthonormal
K= §(w+Aqu)TM(w+quv)+ EQWQ“Q”. (100 three column vectors are;, e,, ande;, andU is a 2x2
orthogonal matrix whose orthonormal two column vectors
whereg,,, is defined by areu, andu,. N is a 3x2 diagonal matrix whose diagonal
T elementsa; anda, are called the singular values ¥ and
9 =hu=AMA, . (1D off-diagonal elements are all equal to zero. All of the singu-
Both of the first and the second terms on the right-hand sidér values and unit vectors in E¢L6) must satisfy the fol-
of Eq. (10) are gauge invariant. The former vanishes if andlowing eigenvalue problen:

only if the total angular momenturn is zero[cf. Eq. (5)]. WwWhe =a2e —123 1
The metric tensog,,, in Eq. (11) is also gauge invariant and (WoWo)e,=a.e, (a=123, {17
is the true metric appropriate for the description of internal (WgWS)uﬂzaZBuﬁ (8=1,2), (18

motions in polyatomic molecules.
Thus the Lagrangian for amatom system of vanishing
total angular momentum is reduced to

respectively. Two of the eigenvalues\MSWl and the eigen-
values ofW!W; are equal to the square of singular valugs,
and ag. We set the ordea;=a,. The eigenvectorg;, &,,

1 . ande; coincide with the principal axes of the instantaneous
£=59,,9"a"-V({a"}), (12) morr??ént of inertia tensor of the triatomic system, since the
off-diagonal elements of moment of inertia tensor Eg).
'Woincide with those of the matrwswl except for their sign.

In our triatomic system, the third eigenvalue\Msz, a§,
is zero and the corresponding eigenvector is set taepe

where we restrict ourselves to a system whose potential ter
depends only on the internal variablég”} as in our M
cluster. Classical equations of motion for the internal coordi

nates{q’_‘} are obtained straightforwardly by applying th_e —(0,0,1)". That is, the system is planar and always laid on
Lagrangian Eq(12) to the Euler—Lagrange equations as will the x-y plane. At the same time, components o0&, ande,

be done in the following sections. Thus the internal motionsare always zero. We restrict bof and U to be a proper
of an n-atom system of vanishing total angular MOMEeNtUM, . ~+ion matrix. These are parametrized bgand ¢ respec-

are described in terms only of thm36 internal yanables tively. ¢ is referred to as the hyperangle. To summarize, Eq.
{g*}. For more general expression for the equations of mo

: éls) is made explicit in terms of these quantities as
tion for a system of nonzero angular momentum, see Ref. 25.

A remarkable fact concerning the true metig, is that cos# —sing 0\ fa; O
it is esssennglly_ no_n-Euchde“an for three-” or more-atom W,=| sing cosd 0 0 a,
systems® This implies that “metric forces” should arise 0 0 1 0 o
from the internal dynamics that can compete with the usual
force due to the potential energy. The kinematic effects ow- ( cose sing

ing to the metric force are our main concern in the following. . (19

—sing COose

In PAHC's the left-most matriR in the right-hand side
of Eq. (15) identifies a body framéhe principal-axis frame
The Jacobi vectors referred to this body frarpe,and p,,

We now introduce the so-called principal-axis hyper-are expressed dsf. Eq. (2)]
spherical coordinate®AHC's) for the study of the structural
isomerization dynamics of Mcluster. We start with a:32

C. The principal-axis hyperspherical coordinates

a,Cosp a;sing

matrix Wy composed of two Jacolécolumn vectors as (pr p)=NUT=| —aysing a,cose |. (20
Ws=(ps1 Ps2), (13 0 0
where Thus the three-dimensional internal space is composed of the

variablesa;, a,, and¢. The singular values; anda, are

— Jra(ra— _E called “gyration radii,”?’ since they represent the mass-
Pa=Nm(Ta =) P13, weighted length(size) of the system along each principal
(14) axis. We let the sign o, classify the permutational isomers
rsl“Lrs2_r ) _2 of the triatomic clustet® That is, if Z- (ps X psy) >0, Which

2 s3]+ H273 is the case for the structure of tygd) in Fig. 1, a, is
positive. Otherwisétype (B) in Fig. 1], a, is negative, where
z is a unit vector along the positive axis. Conditiona,
=0 specifies a collinear molecular shape.

In Eq. (19), the angled specifies the orientation of the
W,=RNU" (15 principal-axis frame of the three-atom molecule and has

Ps2= \/E

with u; and u, the reduced massé$® According to the
singular value decomposition theoréfri, can be decom-
posed into a product of three matrices as
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nothing to do with the shape of the molecule. The continuous { .
change iné causes the ordinary rotation of the system. On 8 4 . : AR
the other hand, the continuous changeiim Eq.(19), which A y ( NN ::i:
is called the kinematic or democratic rotation, generally 7% 0NN N NN NN
brings about a change in molecular shape exchanging the 21 /% o w o o
positions of the constituent atoms in a democratic manner. It o Y SN N
is proved® that the range of the hyperanggeis limited to S N, v v e
O<e< for ¢ to preserve a one-to-one correspondence be- 2| N v p s
tween the molecular shape and the internal coordinates. Ne 1 r sl s
-4 N\ ¢« ¢ 77/ Vv
-6 \\, ¢ 7/ ///
D. Classical equations of motion w77 o
In the internal space defined above, we consider the clas- 0 2 4 6 8 10 12 14
sical equations of motion in terms of the PAHC's. Applying a,

Eqg. (20) to Eqg. (6), we obtain for the moment of inertia

tensor referred to the body frame as FIG. 2. The field of the democratic centrifugal fol®CF) on the gyration
P space at a typical value @f. The broken lines represent degeneracy be-
a; O 0 tween the two gyration radia; =|a,|.
2
M=| 0 aj 0 \ (21

0 0 aj+aj

which is diagonal as is expected. From E&l) and (20),

the gauge potential Eq7) is calculated for the internal co- . a(ajt+3aj)(aj-al) ., v 5
ordinates to be 8= 2, . 2\2 L ey (27)
(ag+a3) dap
0
0 and
Aa=0, A =0, A,=| oo 22)
T2, .2 d oV
ajt+a; =t

Since the pseudometric tendwoy, defined in Eq(9) for the

coordinates 4,,a,,¢) becomes i )
where we have defined the democratic angular momentum

1 0 0 LD as
(h,,)= 0 1 0 , (23
0 0 a’+a? L (aj-aj)?.
. . . , D= e = (29)
in a matrix form, we obtain the true metric tengpy, as ¢ ata;
1 0 0

Lp is an angular momentum of the democratic rotation and is

_ 01 0 24 a constant of motion along a geodesic in the internal space.
(9p) = (a?—a3)? (24 We note that a kind of “centrifugal force” is generated
00 ? in the gyration space as seen in the first terms on the right-
a;Tap

hand sides of Eq9426) and (27), which are proportional to
by applying Egs.(21)—(23) to Eq. (11). Thus a subspace the square of angular velocity of the democratic rotagon
composed of the gyration radii anda, is Euclidean, since We call this force “democratic centrifugal forc€dCF).”
g11=0U»»=1 andg;,=g,;=0. We call this Euclidean space DCF is different from the ordinary centrifugal force, and it is
“gyration space,” where the hyperangleis kept constant.  not zero even in case of zero angular momentum. Figure 2
With use of this gauge-invariant metric tenspy, , the shows an example of the field of DCF on gyration space for

Lagrangian for the triatomic system of vanishing angulara selectede. It can be seen that the DCF works so as to
momentum is given as avoid the degeneracy of the two gyration radii=|a,|. The

s 2o arrows in Fig. 2 tend to align parallel to the positiage axis
(aj—a3)” ., _vV (25) for largea; with small|a,|. These characteristics of the DCF

% a§ 14 (81,82,¢). indicate that an isolated triatomic system intrinsically tends

) ) ) _ to be longer in the longer direction and to be shorter in the
Subsequently, the classical equations of motion are obtaineg,qrter direction along the principal axd$lere, the terms

1., .
L=3 ai+as+

as longer and shorter are in the meaning of the gyration padii.
al(ai+3a§)(arf—a§) . oV Notice that this eﬁe_ct of the DCF_ is a purely_ kinematic one
a,; = 55 2——, (26) and can compete with the potential force as is expected from
(ay+aj) 92y Egs.(26) and (27). We will scrutinize this point later.
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FIG. 3. (a) A trajectory on gyration space corresponding to the time evolu- &
tion in Fig. 4. The broken lines are the degeneracy lines between the twc Tt

gyration radii,a; =|a,|. (b) Potential-energy surface on gyration space with (h]
hyperanglep fixed to 0 or#/3 or 27/3. The permutationally distinct local
equilibrium structuregequilateral trianglesare located at4.24,4.24 and
(4.24~4.24), where the potential energy = —3.0G, and the collinear
transition state is located &B.48,0, where the potential energy ¥ i3t
=—2.00%. The energy difference between the neighboring contour lines is
0.23%. =N

w3 E
Ill. RECROSSING MOTION AROUND THE :
TRANSITION STATE DUE TO DEMOCRATIC

CENTRIFUGAL FORCE—A UNIFIED VIEW

A. Potential topography in internal space
and reaction path

time

To analyze the mechanism of the isomerization dynam-
ICS, we ,nOW map the pOtemlal, function and dynamlcs On’[q:IG. 4. A typical time series of the two gyration radd, and a, (a;
appropriate subspaces of the internal space. First of all, thQaz), and the hyperangle in triatomic Morse cluster M at the total
two local equilibrium structuregequilateral triangleare at  energyE=—1.60:. The conditiona,=0 (indicated by the horizontal bro-
(a;,a,)=(4.24+4.24), where the sign odi, characterizes ken ling represents the collinear configurations. During this period, the
the two permutational isomers as we have defined in Se¢2ddie crossing has taken place five times. The locked gngl m/3, 2n/3

. specifies the three permutationally distinct saddle structures.

IIC, whereas those for the collinear saddle structures are
(a;,a,)=(8.48,0). Figure &) shows the potential-energy
surface mapped on the gyration spaeg,f,) with hyper-
angle ¢ fixed to 0 or#/3 or 27/3. The topography of the comprehended as follows. In Figs.(ab and 8§b), the
potential-energy surface is exactly common to these threpotential-energy surfaces on the gyration space with the hy-
angles forp as a result of permutational symmetry. A typical perangleyp slightly shifted(by 7/30 and#/12) from O or #/3
trajectory above the isomerization threshold is also mappedr 27#/3 are shown. These figures show that the height of
onto this space as shown in FigaB which outlines a reac- potential barrier along the reaction path rapidly increases and
tion path of the isomerization. the reaction channel is quickly closed whets shifted from

To see the dynamics of this trajectory in the entire inter-
nal space &,,a,,¢), we plot the time series of these vari-
ables in Fig. 4. In this particular example, the trajectory

crosses the collinear configuratitay| =0 five times. On the @ )

other hand,p is almost “locked” to O or#/3 or 27/3 with 5 \ 6 \&
small and rapid oscillations during such an isomerization dy- 4 \ A

namics. Note thap=0 and =1 are connected sincgis 7 > 2 o
periodic. Substituting the three angles about whighis s o S o

locked into Eq.(20), one confirms that they characterize the 2 -2

three permutationally distinct oblate isosceles triangle struc- _, / e I
tures of the M cluster. Therefore the locking phenomenon of 6 / .6 ////-”’4—'—”;
the hyperangle during the isomerizing motions indicates that T s 5 7 5 9 o 4 5 6 7 8 9 1011
the cluster undergoes isomerization mostly keeping the a a,

isosceles-triangle symmetry. Thus classifies the reaction

channels. The correspondence between the anglesanfd  FIG. 5. Potential-energy Surfacgs(al .(az,qo) mapped t))nto the gyr?t;on
; ; ; ; space. The hyperangle is fixed @ ¢=(0 or #/3 or 2a/3)+=/30, and(b
the _rrehactlon Chan?]elshls ﬁhown InIFlg. Il ked he vicini ¢=(0 or @/3 or 2a/3)+w/12. The potential energy aw.24+4.24) is
e reason why the hyperangle Is locked to the VICINItY _3 og: in both figures. The energy difference between the neighboring

of 0 or /3 or 2#/3 during the isomerization dynamics iS contour lines is 0.23
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FIG. 6. Potential-energy curves against the hyperapghgth the gyration 0 . . : .
radii a; anda, fixed to (a;,a,)=(4.24,4.24),(5.0,3.9, (6.0,3.5, (8.48,0 0 0.5 1 1.5 2 2.5 3
from the bottom to the top. These values for gyration radii are selected alonc
the reaction coordinate in Fig(13. al _|a2|

FIG. 7. Frequency distribution for the difference between the two gyration
0 or 7/3 or 2a/3. In this sense, the hyperangpeplays a role  radii, a;—|a,|, sampled from classical trajectories whose total internal en-
of gating the reaction path on the gyration space. ergy isE=—2.2 (normalized to unity
On the other hand, the stability of locking ef can be
understood in terms of the potential energy againgtigure
6 shows the potential profiles for four given sets of gyration
radii, (a;,a,)=(4.24,4.24), (5.0,3.9, (6.0,3.5, (8.48,0,
which are picked up along the reaction path in Fig. 3. Th

potential curve with respect tpis flat for a trajectory that is cratic rotation near the line of degeneraay= |a,| (see Fig.

In the vicinity of the equilibrium configuration a,a,) .2) necessarily generates a very strong DCF so as to avoid the

=(4.24,4.24), where a large and rapid democratic rotation I%omplete degeneracy. In order to confirm this effect more

possible. The potential curve begins to swell as the gyratio'auantitatively we show in Fig7 a frequency distribution of
radii recedes from the equilibrium, and near the collinear, '

: i tat (8480 v th : 40 a;—|a,| in many classical trajectories whose total internal
ransition stated, ,a,) =(8.48, )'. only the regions aroun energy is below the isomerization threshold. It is evident that
or w/3 or 2x/3 for ¢ are energetically accessible. Therefore

the trajectories tend t id the vicinity of th
the locking of hyperangle tends to become tighter as th e trajectories tend to avoid the vicinity of the degeneracy

. . ) ?egion, which in turn implies that the triatomic cluster tends
system climbs up the reaction path on the gyration space.

Based on the ab b ti i hani t? be in an unsymmetrical mass balance. Since the direction-
ased on the above observations, reaction mechanism gf ity of DCF field in Fig. 2 and the direction of the reaction
M; cluster can be summarized as follows. In the motion

Spath in Fig. 3b) are nearly parallel to each other except for

around the local equilibrium structure, a trajectory on thethe saddle region, the DCF will help trajectories to climb up

gyration space searches for a chance to get into the reacticme hill along the reaction path in the gyration space.
path, the switch of which is turned on and off frequently due The effect of DCF that induces asymmetry in the mass

to the rapid democratic rotation. In this regime, dynamics Ofbalance becomes more prominent in the vicinity of the tran-

the clusterés dcz)mmatedt by ail of the :Eree mtia_rnal Va”abtl)essition state. Although the hyperangjes locked around 0O or
ai, 8, ande. Once a lrajectory on the gyralion space be- 3 . 573 quring the isomerizing motions, it oscillates

comes successful to get into the reaction path, the hyperangvﬁthin a small range around these anglese Fig. 4 This

'S Iocked.tllghtly so as to allow the tragectory to pass throughoscillation brings about a remarkable effect that is as signifi-
the transition state. Thus the two variablaganda,, play a

) ) cant as the potential force. It should be recalled that the DCF
role of the collective coordinates. tends to be stronger in the vicinity of the transition states
than in that of the equilateral triangle structures for a com-
B. Precise role of the democratic centrifugal force mon value ofe, which is demonstrated by the length of the
Arrows in Fig. 2. Notice that the arrows in Fig. 2 are directed
to the linea,=0 (dividing line or the collinear transition
state from both sides, resulting in a tendency to be parallel
to this line around it. This suggests that the DCF should have
an effect of trapping trajectories in the vicinity of the collin-

_ . ear saddle structure. In fact, such tentatively trapped trajec-
u; (WIWs+WIWg)u, tories are frequently observed even at a relatively high inter-
, (30 nal energy. A typical example of the time evolution of
gyration radii for the trapped motion is shown in Figag In
which is obtained by differentiating E¢18) for B=1 with  this figure, the gyration radia; and a, keep close to the
respect to time and taking scalar product with Since the values of the collinear saddle structura;(a,)=(8.48,0)
numerator of Eq(30) is generally not zero, very rapid demo- for a long time before falling to one of the regions of equi-

cratic rotation occurs a®, and|a,| come close to each other
and ¢ can even diverge. Inserting E(O0) into the compo-
nents of DCF in Eqs(26) and(27) shows that in such a case,
%oth a; anda, can diverge. Therefore the very rapid demo-

We proceed to more precise study of the effects of th
democratic centrifugal forcéDCF). As can be seen from
Fig. 4, ¢ generally varies rapidly in the vicinity of the local
equilibrium points. The origin of this rapid democratic rota-
tion can be understood by expressipgexplicitly as

¢: Ul°u2:
ai—aj
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(b) 6 B ! ! ! ! FIG. 9. The effective potential-energy surface, E3fl), mapped onto the
e £ gyration space. The hyperangjeis fixed to 0 or#/3 or 2#/3. The demo-
4L = ; ) ] cratic angular velocity is set tpp|=0.05. The energy difference between
the neighboring contour lines is 0.281
2 L
e clearly demonstrates that a basin does appear now around the
=0 saddle region of the potential-energy surface. The lagger
forms the wider and deeper basin in general.
al Trapped motion in the vicinity of a transition state in
three atomic chemical reactions such asHt, has been dis-
40 : \"1.," e ] cussed in the literature for decades. This is because the trap-
et ping motion is regarded as one of the main factors that bring
& R , _ , _ about the overestimate of reaction rate in the transition state
4 5 i 7 B g 0 1 theory. Most of the past studies have focused on the resonant
motion on the skewed potential surfaces for the collinear
d configuratior?’® On the other hand, the present approach

has identified the kinematic origin of the trapped motions
FIG. 8. (a) A typical time evolution of gyration radiia, anda, (a1=2,),  that accounts for trapping not only within the collinear con-

which shows a “trapped” motion in the vicinity of the collinear saddle . . . . . L .
structure fromt~350 to t~1100 recrossing the so-called “dividing sur- figuration but also in the direction of bendinglike motion out

face” many times. Total internal energy of the trajectorfEis —1.16s. (b) of the collinear configuration.
The corresponding trajectory on the gyration space frorB14 tot Our approach also provides a new insight into the regu-

=1147in(@. larity of the dynamics around the saddle region in van der
Waals clusters, which has been discussed for a décaldés
widely recognized through numerical investigations that the

librium  structures[(a,,a,) = (4.24+4.24)]. Figure 8b) dynamics in the saddle region are generally more regular

shows the corresponding trajectory on the gyration space i an that in the bottom region. Th|§ can be ratlopahzed quite
the intervalt=314~t=1147 in Fig. 8a). It oscillates in the naturally from our point of view: First, the effective degrees

direction of not onlya, (corresponding to symmetric and of freedom that dominate the saddle-crossing motion are re-

antisymmetric stretching motionsut alsoa, (bending mo-  duced from three & ,a,,¢) in the bottom region to two
tion). (a;,a,) due to the locking of the hyperangde Second, the

It is obvious that the saddle structure of the potentialbasm structure thus found should help to reduce the irregular

topography alongsee Fig. 8)] cannot support the trapping _(chaotiq pe_havior. Th_u_s, in our yiew, the stability of motion
motion. To comprehend the total effects arising from bothin the_ y|cm|ty of_transfltm_n state is a result of the fac_t that the
the bear potential surface and the DCF, we superimposréans't'on state is coincidentally located on flogal line of
these factors appearing in the Lagrangian &) into the e DCF, thatis, on the lin@,=0 on the gyration space.
form of an effective potential such that

IV. EFFECTS OF THE GAUGE FIELD ASSOCIATED

WITH THE ECKART FRAME AS A SUPPRESSING

2 2\2
1(aj—a3)” . FACTOR OF ISOMERIZATION

VeffE_E 2 2 ¢2+V(a11a2!§0)' (31)
aita; We now quantify how much the existence of the gauge
field {A,} in internal spaceor correspondingly the move-
The resultant topography &f. is shown in Fig. 9, where@  ments of the associated body frame under zero total angular
is set to 0 orm/3 or 2m/3 and|¢|=0.05, which is a roughly momentum may contribute to the reaction rate by compar-

averaged value during the period of the trapped motions. ling two dynamics; one which is equipped with the full ef-
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fects of the gauge fielrue dynamicsas studied above and n-1

the other in which the gauge-field effect is eliminated. As a E Ni,XZsi=0 (33
typical example of the eliminated gauge field in the latter ~ '~*

dynamics, we choose the one associated with the so-calladgether with the orthonormal conditions

Eckart framé®~*?and with the normal-mode coordinates. In

case of the large-amplitude motions like isomerization reac- S onLn,=6 (34)
tions, the effect of the gauge field is never negligible and <1 '* "7 #7

should be studied in a quantitative manner. The standar: .
classical trajectory simulations of molecular dynamics quiteﬁih(_;J ?nEZSnjcckséi d?rl::tse %2(;? ;:gn be parametrized by the 3
often do not care about the existence of the gauge field in the
(3n—6)-dimensional internal space, since they are usually sn—6

carried out in the (8—3)-dimensional Jacobi coordinate prla" ) =zg+ 2 M0~ (39
scheme(or even in the &-dimensional original Cartesian pot

space for a very large syst¢mand its orthogonally trans- The Eckart frame with respect to the reference configuration
formed variants. Nevertheless, such a comparison should Hes;} for an arbitrary configuratiofip;} is given by a proper
meaningful in that the gauge-field effect is made quantitarotationRe SQ(3) that satisfies

tively explicit. To our best knowledge, no report has been -1

made before about the actual q_uantitative effe_ct arising from z (RTpg)) X 25 =0. (36)

the curved nature of molecular internal space induced by the =1

gauge fields, although considerable studies on theoretical fo
mulation have been made in the literature. Also, we are co
cerngd with a fact that the conventional theories of_chemica 2.} in Eq. (32) does not have to be a local equilibrium
reaction are often constructed based on the tentative sepa

i f rotational and int | moti inal the Eckart f ructure. For instance, it can be set at a point along a trajec-
lon otrotational and internal motions using the Eckartrame,q, ., 4 i the instantaneous normal-mode analysisl along

and disregarding the effects of the gauge field. For examplea reaction coordinate in the theory of the reaction path
the rotational and vibrational partition functions that arise inHamiItonianzo For our analysis of the Mcluster, we set the

the rate expression are often calculated based on the Tigidasorence configuration so as to be the equilibrium equilat-
eral triangle structurgtype (A) in Fig. 1], in which its two

body approximation and the normal-mode frequencies
respectively. Hence we should clarify how much such an Jacobi vectorgg; andzg, are parallel to thex andy axis of
the space-fixed frame, respectively.

effect of the gauge field can contribute to the reaction rate.
A. Eckart subspace and Eckart frame It is essential in the Eckart gauge that the gauge potential
A, in Eq. (7) vanishes at the reference configuration as

n—-1

(e call the gauge convention that refers to the Eckart frame
the “Eckart gauge.” In general, the reference configuration

In this subsection, we consider anatom system in
three-dimensional space for generality. Let thel three-
dimensional vectors{z} (i=1,...n—1) be the mass- A,FM_l,Z Z5ixn;, =0, (37)
weighted Jacobi vectors for a reference molecular configura- 1
tion. The reference configuration is usually set to be a locaivhere we have inserted E(B5) into Eq. (7) and set{q"}
equilibrium structure of the molecule oriented to a certain={0} in the first equality, and used E¢3) in the second
direction. The Eckart subspace is defined as eaquality. Therefore the pseudomethg, here can be a good
(3n—6)-dimensional subspace in thern(3 3)-dimensional ~approximation tog,,, as far as a small-amplitude vibration
translation-reduced configuration spa@f}(izl,“_n—l) around the reference configuration is concerned. Further-
with three additional constraint conditions called the Eckartmore, the resultanh,, becomes simply Euclidear,,
conditions, =4,,, for the normal-mode coordinatgg“}. Thus the

classical equations of internal motion disregarding the gauge
field are given as the familiar looking Newtonian equations

n-1
E —
2}1 pEX 2=0. (32 e — N 39
Jqr
Since the pseudometrit,, in the Eckart gauge is the metric

The geometrical meaning is that the Eckart subsppfgis  of the Eckart subspace by definitigof. Eq. (9)], the con-
perpendicular to the three-dimensional manifold of rigid-fined motion to the Eckart subspace obeys the same equation
body rotation at the reference configuratiag;}. The Eckart as Eq.(38). Thus the Eckart subspace can be approximately
subspace is Euclidean, since the conditions in B8) are identified to be the molecular internal space. However, even
linear. Therefore this space can be spanned by vectoi§the total angular momentum is zero, a trajectory starting
{niut (e=1,...,.3r—6) which specify the 8—6 directions from a point on the Eckart subspace gradually gets away
of vibrational normal modes at the reference configuratiorfrom the subspace and wanders widely in the entira (3
{zs;} in the (3n—3)-dimensional configuration space. The —3)-dimensional translation-reduced configuration space.
vectors{n;,,} are also perpendicular to the rotation manifold The “falling cat” phenomenon never takes place as long as
at{zs} and thereby satisfy the conditions the dynamics is confined to the Eckart subspace since the
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Eckart frame is fixed. Thus Ed38) is never rigorous and 10000 .
therefore it is quite important to quantify how large an error ’
can result. .

The rigorous dynamics in the internal space can be rep- & 1000 |

er

resented even in terms of the normal-mode coordinate sys = Under
tem by taking an appropriate account of the true megyi¢ E ; e gauge field
in Eq. (11). Sinceh,,=4,, holds in the Eckart gauge, Eq. — 100 |
(11) is written as E /1
U= 90, —AMA,, (39 % 10 | Under no i
where the moment of inertia tensbr and the gauge poten- » gauge field E Tk

tial {A,} are those referred to the Eckart frame defined as

0 50 100 150 200 250 300 350 400 450 500

Egs. (6) and (7), respectively. Although the components of 1
the gauge potential are small in the vicinity of the reference
configuration, they generally do not vanish except tiere, time

and the true metrig,, is no longer Euclidean due to the
second term in the right-hand side of E§9). The rigorous FIG. 10. Decay of the number of surviving trajectories of thg against

equations of motior(for zero angular momentu)nare thus isomerization(see the text for the precise definition of “isomerization”
The lower curve represents the dynamics without the gauge-field effect, Eq.

obtained as (38), while the upper one indicates the true dynamics under the full gauge
field, Eg. (40). All of the initial conditions are randomly sampled in con-

(-- VATV gKe )\) — ﬂ (40) figuration space and are taken to be exactly the same for the two sets of

99 «aq ﬁqﬂ’ dynamics. Number of the sample trajectories is 5000 and their internal en-

ergy is set toE=—1.6¢.
where the Christoffel symbols}, are defined by

, 1 » un 99 99 number has been significantly suppressed by the gauge field.
FKA_Eg aq + aqc  agt ' (42) Figure 11 demonstrates that the suppression can be seen in a
wide range of the internal energy. The difference between the
The dynamics arising from these equations of motion shoulgnean first passage times in these dynamics amounts to about
be compared with the dynamics of E@8) under no gauge 20-309%, which is far beyond a negligible quantity. These

field. results strongly suggest that one naerestimateahe reac-
_ _ o tion rate of the structural isomerization to such a large value
B. Effects of the gauge field on isomerization by disregarding the effects of the gauge field in the internal

reactions: A numerical experiment space.

We study the rate of isomerization of the;Mluster. To
do so, we run 5000 trajectories of an internal enel)y C. Mechanism of suppressing the reaction rate

= —1.6¢, which is above the isomerization threshold. Ran- The principal-axis hyperspherical coordinat@AHC's)

m samplin r re the initial conditions in configura- . ;
QO sampling to prepare the initial conditions in configura turned out to be so nice a coordinate system for understand-
tion space are made so as to set them to be common to the

two different dynamics[Egs. (40) and (38)]. It is not a
straightforward matter to judge whether a trajectory starting
from one potential basin has moved to the other accomplish £
ing a reaction, since it generally undergoes recrossing oves= 00 |
the dividing surface and the reaction does not end up with @
dissociation(having no asymptotic region to mark the énd g 250 ¢
Here in this particular case study we monitor the time-
dependent number of trajectories that remain in the original @
basin(Fig. 10. Practically, a trajectory is discarded from the =" 150 -
set of surviving trajectories as soon as it passes across tr &
dividing surface along the collinear configuration, and the®% 100
recrossing motion is simply disregarded. The mean first pas E

350

ssag

200 -

sage time, that is, an average time for the trajectories tc @ 2T e |
arrive at the dividing surface is also measu(edy. 11). = 0 : :

Figure 10 shows the decay in the number of such sur- -8 18 A7 AF A5 14
viving trajectories of the M isomers of typegA) in Fig. 1.
Since the survival number decays mostly in an exponentia energy {E}

manner in the both dynamics, they must be sufficiently sto- | f . _
chastic.(The absence of decay in the very short time range i§'G: 11+ Internal-energy dependence of mean first passage(#vaeage

e .. ifetime) of the M; cluster. The lower curve represents the dynamics under
due to the Spe_CIfIC 'mt_|a| conditions that all atoms are_ atyo gauge field, Eq(38), while the upper one shows the data for the true
rest) From the figure, it is clear that the decay of the survivaldynamics, Eq(40).
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ing the mechanism of the structural isomerization of the M

8
cluster as seen in Sec. Il that we here analyze the dynamics 6 J ORI
. . . hY LSRN
without the gauge field in terms of the PAHC'’s. Recently, A * o
Littlejohn et al3® have presented an explicit parametrization 4 AR N
of the Eckart subspace in terms of the PAHGs (a5, ¢) for % MR
! . . 2 20 T S N
three-atom systems whose reference configuration is the o NN
same as ours defined in Sec. IV A. The result is expressed as S ONne i NN N
(b5 p3) I BN
4 NYOYON NN NN
cose —sing O a, O , B NN
=| sing cose O 0 a, ) -6 \;\\\\\
0 0 Jlo o sing cose 8 NN\
(42) 0 2 4 6 8 10 12 14
a
a;cos p+a,sirf ¢ (a;—a,)sing cose !

o . . FIG. 12. The field of democratic centrifugal force on the gyration space
=| (a—ay)singcose a sin ptap cos el. (43 arising from the dynamics under no gauge field. The length of each arrow
0 0 reflects the strength of the force at each point for a given value of demo-

] ) o ) cratic angular velocityp. The broken lines are the degeneracy lines between
With this parametrization and E), the pseudometric ten- the two gyration radiia; =|a,|.
sorh,, of the Eckart subspace is represented as

10 0 that a trajectory starts in the upper-half plane. But, at the
(h,,)= 0 1 0 . (44) same time, it keeps to push the trajectory carrying further
0 0 2a;—ay? across the dividing line in clear contrast to the true dynamics.

_ _ _ _ In order to confirm the above-mentioned effect of the
Then the associated Lagrangian for the dynamics without thgauge field, we show in Fig. 18 the frequency distribution

gauge field turns out to be for the a, component of velocity vectors in the gyration
space,,, at the instant that the system crosses the dipe
=0 for these two dynamics. Note thas is directly related

to the reactive flux at the dividing surface. It can be seen
clearly in their differencgsee Fig. 18)] that the dynamics

:E S2 4 A2 _ 2: 21
L 2{a1+a2+2(a1 a) et —V(ag,az,¢), (45)

and the classical equations of motion are

N under no gauge field has more components in the laager-
a;=2(a;—a,) >~ ——, (46)  region. In fact, the average of them {%,)=0.853 and
day (a,)=0.910 for the dynamics with and without the gauge
: v field, respectively. This means that the trajectories getting out
a,=2(a,—a;)p>— 19?2' (47) of the initial basin in the dynamics without the gauge field

tend to be moreallistic and isomerization proceeds more
d - FAYS smoothly. This proves the suppressing effect of the gauge
qil2@—ael=—- oo (48 field.

Cpmpanng thgse expressions with E¢26)—(28) directly V. CONCLUDING REMARKS

gives a theoretical basis to see the consequence of neglecting

the gauge-field effects. We see that the democratic centrifu- We have clarified the nature of the internal motions of a
gal force(DCF) arises on the gyration space, but, in a differ- triatomic cluster in terms of the principal-axis hyperspherical
ent form. We now look into the details of the difference.  coordinates(PAHC'’s) based on a gauge-theoretical treat-
The field of the DCF in the dynamics without the gaugement. This coordinate system turned out to be quite effective
field in Egs.(46) and (47) is shown in Fig. 12 at a selected both for understanding mechanism of the isomerization reac-
¢. Comparing Fig. 12 with Fig. 2, we see that the differencetion and for extracting kinematic effects associated with the
between these two force fields is most significant neaathe principal-axis frame. A collective reaction path has been ex-
axis (@a,=0), whereas it is small in the vicinity of the upper tracted on a two-dimensional gyration space, since freezing
degeneracy linea; =a,. (Recall that we use only the upper- of the hyperangle of the coordinates occurs during the
half plane,a,=0, for the calculation of the reaction rate by isomerizing collective motions. Furthermore, we have ob-
definition) In the true dynamics with the full gauge fields, tained a kinematic force called democratic centrifugal force
the direction of the DCF lies more parallel to thg axis in ~ (DCF), which arises on the gyration space in response to the
the vicinity of the dividing line &,=0) than in the dynamics democratic rotation. It has been revealed that the DCF gen-
under no gauge field. In the dynamics without the gaugeerally has an effect of inducing an asymmetry in mass bal-
field, on the other hand, the DCF is always parallel to theance of a system along principal axes and therefore the tri-
line a;= —a, in the upper-half plane and tends to lead theatomic system tends to be collapsed towards the collinear
molecular geometry to the collinear configuration, providedshape, which helps the isomerization reaction to begin. A
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014 the largest gyration radiug; and to diminish the absolute
(:—1) " value of the smallest gyration radiag along each principal
Rz sy /8 ' axis. The transition state of planer rhombus structure is like-
a\ 01+ ."", | wise stabilized and a trapped motion has been observed.
c g‘“j-' i We have investigated kinematic effects associated with
g T ju i | the Eckart frame, which is the most standard body frame in
o 006 | N Rlﬁ Ii the theories of molecular vibrations. We have found that the
uﬂ"-} aart T ﬁ._;__gﬁgﬁﬁ '*;Il | gauge field associated with th_e Eckart frame arising in the
\_ﬁaﬁﬂf iu internal space, the roles of whu_:h do not seem to have peen
ooz B |1 fully scrutinized in the conventional reaction-rate theories,
W \ has an effect of inhibiting the isomerization reaction of the
0 : ' : = M, cluster significantly. Our numerical results suggest that
0.05 , ; ' . - . . the reaction rate theories that disregard the effects of the
(b} i | gauge field couldverestimatehe reaction rates up to about
: 20-30%. We have also presented a theoretical mechanism of
0.03 | C=T_ 1 this numerical fact, which highlighted the above stated roles
8 ooz b | of the DCF again.
5 | | It is obvious that the gauge field in the internal dynamics
'ﬁ—} ' . should have an important effect in a statistical theory of
= o Hh chemical reaction. First, the volume of the corresponding
T L0l J phase space, both in the reactant and transition state, is sig-
nificantly changed. In fact, a very naive treatment of the
0.02 ¢ 1 reaction rate by an expression “the number of states at the
-0.03 : : : : ; transition state divided by the density of states at the equi-
4 N B A8 U8 ! L librium structure” gives rise to the similar estimate of the
fiz difference between the true dynamics and the dynamics un-

der no gauge field. Second, the effective potential of Fig. 9,
FIG. 13. Frequency distributions far, at the instant of crossing the line the t_)a3|.n Struc_ttl"e of which account$ for the recro;smg (;Iy-
a,=0 on gyration spacéormalized to unity. Paneka shows the resultfor ~namics in a unified manner, can be vital to a reconsideration

the dynamics under no gauge fidltie constrained dynamics to the Eckart of the underlying statistical hypothesis. All these materials
subspac)ad_enoted as Qplotted Wlth triangle and that for the true d_ynamlcs will be fuIIy discussed in our future publications.

under the influence of gauge field denotedlasquare. Panel(b) displays inall Id lik h limi

the differenceC—T, which certainly shows a clear shift from the low to Finally we would like to note that our preliminary study

high values ina,. Total internal energy of the trajectoriesfs= —1.20k. on large molecules shows that the effects of the gauge field
associated with the Eckart frame and the resultant effects of
the non-Euclidean nature of internal space are never small. It

remarkable fact is that the collinear saddle region of the M IS not corr_er_:t fo expect that such effects may become relg-
cluster is dynamically stabilized due to the DCF. We havet'vely negligible as a mol(_acgle becom_es large. Our analysis
shown that an effective potential, which is a sum of a potenpresented above and preliminary studies as well thus suggest
tial function and the potential ari:,;ing from the DCF. holds athat the essential roles of the intrinsic metric in internal space
new “basin” around the collinear transition state. 6ng to together Wit.h thosel of the gauge field should _be further re-
this basin structure, the Mcluster can be trapped in the vealed particularly in polyatomic molecules with many de-
transition region for a long time and recrosses the dividinggrees of freedom.

surface many times. The present approach has provided a
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