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Kinematic effects associated with movements of molecular frames, which specify instantaneous
orientation of molecules, is investigated in structural isomerization dynamics of a triatomic cluster
whose total angular momentum is zero. The principal-axis frame is employed to introduce the
so-called principal-axis hyperspherical coordinates, with which the mechanism of structural
isomerization dynamics of the cluster is systematically analyzed. A force called ‘‘democratic
centrifugal force’’ is extracted from the associated kinematics. This force arises from an intrinsic
non-Euclidean metric in the internal space and has an effect of distorting the triatomic cluster to a
collapsed shape and of trapping the system around collinear transition states. The latter effect is
particularly important in that the kinematics effectively makes a basin at the saddle~transition state!
on the potential surface. Based on this framework, we study the effect of the gauge field associated
with the Eckart frame in internal space, which has not been carefully examined in the conventional
reaction rate theories. Numerical comparison between the dynamics with and without the gauge field
has revealed that this field has an effect to suppress the rate of isomerization reaction to a
considerable amount. Thus a theory neglecting this effect will significantly overestimate the rate of
isomerization. We show the physical origin of this suppressing effect. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1698616#

I. INTRODUCTION

Structural isomerization dynamics of small clusters pro-
vides many a novel feature in chemical dynamics that are
still to be explored. They are characterized as a typical large-
amplitude collective motion, which also constitutes impor-
tant processes in wide varieties of polyatomic molecules,
such as conformational change of polymers, crystals, glassy
systems, and so on. Therefore the cluster dynamics have
been approached from various viewpoints: microcanonical
analog of solid-liquid phase transitions1,2 and a prototype of
multichannel chemical reactions.3 They are sometimes stud-
ied with an emphasis on chaos and regularity in Hamiltonian
many-body systems.4–6 Since potential-energy topography is
considered to dominate reaction dynamics in the standard
chemical reaction theories,7,8 the potential landscape for
cluster dynamics9,10 and the free-energy landscape for pro-
tein folding11,12 have been explored very extensively. How-
ever, it is too naive to attribute all the dynamics to the po-
tential topography alone. This is because a very significant,
both qualitatively and quantitatively, force can arise from the
kinematics too, which can compete with the force due to the
potential. Exploring and identifying such a force and its ef-
fects are among the major concerns in this paper.

In expressing the kinetic energy of ann-atom (n>3)
system in terms of 3n26 internal variables, one faces the
problem of separation of rotations and internal motions. This
problem remains even in a system of vanishing total angular

momentum. It is often illustrated in terms of the ‘‘falling cat’’
effect13 that an isolated deformable body with zero angular
momentum can change its orientation with a change of its
shape. This remarkable effect is quite universal in nature
from fundamental three-body systems14 to various living
bodies.15 Nonseparability between vibrational and rotational
motions is also essential in the isomerization dynamics of
clusters: A cluster with zero angular momentum actually
changes its orientation gradually with the small vibration,
and this effect is even more vital in the large amplitude struc-
tural isomerization. Strictly speaking, however, the orienta-
tion of a molecule can be uniquely identified only after a
definite decision of molecular shape is made. Therefore it is
a usual practice to define an instantaneous molecular orien-
tation in terms of a continuous change of molecular~body!
frame. The falling cat effect simply implies that a rotation-
free body frame does not exist in general. Nevertheless, re-
ferring to such a moving body frame, a (3n26)-dimensional
internal dynamics for molecular shape can be extracted.

The problem of separation of internal and rotational mo-
tions dates back to the 1930s due to the monumental work by
Eckart.16 He exploited the so-called ‘‘Eckart frame’’ for an
approximate separation of rotational and vibrational modes
for semirigid molecules around their local equilibrium
structures.17–19 The Eckart frame is widely used for the
normal-mode analysis in the vicinity of local equilibrium
structure since it ~approximately! factors out a
(3n26)-dimensional Euclidean subspace. The Eckart idea
of constructing the internal subspace has been further devel-
oped in the theory of ‘‘reaction path Hamiltonian’’ due to
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Miller et al.,20 where the Eckart condition is assigned along a
reaction path. Hinde and Berry5 also employed a procedure
similar to the Eckart condition21 for the instantaneous
normal-mode analysis to eliminate the infinitesimal rota-
tional degrees of freedom in the Morse and Lennard-Jones
clusters.

However, it should be recalled that the separation of in-
ternal motions and rotational motions is not globally accom-
plished by invoking the Eckart procedure. Thus more elabo-
rated gauge-theoretical approaches have been developed by
Guichardet,22 Tachibana and Iwai,23,24 and Littlejohn and
Reinsch.25 These theories tell that a gauge field inevitably
arises in internal space when a body frame is introduced.
Furthermore, the gauge field thus born couples with the Eu-
clidean metric of configuration space resulting in a non-
Euclidean metric in the internal space. This means that dy-
namics in thus determined internal space is inevitably
influenced by ‘‘metric force,’’ which is different from the
usual potential force. An important relevant fact is that the
effect of such a metric force is never small as quantified in
this paper.

The aim of this paper studying the isomerization reaction
in a triatomic cluster is twofold. First, by employing a coor-
dinate system called the principal-axis hyperspherical coor-
dinates ~PAHC’s! developed earlier by Zickendraht26 and
later by Chapuisatet al.27–29 and Kuppermann,30 where the
internal motion of a molecule is described in terms of gyra-
tion radii and hyperangles referring to the principal axes of
moment of inertia tensor of the molecule at each instant, we
identify the kinematic force explicitly that is called ‘‘demo-
cratic centrifugal force~DCF!’’ on the space of the gyration
radii. This force is generated by the change of the hyperangle
called kinematic or democratic rotation.25,31–35We show that
this coordinate system is particularly suitable to describe the
collective motion of isomerization dynamics, since only a
couple of independent variables play a predominant role as a
collective coordinate. We clarify the kinematic effects of the
DCF both theoretically and numerically. In particular, we
find that DCF drives a triatomic cluster to change its shape
from equilateral to collinear configurations, thus helping
isomerization to begin. In addition, the DCF works to trap a
molecule in the region of the collinear transition state. By
constructing an effective potential, we give a geometrical
view of the origin of such a trapping motion, thereby ac-
counting for the recrossing problem in chemical reaction dy-
namics in a unified manner.

The second aim of the present paper is to elucidate the
effects of the gauge field in the internal space associated with
the Eckart frame in application to the isomerization reaction
of cluster. The motivation of this study lies in the fact that
the gauge field arising from the Eckart frame is often disre-
garded in many studies of molecular vibrations and that most
attention tend to be concentrated on the effects of potential-
energy topography. For small-amplitude vibrations around a
reference molecular configuration, the gauge-field effect may
be negligible since the Eckart frame makes the gauge field
vanish at the reference configuration. However, this is not
necessarily the case with large-amplitude motions like
isomerizations and chemical reactions. In order to quantify a

possible error in such theoretical treatments that neglect the
gauge field, we compare two dynamics: one is a full dynam-
ics under a correct gauge field and the other is a dynamics in
which the gauge field is totally eliminated. It turns out that
the gauge field generally tends to suppress the rate of isomer-
ization reaction significantly. A theoretical mechanism of this
suppressing effect is discussed in terms of the PAHC’s.

The present paper is organized as follows. In Sec. II,
after introducing our model clusters, we briefly summarize
the gauge-theoretical treatment of internal motions of general
n-atom systems following a similar manner as Littlejohn and
Reinsch.25 In Sec. III, the mechanism of the isomerization
reaction is elucidated in terms of the principal-axis hyper-
spherical coordinates~PAHC’s!. Roles of the democratic
centrifugal force are highlighted. In Sec. IV, we investigate
the significant effect of the gauge field associated with the
Eckart frame on the rate of the structural isomerization of a
triatomic cluster. This paper concludes in Sec. V with some
remarks.

II. A BRIEF SUMMARY OF A GAUGE-THEORETICAL
FORMALISM FOR INTERNAL MOTIONS IN
PRINCIPAL-AXIS HYPERSPHERICAL COORDINATES
FOR ISOMERIZATION DYNAMICS

A. Model cluster: M 3

We study a cluster composed of three identical atoms
that interact through the pairwise Morse potential M3 . Total
angular momentum of the system is zero throughout. The
Hamiltonian H/« of this system has the following dimen-
sionless form:

H
«

5
1

2 (
i 51

3

~ ṙ si"ṙ si!1(
i , j

@e22~di j 2d0!22e2~di j 2d0!#, ~1!

where a three-dimensional vectorr si5(r six ,r siy ,r siz)
T rep-

resents the position of theith particle with respect to a space-
fixed frame. The subscripts on r si represents a quantity re-
ferred to a space-fixed frame. As will be introduced later, a
vector ri without subscripts represents a position vector
relative to a body frame. This convention is adopted for other
quantities throughout.« represents the depth of the Morse
potential anddi j is the interparticle distance between theith
and jth atoms. The parameterd0 , which corresponds to the
equilibrium distance of the pairwise Morse potential, con-
trols the Hamiltonian and we set this parameter tod056.0,
which provides a potential topography similar to that of the
Lennard-Jones potential that is frequently used to model the
van der Waals clusters. The masses of all particles can be set
to unity. In what follows, our numerical results are presented
in the absolute units.

The M3 cluster has two local equilibrium structures on
its potential-energy surface corresponding to the two permu-
tationally distinct equilateral triangle structures whose poten-
tial energy isV523.00«, whereas it bears three permuta-
tionally distinct collinear saddle structures constituting a
barrier heightV522.005«. These are summarized in Fig. 1.
The system is laid on thex2y plane with r s1z5r s2z5r s3z

50 without loss of generality. Note that the two equilibrium
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structures~A! and ~B! in Fig. 1 are mutually distinctive,
since the molecular motion is confined to its plane under
zero total angular momentum.

B. Internal motions under zero angular momentum

To eliminate the translational degrees of freedom we be-
gin with the mass-weighted Jacobi vectors. We next reduce
the rotational degrees of freedom for the system of vanishing
total angular momentum based on a gauge theoretical
treatment.25 For a rather general argument, we consider an
n-atom molecule with (n21)-Jacobi vectors$rs1 ,...,rsn21%
in this subsection. Let a body frame~molecular frame! be
represented by a 333 proper rotation matrixRPSO(3),
whose three column vectors represent the three orthonormal
axes of the frame.R can be parametrized by the Euler angles
$uj% ~j51,2,3! and thereby specifies the orientation of the
axes. The body frameR is assigned for each configuration in
a continuous manner and a rule of this assignment corre-
sponds to a choice of a gauge convention in the gauge
theory.25 Among infinitely many possible choices of the body
frame, we study the so-called principal-axis frame and the
Eckart frame in this paper.

We briefly summarize some basic prerequisite facts that
are common to any choice of the body frame. The mass-
weighted Jacobi vectors referred to a body frameR, $ri%, are
related to$rsi% as

rsi5R~$uj%!ri~$q
m%! ~ i 51,...,n21!, ~2!

where $qm% (m51,...,3n26) are internal coordinates that
specify the molecular shape and are invariant under spatial
rotation of the system. The angular momentum of the system
about the center of mass,L s5( i 51

n21rsi3ṙsi , and that re-
ferred to the body frameL are also related mutually by the
relationL s5RL . ThenL can be expressed by use of Eq.~2!
and its time derivative as

L5 (
i 51

n21

ri3~v3ri !1 (
i 51

n21

ri3
]ri

]qm
q̇m, ~3!

where the sum convention is adopted for the indexm from 1
to 3n26. Likewise, we always adopt this convention for the
indicesm and n. The three-dimensional vectorv is the an-

gular velocity of the body frame~referred to the frame itself!,
whose relationship to the angular velocity matrixV[RTṘ is
expressed as

V[S 0 2v3 v2

v3 0 2v1

2v2 v1 0
D ⇔v[S v1

v2

v3

D . ~4!

Equation~3! can be rewritten in a more compact form as

L5M ~v1Amq̇m!, ~5!

with M being the moment of inertia tensor referred to the
body frame

Mab5 (
i 51

n21

@~ri "ri !dab2r iar ib#, ~6!

wheredab is the Kronecker delta and the indicesa and b
specify axes of the body frame.Am is a gauge potential de-
fined by

Am5M 21S (
i 51

n21

ri3
]ri

]qmD . ~7!

The kinetic energyK in the Jacobi vectors can also be
expressed in terms of the quantities referred to the body
frame using the time derivative of Eq.~2! as

K5
1

2
~vTMv!1~vTMAm!q̇m1

1

2
hmnq̇mq̇n, ~8!

wherehmn is defined as

hmn[ (
i 51

n21
]ri

]qm
•

]ri

]qn
. ~9!

The above expressions for the angular momentum@Eq.
~5!# and the kinetic energy@Eq. ~8!# are familiar in the con-
ventional theory of molecular vibration.16,17 The first, sec-
ond, and third terms in the right-hand side of Eq.~8! are
usually referred to as rotational kinetic energy, the Coriolis
coupling term, and vibrational kinetic energy, respectively,
and hmn looks like a metric tensor for molecular vibration.
However, it should be noted that the decomposition in Eq.
~8! depends on the choice of body frame, that is, gauge de-
pendent. For example, the so-called Eckart frame16–19 is a
frame that makes the gauge potentialAm disappear at a local
equilibrium configuration and makes the Coriolis coupling
term negligible for small-amplitude vibration around the
equilibrium. This Eckart procedure of the approximate sepa-
ration of rotation and internal motion is convenient for the
normal-mode analysis since the metrichmn happens to be
Euclidean for the normal-mode coordinates$qm%. However,
it is crucial to note thathmn is not appropriate for the rigor-
ous description of molecular internal motions including
large-amplitude collective motions due to its dependence on
the choice of body frame. For this reasonhmn is called a
pseudometric.25 Significance of the distinction between the
pseudometrichmn and the true metric introduced below is
scrutinized in Sec. IV.

FIG. 1. Local equilibrium and saddle structures of triatomic Morse cluster
M3 . This cluster has two permutationally distinct local equilibrium struc-
tures (V523.00«) and three saddle structures (V522.005«). The equi-
librium structure is equilateral triangle and the saddle structure is collinear.
Values for the hyperanglew that specify respective saddle structures are
denoted.
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In Ref. 25, Littlejohn and Reinsch have shown a way of
rearranging the kinetic energy of Eq.~8! into a gauge-
invariant form based on the fiber-bundle picture of configu-
ration space. The result is

K5
1

2
~v1Amq̇m!TM ~v1Anq̇n!1

1

2
gmnq̇mq̇n, ~10!

wheregmn is defined by

gmn5hmn2Am
TMAn . ~11!

Both of the first and the second terms on the right-hand side
of Eq. ~10! are gauge invariant. The former vanishes if and
only if the total angular momentumL is zero@cf. Eq. ~5!#.
The metric tensorgmn in Eq. ~11! is also gauge invariant and
is the true metric appropriate for the description of internal
motions in polyatomic molecules.

Thus the Lagrangian for ann-atom system of vanishing
total angular momentum is reduced to

L5
1

2
gmnq̇mq̇n2V~$qm%!, ~12!

where we restrict ourselves to a system whose potential term
depends only on the internal variables$qm% as in our M3

cluster. Classical equations of motion for the internal coordi-
nates$qm% are obtained straightforwardly by applying the
Lagrangian Eq.~12! to the Euler–Lagrange equations as will
be done in the following sections. Thus the internal motions
of an n-atom system of vanishing total angular momentum
are described in terms only of the 3n26 internal variables
$qm%. For more general expression for the equations of mo-
tion for a system of nonzero angular momentum, see Ref. 25.

A remarkable fact concerning the true metricgmn is that
it is essentially non-Euclidean for three- or more-atom
systems.25 This implies that ‘‘metric forces’’ should arise
from the internal dynamics that can compete with the usual
force due to the potential energy. The kinematic effects ow-
ing to the metric force are our main concern in the following.

C. The principal-axis hyperspherical coordinates

We now introduce the so-called principal-axis hyper-
spherical coordinates~PAHC’s! for the study of the structural
isomerization dynamics of M3 cluster. We start with a 332
matrix Ws composed of two Jacobi~column! vectors as

Ws[~rs1 rs2!, ~13!

where

rs15Am1~r s12r s2!, m15
1

2
,

~14!

rs25Am2S r s11r s2

2
2r s3D , m25

2

3

with m1 and m2 the reduced masses.25,35 According to the
singular value decomposition theorem,36 Ws can be decom-
posed into a product of three matrices as

Ws5RNUT ~15!

5~e1 e2 e3!S a1 0

0 a2

0 0
D S u1

T

u2
TD , ~16!

where R is a 333 orthogonal matrix whose orthonormal
three column vectors aree1 , e2 , and e3 , and U is a 232
orthogonal matrix whose orthonormal two column vectors
areu1 andu2 . N is a 332 diagonal matrix whose diagonal
elementsa1 anda2 are called the singular values ofWs and
off-diagonal elements are all equal to zero. All of the singu-
lar values and unit vectors in Eq.~16! must satisfy the fol-
lowing eigenvalue problems:32

~WsWs
T!ea5aa

2ea ~a51,2,3!, ~17!

~Ws
TWs!ub5ab

2ub ~b51,2!, ~18!

respectively. Two of the eigenvalues ofWsWs
T and the eigen-

values ofWs
TWs are equal to the square of singular values,a1

2

and a2
2. We set the ordera1>a2 . The eigenvectorse1 , e2 ,

ande3 coincide with the principal axes of the instantaneous
moment of inertia tensor of the triatomic system, since the
off-diagonal elements of moment of inertia tensor Eq.~6!
coincide with those of the matrixWsWs

T except for their sign.
In our triatomic system, the third eigenvalue ofWsWs

T , a3
2,

is zero and the corresponding eigenvector is set to bee3

5(0,0,1)T. That is, the system is planar and always laid on
the x-y plane. At the same time,z components ofe1 ande2

are always zero. We restrict bothR and U to be a proper
rotation matrix. These are parametrized byu and w respec-
tively. w is referred to as the hyperangle. To summarize, Eq.
~15! is made explicit in terms of these quantities as

Ws5S cosu 2sinu 0

sinu cosu 0

0 0 1
D S a1 0

0 a2

0 0
D

3S cosw sinw

2sinw cosw
D . ~19!

In PAHC’s the left-most matrixR in the right-hand side
of Eq. ~15! identifies a body frame~the principal-axis frame!.
The Jacobi vectors referred to this body frame,r1 and r2 ,
are expressed as@cf. Eq. ~2!#

~r1 r2!5NUT5S a1 cosw a1 sinw

2a2 sinw a2 cosw

0 0
D . ~20!

Thus the three-dimensional internal space is composed of the
variablesa1 , a2 , andw. The singular valuesa1 anda2 are
called ‘‘gyration radii,’’27 since they represent the mass-
weighted length~size! of the system along each principal
axis. We let the sign ofa2 classify the permutational isomers
of the triatomic cluster.33 That is, if ẑ•(rs13rs2).0, which
is the case for the structure of type~A! in Fig. 1, a2 is
positive. Otherwise@type~B! in Fig. 1#, a2 is negative, where
ẑ is a unit vector along the positivez axis. Conditiona2

50 specifies a collinear molecular shape.
In Eq. ~19!, the angleu specifies the orientation of the

principal-axis frame of the three-atom molecule and has
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nothing to do with the shape of the molecule. The continuous
change inu causes the ordinary rotation of the system. On
the other hand, the continuous change inw in Eq. ~19!, which
is called the kinematic or democratic rotation, generally
brings about a change in molecular shape exchanging the
positions of the constituent atoms in a democratic manner. It
is proved33 that the range of the hyperanglew is limited to
0<w,p for w to preserve a one-to-one correspondence be-
tween the molecular shape and the internal coordinates.

D. Classical equations of motion

In the internal space defined above, we consider the clas-
sical equations of motion in terms of the PAHC’s. Applying
Eq. ~20! to Eq. ~6!, we obtain for the moment of inertia
tensor referred to the body frame as

M5S a2
2 0 0

0 a1
2 0

0 0 a1
21a2

2
D , ~21!

which is diagonal as is expected. From Eqs.~21! and ~20!,
the gauge potential Eq.~7! is calculated for the internal co-
ordinates to be

Aa1
50, Aa2

50, Aw5S 0
0

2
2a1a2

a1
21a2

2

D . ~22!

Since the pseudometric tensorhmn defined in Eq.~9! for the
coordinates (a1 ,a2 ,w) becomes

~hmn!5S 1 0 0

0 1 0

0 0 a1
21a2

2
D , ~23!

in a matrix form, we obtain the true metric tensorgmn as

~gmn!5S 1 0 0

0 1 0

0 0
~a1

22a2
2!2

a1
21a2

2

D ~24!

by applying Eqs.~21!–~23! to Eq. ~11!. Thus a subspace
composed of the gyration radiia1 anda2 is Euclidean, since
g115g2251 andg125g2150. We call this Euclidean space
‘‘gyration space,’’ where the hyperanglew is kept constant.

With use of this gauge-invariant metric tensorgmn , the
Lagrangian for the triatomic system of vanishing angular
momentum is given as

L5
1

2 H ȧ1
21ȧ2

21
~a1

22a2
2!2

a1
21a2

2
ẇ2J 2V~a1 ,a2 ,w!. ~25!

Subsequently, the classical equations of motion are obtained
as

ä15
a1~a1

213a2
2!~a1

22a2
2!

~a1
21a2

2!2
ẇ22

]V

]a1
, ~26!

ä25
a2~a2

213a1
2!~a2

22a1
2!

~a1
21a2

2!2
ẇ22

]V

]a2
, ~27!

and

d

dt
LD52

]V

]w
, ~28!

where we have defined the democratic angular momentum
LD as

LD[
]L
]ẇ

5
~a1

22a2
2!2

a1
21a2

2
ẇ. ~29!

LD is an angular momentum of the democratic rotation and is
a constant of motion along a geodesic in the internal space.

We note that a kind of ‘‘centrifugal force’’ is generated
in the gyration space as seen in the first terms on the right-
hand sides of Eqs.~26! and ~27!, which are proportional to
the square of angular velocity of the democratic rotationẇ.
We call this force ‘‘democratic centrifugal force~DCF!.’’
DCF is different from the ordinary centrifugal force, and it is
not zero even in case of zero angular momentum. Figure 2
shows an example of the field of DCF on gyration space for
a selectedẇ. It can be seen that the DCF works so as to
avoid the degeneracy of the two gyration radii,a15ua2u. The
arrows in Fig. 2 tend to align parallel to the positivea1 axis
for largea1 with small ua2u. These characteristics of the DCF
indicate that an isolated triatomic system intrinsically tends
to be longer in the longer direction and to be shorter in the
shorter direction along the principal axes.~Here, the terms
longer and shorter are in the meaning of the gyration radii.!
Notice that this effect of the DCF is a purely kinematic one
and can compete with the potential force as is expected from
Eqs.~26! and ~27!. We will scrutinize this point later.

FIG. 2. The field of the democratic centrifugal force~DCF! on the gyration
space at a typical value ofẇ. The broken lines represent degeneracy be-
tween the two gyration radii,a15ua2u.
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III. RECROSSING MOTION AROUND THE
TRANSITION STATE DUE TO DEMOCRATIC
CENTRIFUGAL FORCE—A UNIFIED VIEW

A. Potential topography in internal space
and reaction path

To analyze the mechanism of the isomerization dynam-
ics, we now map the potential function and dynamics onto
appropriate subspaces of the internal space. First of all, the
two local equilibrium structures~equilateral triangle! are at
(a1 ,a2)5(4.24,64.24), where the sign ofa2 characterizes
the two permutational isomers as we have defined in Sec.
II C, whereas those for the collinear saddle structures are
(a1 ,a2)5(8.48,0). Figure 3~b! shows the potential-energy
surface mapped on the gyration space (a1 ,a2) with hyper-
angle w fixed to 0 or p/3 or 2p/3. The topography of the
potential-energy surface is exactly common to these three
angles forw as a result of permutational symmetry. A typical
trajectory above the isomerization threshold is also mapped
onto this space as shown in Fig. 3~a!, which outlines a reac-
tion path of the isomerization.

To see the dynamics of this trajectory in the entire inter-
nal space (a1 ,a2 ,w), we plot the time series of these vari-
ables in Fig. 4. In this particular example, the trajectory
crosses the collinear configurationua2u50 five times. On the
other hand,w is almost ‘‘locked’’ to 0 orp/3 or 2p/3 with
small and rapid oscillations during such an isomerization dy-
namics. Note thatw50 andw5p are connected sincew is p
periodic. Substituting the three angles about whichw is
locked into Eq.~20!, one confirms that they characterize the
three permutationally distinct oblate isosceles triangle struc-
tures of the M3 cluster. Therefore the locking phenomenon of
the hyperangle during the isomerizing motions indicates that
the cluster undergoes isomerization mostly keeping the
isosceles-triangle symmetry. Thusw classifies the reaction
channels. The correspondence between the angles ofw and
the reaction channels is shown in Fig. 1.

The reason why the hyperangle is locked to the vicinity
of 0 or p/3 or 2p/3 during the isomerization dynamics is

comprehended as follows. In Figs. 5~a! and 5~b!, the
potential-energy surfaces on the gyration space with the hy-
peranglew slightly shifted~by p/30 andp/12! from 0 orp/3
or 2p/3 are shown. These figures show that the height of
potential barrier along the reaction path rapidly increases and
the reaction channel is quickly closed whenw is shifted from

FIG. 3. ~a! A trajectory on gyration space corresponding to the time evolu-
tion in Fig. 4. The broken lines are the degeneracy lines between the two
gyration radii,a15ua2u. ~b! Potential-energy surface on gyration space with
hyperanglew fixed to 0 orp/3 or 2p/3. The permutationally distinct local
equilibrium structures~equilateral triangles! are located at~4.24,4.24! and
~4.24,24.24!, where the potential energy isV523.00«, and the collinear
transition state is located at~8.48,0!, where the potential energy isV
522.005«. The energy difference between the neighboring contour lines is
0.231«.

FIG. 4. A typical time series of the two gyration radii,a1 and a2 (a1

>a2), and the hyperanglew in triatomic Morse cluster M3 at the total
energyE521.60«. The conditiona250 ~indicated by the horizontal bro-
ken line! represents the collinear configurations. During this period, the
saddle crossing has taken place five times. The locked anglew50, p/3, 2p/3
specifies the three permutationally distinct saddle structures.

FIG. 5. Potential-energy surfacesV (a1 ,a2 ,w) mapped onto the gyration
space. The hyperangle is fixed to~a! w5~0 or p/3 or 2p/3!1p/30, and~b!
w5~0 or p/3 or 2p/3!1p/12. The potential energy at~4.24,64.24! is
23.00« in both figures. The energy difference between the neighboring
contour lines is 0.231«.
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0 or p/3 or 2p/3. In this sense, the hyperanglew plays a role
of gating the reaction path on the gyration space.

On the other hand, the stability of locking ofw can be
understood in terms of the potential energy againstw. Figure
6 shows the potential profiles for four given sets of gyration
radii, (a1 ,a2)5(4.24,4.24), ~5.0,3.9!, ~6.0,3.5!, ~8.48,0!,
which are picked up along the reaction path in Fig. 3. The
potential curve with respect tow is flat for a trajectory that is
in the vicinity of the equilibrium configuration (a1 ,a2)
5(4.24,4.24), where a large and rapid democratic rotation is
possible. The potential curve begins to swell as the gyration
radii recedes from the equilibrium, and near the collinear
transition state (a1 ,a2)5(8.48,0), only the regions around 0
or p/3 or 2p/3 for w are energetically accessible. Therefore
the locking of hyperangle tends to become tighter as the
system climbs up the reaction path on the gyration space.

Based on the above observations, reaction mechanism of
M3 cluster can be summarized as follows. In the motions
around the local equilibrium structure, a trajectory on the
gyration space searches for a chance to get into the reaction
path, the switch of which is turned on and off frequently due
to the rapid democratic rotation. In this regime, dynamics of
the cluster is dominated by all of the three internal variables,
a1 , a2 , andw. Once a trajectory on the gyration space be-
comes successful to get into the reaction path, the hyperangle
is locked tightly so as to allow the trajectory to pass through
the transition state. Thus the two variables,a1 anda2 , play a
role of the collective coordinates.

B. Precise role of the democratic centrifugal force

We proceed to more precise study of the effects of the
democratic centrifugal force~DCF!. As can be seen from
Fig. 4, w generally varies rapidly in the vicinity of the local
equilibrium points. The origin of this rapid democratic rota-
tion can be understood by expressingẇ explicitly as

ẇ5u̇1"u25
u1

T~Ẇs
TWs1Ws

TẆs!u2

a1
22a2

2
, ~30!

which is obtained by differentiating Eq.~18! for b51 with
respect to time and taking scalar product withu2 . Since the
numerator of Eq.~30! is generally not zero, very rapid demo-

cratic rotation occurs asa1 andua2u come close to each other
and ẇ can even diverge. Inserting Eq.~30! into the compo-
nents of DCF in Eqs.~26! and~27! shows that in such a case,
both ä1 and ä2 can diverge. Therefore the very rapid demo-
cratic rotation near the line of degeneracy,a15ua2u ~see Fig.
2! necessarily generates a very strong DCF so as to avoid the
complete degeneracy. In order to confirm this effect more
quantitatively, we show in Fig. 7 a frequency distribution of
a12ua2u in many classical trajectories whose total internal
energy is below the isomerization threshold. It is evident that
the trajectories tend to avoid the vicinity of the degeneracy
region, which in turn implies that the triatomic cluster tends
to be in an unsymmetrical mass balance. Since the direction-
ality of DCF field in Fig. 2 and the direction of the reaction
path in Fig. 3~b! are nearly parallel to each other except for
the saddle region, the DCF will help trajectories to climb up
the hill along the reaction path in the gyration space.

The effect of DCF that induces asymmetry in the mass
balance becomes more prominent in the vicinity of the tran-
sition state. Although the hyperanglew is locked around 0 or
p/3 or 2p/3 during the isomerizing motions, it oscillates
within a small range around these angles~see Fig. 4!. This
oscillation brings about a remarkable effect that is as signifi-
cant as the potential force. It should be recalled that the DCF
tends to be stronger in the vicinity of the transition states
than in that of the equilateral triangle structures for a com-
mon value ofẇ, which is demonstrated by the length of the
arrows in Fig. 2. Notice that the arrows in Fig. 2 are directed
to the line a250 ~dividing line or the collinear transition
state! from both sides, resulting in a tendency to be parallel
to this line around it. This suggests that the DCF should have
an effect of trapping trajectories in the vicinity of the collin-
ear saddle structure. In fact, such tentatively trapped trajec-
tories are frequently observed even at a relatively high inter-
nal energy. A typical example of the time evolution of
gyration radii for the trapped motion is shown in Fig. 8~a!. In
this figure, the gyration radiia1 and a2 keep close to the
values of the collinear saddle structure (a1 ,a2)5(8.48,0)
for a long time before falling to one of the regions of equi-

FIG. 6. Potential-energy curves against the hyperanglew with the gyration
radii a1 anda2 fixed to (a1 ,a2)5(4.24,4.24),~5.0,3.9!, ~6.0,3.5!, ~8.48,0!
from the bottom to the top. These values for gyration radii are selected along
the reaction coordinate in Fig. 3~b!.

FIG. 7. Frequency distribution for the difference between the two gyration
radii, a12ua2u, sampled from classical trajectories whose total internal en-
ergy isE522.2« ~normalized to unity!.
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librium structures @(a1 ,a2)5(4.24,64.24)#. Figure 8~b!
shows the corresponding trajectory on the gyration space in
the intervalt5314;t51147 in Fig. 8~a!. It oscillates in the
direction of not onlya1 ~corresponding to symmetric and
antisymmetric stretching motions! but alsoa2 ~bending mo-
tion!.

It is obvious that the saddle structure of the potential
topography alone@see Fig. 3~b!# cannot support the trapping
motion. To comprehend the total effects arising from both
the bear potential surface and the DCF, we superimpose
these factors appearing in the Lagrangian Eq.~25! into the
form of an effective potential such that

Veff[2
1

2

~a1
22a2

2!2

a1
21a2

2
ẇ21V~a1 ,a2 ,w!. ~31!

The resultant topography ofVeff is shown in Fig. 9, wherew
is set to 0 orp/3 or 2p/3 anduẇu50.05, which is a roughly
averaged value during the period of the trapped motions. It

clearly demonstrates that a basin does appear now around the
saddle region of the potential-energy surface. The largerẇ
forms the wider and deeper basin in general.

Trapped motion in the vicinity of a transition state in
three atomic chemical reactions such as H1H2 has been dis-
cussed in the literature for decades. This is because the trap-
ping motion is regarded as one of the main factors that bring
about the overestimate of reaction rate in the transition state
theory. Most of the past studies have focused on the resonant
motion on the skewed potential surfaces for the collinear
configuration.37,38 On the other hand, the present approach
has identified the kinematic origin of the trapped motions
that accounts for trapping not only within the collinear con-
figuration but also in the direction of bendinglike motion out
of the collinear configuration.

Our approach also provides a new insight into the regu-
larity of the dynamics around the saddle region in van der
Waals clusters, which has been discussed for a decade.4,5 It is
widely recognized through numerical investigations that the
dynamics in the saddle region are generally more regular
than that in the bottom region. This can be rationalized quite
naturally from our point of view: First, the effective degrees
of freedom that dominate the saddle-crossing motion are re-
duced from three (a1 ,a2 ,w) in the bottom region to two
(a1 ,a2) due to the locking of the hyperanglew. Second, the
basin structure thus found should help to reduce the irregular
~chaotic! behavior. Thus, in our view, the stability of motion
in the vicinity of transition state is a result of the fact that the
transition state is coincidentally located on thefocal line of
the DCF, that is, on the linea250 on the gyration space.

IV. EFFECTS OF THE GAUGE FIELD ASSOCIATED
WITH THE ECKART FRAME AS A SUPPRESSING
FACTOR OF ISOMERIZATION

We now quantify how much the existence of the gauge
field $Am% in internal space~or correspondingly the move-
ments of the associated body frame under zero total angular
momentum! may contribute to the reaction rate by compar-
ing two dynamics; one which is equipped with the full ef-

FIG. 8. ~a! A typical time evolution of gyration radii,a1 anda2 (a1>a2),
which shows a ‘‘trapped’’ motion in the vicinity of the collinear saddle
structure fromt'350 to t'1100 recrossing the so-called ‘‘dividing sur-
face’’ many times. Total internal energy of the trajectory isE521.16«. ~b!
The corresponding trajectory on the gyration space fromt5314 to t
51147 in ~a!.

FIG. 9. The effective potential-energy surface, Eq.~31!, mapped onto the
gyration space. The hyperanglew is fixed to 0 orp/3 or 2p/3. The demo-
cratic angular velocity is set touẇu50.05. The energy difference between
the neighboring contour lines is 0.231«.
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fects of the gauge field~true dynamics! as studied above and
the other in which the gauge-field effect is eliminated. As a
typical example of the eliminated gauge field in the latter
dynamics, we choose the one associated with the so-called
Eckart frame16–19 and with the normal-mode coordinates. In
case of the large-amplitude motions like isomerization reac-
tions, the effect of the gauge field is never negligible and
should be studied in a quantitative manner. The standard
classical trajectory simulations of molecular dynamics quite
often do not care about the existence of the gauge field in the
(3n26)-dimensional internal space, since they are usually
carried out in the (3n23)-dimensional Jacobi coordinate
scheme~or even in the 3n-dimensional original Cartesian
space for a very large system! and its orthogonally trans-
formed variants. Nevertheless, such a comparison should be
meaningful in that the gauge-field effect is made quantita-
tively explicit. To our best knowledge, no report has been
made before about the actual quantitative effect arising from
the curved nature of molecular internal space induced by the
gauge fields, although considerable studies on theoretical for-
mulation have been made in the literature. Also, we are con-
cerned with a fact that the conventional theories of chemical
reaction are often constructed based on the tentative separa-
tion of rotational and internal motions using the Eckart frame
and disregarding the effects of the gauge field. For example,
the rotational and vibrational partition functions that arise in
the rate expression are often calculated based on the rigid-
body approximation and the normal-mode frequencies,
respectively.7 Hence we should clarify how much such an
effect of the gauge field can contribute to the reaction rate.

A. Eckart subspace and Eckart frame

In this subsection, we consider ann-atom system in
three-dimensional space for generality. Let then21 three-
dimensional vectors$zsi% ( i 51,...,n21) be the mass-
weighted Jacobi vectors for a reference molecular configura-
tion. The reference configuration is usually set to be a local
equilibrium structure of the molecule oriented to a certain
direction. The Eckart subspace is defined as a
(3n26)-dimensional subspace in the (3n23)-dimensional
translation-reduced configuration space$ri

E% ( i 51,...,n21)
with three additional constraint conditions called the Eckart
conditions,

(
i 51

n21

ri
E3zsi50. ~32!

The geometrical meaning is that the Eckart subspace$ri
E% is

perpendicular to the three-dimensional manifold of rigid-
body rotation at the reference configuration$zsi%. The Eckart
subspace is Euclidean, since the conditions in Eq.~32! are
linear. Therefore this space can be spanned by vectors
$nim% (m51,...,3n26) which specify the 3n26 directions
of vibrational normal modes at the reference configuration
$zsi% in the (3n23)-dimensional configuration space. The
vectors$nim% are also perpendicular to the rotation manifold
at $zsi% and thereby satisfy the conditions

(
i 51

n21

nim3zsi50 ~33!

together with the orthonormal conditions

(
i 51

n21

nim"nin5dmn . ~34!

Thus the Eckart subspace can be parametrized by the 3n
26 internal coordinates$qm% as

ri
E~$qm%!5zsi1 (

m51

3n26

nimqm. ~35!

The Eckart frame with respect to the reference configuration
$zsi% for an arbitrary configuration$rsi% is given by a proper
rotationRPSO~3! that satisfies

(
i 51

n21

~RTrsi!3zsi50. ~36!

We call the gauge convention that refers to the Eckart frame
the ‘‘Eckart gauge.’’ In general, the reference configuration
$zsi% in Eq. ~32! does not have to be a local equilibrium
structure. For instance, it can be set at a point along a trajec-
tory as in the instantaneous normal-mode analysis5 and along
a reaction coordinate in the theory of the reaction path
Hamiltonian.20 For our analysis of the M3 cluster, we set the
reference configuration so as to be the equilibrium equilat-
eral triangle structure@type ~A! in Fig. 1#, in which its two
Jacobi vectorszs1 andzs2 are parallel to thex andy axis of
the space-fixed frame, respectively.

It is essential in the Eckart gauge that the gauge potential
Am in Eq. ~7! vanishes at the reference configuration as

Am5M 21(
i 51

n21

zsi3nim50, ~37!

where we have inserted Eq.~35! into Eq. ~7! and set$qm%
5$0% in the first equality, and used Eq.~33! in the second
equality. Therefore the pseudometrichmn here can be a good
approximation togmn as far as a small-amplitude vibration
around the reference configuration is concerned. Further-
more, the resultanthmn becomes simply Euclidean,hmn

5dmn , for the normal-mode coordinates$qm%. Thus the
classical equations of internal motion disregarding the gauge
field are given as the familiar looking Newtonian equations

q̈m52
]V

]qm
. ~38!

Since the pseudometrichmn in the Eckart gauge is the metric
of the Eckart subspace by definition@cf. Eq. ~9!#, the con-
fined motion to the Eckart subspace obeys the same equation
as Eq.~38!. Thus the Eckart subspace can be approximately
identified to be the molecular internal space. However, even
if the total angular momentum is zero, a trajectory starting
from a point on the Eckart subspace gradually gets away
from the subspace and wanders widely in the entire (3n
23)-dimensional translation-reduced configuration space.
The ‘‘falling cat’’ phenomenon never takes place as long as
the dynamics is confined to the Eckart subspace since the
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Eckart frame is fixed. Thus Eq.~38! is never rigorous and
therefore it is quite important to quantify how large an error
can result.

The rigorous dynamics in the internal space can be rep-
resented even in terms of the normal-mode coordinate sys-
tem by taking an appropriate account of the true metricgmn

in Eq. ~11!. Sincehmn5dmn holds in the Eckart gauge, Eq.
~11! is written as

gmn5dmn2Am
TMAn , ~39!

where the moment of inertia tensorM and the gauge poten-
tial $Am% are those referred to the Eckart frame defined as
Eqs. ~6! and ~7!, respectively. Although the components of
the gauge potential are small in the vicinity of the reference
configuration, they generally do not vanish except there,25

and the true metricgmn is no longer Euclidean due to the
second term in the right-hand side of Eq.~39!. The rigorous
equations of motion~for zero angular momentum! are thus
obtained as

gmn~ q̈n1Gkl
n q̇kq̇l!52

]V

]qm
, ~40!

where the Christoffel symbolsGkl
n are defined by

Gkl
n 5

1

2
gnmS ]gmk

]ql
1

]gml

]qk
2

]gkl

]qm D . ~41!

The dynamics arising from these equations of motion should
be compared with the dynamics of Eq.~38! under no gauge
field.

B. Effects of the gauge field on isomerization
reactions: A numerical experiment

We study the rate of isomerization of the M3 cluster. To
do so, we run 5000 trajectories of an internal energyE
521.6«, which is above the isomerization threshold. Ran-
dom sampling to prepare the initial conditions in configura-
tion space are made so as to set them to be common to the
two different dynamics@Eqs. ~40! and ~38!#. It is not a
straightforward matter to judge whether a trajectory starting
from one potential basin has moved to the other accomplish-
ing a reaction, since it generally undergoes recrossing over
the dividing surface and the reaction does not end up with
dissociation~having no asymptotic region to mark the end!.
Here in this particular case study we monitor the time-
dependent number of trajectories that remain in the original
basin~Fig. 10!. Practically, a trajectory is discarded from the
set of surviving trajectories as soon as it passes across the
dividing surface along the collinear configuration, and the
recrossing motion is simply disregarded. The mean first pas-
sage time, that is, an average time for the trajectories to
arrive at the dividing surface is also measured~Fig. 11!.

Figure 10 shows the decay in the number of such sur-
viving trajectories of the M3 isomers of type~A! in Fig. 1.
Since the survival number decays mostly in an exponential
manner in the both dynamics, they must be sufficiently sto-
chastic.~The absence of decay in the very short time range is
due to the specific initial conditions that all atoms are at
rest.! From the figure, it is clear that the decay of the survival

number has been significantly suppressed by the gauge field.
Figure 11 demonstrates that the suppression can be seen in a
wide range of the internal energy. The difference between the
mean first passage times in these dynamics amounts to about
20–30%, which is far beyond a negligible quantity. These
results strongly suggest that one mayoverestimatethe reac-
tion rate of the structural isomerization to such a large value
by disregarding the effects of the gauge field in the internal
space.

C. Mechanism of suppressing the reaction rate

The principal-axis hyperspherical coordinates~PAHC’s!
turned out to be so nice a coordinate system for understand-

FIG. 10. Decay of the number of surviving trajectories of the M3 against
isomerization~see the text for the precise definition of ‘‘isomerization’’!.
The lower curve represents the dynamics without the gauge-field effect, Eq.
~38!, while the upper one indicates the true dynamics under the full gauge
field, Eq. ~40!. All of the initial conditions are randomly sampled in con-
figuration space and are taken to be exactly the same for the two sets of
dynamics. Number of the sample trajectories is 5000 and their internal en-
ergy is set toE521.6«.

FIG. 11. Internal-energy dependence of mean first passage time~average
lifetime! of the M3 cluster. The lower curve represents the dynamics under
no gauge field, Eq.~38!, while the upper one shows the data for the true
dynamics, Eq.~40!.
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ing the mechanism of the structural isomerization of the M3

cluster as seen in Sec. III that we here analyze the dynamics
without the gauge field in terms of the PAHC’s. Recently,
Littlejohn et al.33 have presented an explicit parametrization
of the Eckart subspace in terms of the PAHC’s (a1 ,a2 ,w) for
three-atom systems whose reference configuration is the
same as ours defined in Sec. IV A. The result is expressed as

~r1
E r2

E!

5S cosw 2sinw 0

sinw cosw 0

0 0 1
D S a1 0

0 a2

0 0
D S cosw sinw

2sinw cosw
D

~42!

5S a1 cos2 w1a2 sin2 w ~a12a2!sinw cosw

~a12a2!sinw cosw a1 sin2 w1a2 cos2 w

0 0
D . ~43!

With this parametrization and Eq.~9!, the pseudometric ten-
sor hmn of the Eckart subspace is represented as

~hmn!5S 1 0 0

0 1 0

0 0 2~a12a2!2
D . ~44!

Then the associated Lagrangian for the dynamics without the
gauge field turns out to be

L5
1

2
$ȧ1

21ȧ2
212~a12a2!2ẇ2%2V~a1 ,a2 ,w!, ~45!

and the classical equations of motion are

ä152~a12a2!ẇ22
]V

]a1
, ~46!

ä252~a22a1!ẇ22
]V

]a2
, ~47!

d

dt
@2~a12a2!2ẇ#52

]V

]w
. ~48!

Comparing these expressions with Eqs.~26!–~28! directly
gives a theoretical basis to see the consequence of neglecting
the gauge-field effects. We see that the democratic centrifu-
gal force~DCF! arises on the gyration space, but, in a differ-
ent form. We now look into the details of the difference.

The field of the DCF in the dynamics without the gauge
field in Eqs.~46! and ~47! is shown in Fig. 12 at a selected
ẇ. Comparing Fig. 12 with Fig. 2, we see that the difference
between these two force fields is most significant near thea1

axis (a250), whereas it is small in the vicinity of the upper
degeneracy line,a15a2 . ~Recall that we use only the upper-
half plane,a2>0, for the calculation of the reaction rate by
definition.! In the true dynamics with the full gauge fields,
the direction of the DCF lies more parallel to thea1 axis in
the vicinity of the dividing line (a250) than in the dynamics
under no gauge field. In the dynamics without the gauge
field, on the other hand, the DCF is always parallel to the
line a152a2 in the upper-half plane and tends to lead the
molecular geometry to the collinear configuration, provided

that a trajectory starts in the upper-half plane. But, at the
same time, it keeps to push the trajectory carrying further
across the dividing line in clear contrast to the true dynamics.

In order to confirm the above-mentioned effect of the
gauge field, we show in Fig. 13~a! the frequency distribution
for the a2 component of velocity vectors in the gyration
space,ȧ2 , at the instant that the system crosses the linea2

50 for these two dynamics. Note thatȧ2 is directly related
to the reactive flux at the dividing surface. It can be seen
clearly in their difference@see Fig. 13~b!# that the dynamics
under no gauge field has more components in the larger-ȧ2

region. In fact, the average of them is^ȧ2&50.853 and
^ȧ2&50.910 for the dynamics with and without the gauge
field, respectively. This means that the trajectories getting out
of the initial basin in the dynamics without the gauge field
tend to be moreballistic and isomerization proceeds more
smoothly. This proves the suppressing effect of the gauge
field.

V. CONCLUDING REMARKS

We have clarified the nature of the internal motions of a
triatomic cluster in terms of the principal-axis hyperspherical
coordinates~PAHC’s! based on a gauge-theoretical treat-
ment. This coordinate system turned out to be quite effective
both for understanding mechanism of the isomerization reac-
tion and for extracting kinematic effects associated with the
principal-axis frame. A collective reaction path has been ex-
tracted on a two-dimensional gyration space, since freezing
of the hyperangle of the coordinates occurs during the
isomerizing collective motions. Furthermore, we have ob-
tained a kinematic force called democratic centrifugal force
~DCF!, which arises on the gyration space in response to the
democratic rotation. It has been revealed that the DCF gen-
erally has an effect of inducing an asymmetry in mass bal-
ance of a system along principal axes and therefore the tri-
atomic system tends to be collapsed towards the collinear
shape, which helps the isomerization reaction to begin. A

FIG. 12. The field of democratic centrifugal force on the gyration space
arising from the dynamics under no gauge field. The length of each arrow
reflects the strength of the force at each point for a given value of demo-
cratic angular velocityẇ. The broken lines are the degeneracy lines between
the two gyration radii,a15ua2u.
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remarkable fact is that the collinear saddle region of the M3

cluster is dynamically stabilized due to the DCF. We have
shown that an effective potential, which is a sum of a poten-
tial function and the potential arising from the DCF, holds a
new ‘‘basin’’ around the collinear transition state. Owing to
this basin structure, the M3 cluster can be trapped in the
transition region for a long time and recrosses the dividing
surface many times. The present approach has provided a
unified view of the recrossing problem and regularity of re-
active trajectories in the saddle region.

It would be worthwhile to mention here that the above
results have been observed in the four atom cluster M4.39 In
the tetraatomic clusters in three-dimensional space, internal
space is parametrized by three gyration radii (a1 ,a2 ,a3) and
three hyperangles (w1 ,w2 ,w3). During collective isomeriz-
ing motions, through which one tetrahedral isomer turns to
the other permutationally distinct tetrahedron via a planar
rhombus shaped transition state, the three hyperangles are
‘‘locked’’ and two of the three gyration radii dominate the
reaction. Therefore the reaction path for the M4 cluster is
essentially described with two gyration variablesa1 ~the
largest one! and a3 ~the smallest!. The DCF also arises on
three-dimensional gyration space in response to the variation
of hyperangles, which distorts the M4 cluster so as to enlarge

the largest gyration radiusa1 and to diminish the absolute
value of the smallest gyration radiusa3 along each principal
axis. The transition state of planer rhombus structure is like-
wise stabilized and a trapped motion has been observed.

We have investigated kinematic effects associated with
the Eckart frame, which is the most standard body frame in
the theories of molecular vibrations. We have found that the
gauge field associated with the Eckart frame arising in the
internal space, the roles of which do not seem to have been
fully scrutinized in the conventional reaction-rate theories,
has an effect of inhibiting the isomerization reaction of the
M3 cluster significantly. Our numerical results suggest that
the reaction rate theories that disregard the effects of the
gauge field couldoverestimatethe reaction rates up to about
20–30%. We have also presented a theoretical mechanism of
this numerical fact, which highlighted the above stated roles
of the DCF again.

It is obvious that the gauge field in the internal dynamics
should have an important effect in a statistical theory of
chemical reaction. First, the volume of the corresponding
phase space, both in the reactant and transition state, is sig-
nificantly changed. In fact, a very naive treatment of the
reaction rate by an expression ‘‘the number of states at the
transition state divided by the density of states at the equi-
librium structure’’ gives rise to the similar estimate of the
difference between the true dynamics and the dynamics un-
der no gauge field. Second, the effective potential of Fig. 9,
the basin structure of which accounts for the recrossing dy-
namics in a unified manner, can be vital to a reconsideration
of the underlying statistical hypothesis. All these materials
will be fully discussed in our future publications.

Finally we would like to note that our preliminary study
on large molecules shows that the effects of the gauge field
associated with the Eckart frame and the resultant effects of
the non-Euclidean nature of internal space are never small. It
is not correct to expect that such effects may become rela-
tively negligible as a molecule becomes large. Our analysis
presented above and preliminary studies as well thus suggest
that the essential roles of the intrinsic metric in internal space
together with those of the gauge field should be further re-
vealed particularly in polyatomic molecules with many de-
grees of freedom.
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