Optimal control with weighted average costs and temporal logic specifications

Eric M. Wolff, Ufuk Topcu, and Richard M. Murray

California Institute of Technology

July 12, 2012

Motivation

Goal:

• Optimal control for an autonomous system doing a complex task

Challenges:

- Reasoning about how system properties change over time
- Specifying properties like safety, response, priority, liveness, and persistence
- Optimizing the system trajectory to conserve fuel or minimize time

Problem Description

• Task: repeatedly visit PICKUP

Given:

- \bullet System model: transition system ${\mathcal T}$ with costs and weights
- $\bullet\,$ Task specification: linear temporal logic (LTL) formula φ

Problem: Minimize

$$J(\sigma) \coloneqq \limsup_{n \to \infty} \frac{\sum_{i=0}^{n} c(\sigma_i, \sigma_{i+1})}{\sum_{i=0}^{n} w(\sigma_i, \sigma_{i+1})}$$

over all system trajectories σ that satisfy the LTL specification $\varphi.$

Solution overview

1. Construct the product automaton $\mathcal{P} = \mathcal{T} \times \mathcal{A}_{\varphi}$

Solution overview

1. Construct the product automaton \mathcal{P} = $\mathcal{T} \times \mathcal{A}_{\varphi}$

- 2. Show that problem is equivalent to finding an optimal cycle in ${\mathcal P}$
 - $\sigma = \sigma_{\rm pre} \sigma_{\rm suf}^{\omega}$
 - $J(\sigma_{\rm pre}\sigma_{\rm suf}^{\omega}) = J(\sigma_{\rm suf}^{\omega})$
 - $\sigma_{\rm suf}$ is a cycle including an accepting state in ${\cal P}$

Solution overview

1. Construct the product automaton \mathcal{P} = $\mathcal{T} \times \mathcal{A}_{\varphi}$

- 2. Show that problem is equivalent to finding an optimal cycle in ${\mathcal P}$
 - $\sigma = \sigma_{\rm pre} \sigma_{\rm suf}^{\omega}$
 - $J(\sigma_{\rm pre}\sigma_{\rm suf}^{\omega}) = J(\sigma_{\rm suf}^{\omega})$
 - $\sigma_{\rm suf}$ is a cycle including an accepting state in ${\cal P}$

3. Compute optimal cycle using dynamic programming

Task: repeatedly visit *a*, *b*, and *c* and avoid obstacles *x* **LTL spec:** $\varphi = \Box \diamondsuit a \land \Box \diamondsuit b \land \Box \diamondsuit c \land \Box \neg x$

Figure: Driving task, with optimal run (blue) and feasible run (red).

Task: repeatedly visit *a*, *b*, and *c* and avoid obstacles *x* **LTL spec:** $\varphi = \Box \diamondsuit a \land \Box \diamondsuit b \land \Box \diamondsuit c \land \Box \neg x$

Task: repeatedly visit *a*, *b*, and *c* and avoid obstacles *x* **LTL spec:** $\varphi = \Box \diamondsuit a \land \Box \diamondsuit b \land \Box \diamondsuit c \land \Box \neg x$

Figure: Driving task, with optimal run (blue) and feasible run (red).

Task: repeatedly visit *a*, *b*, and *c* and avoid obstacles *x* **LTL spec:** $\varphi = \Box \diamondsuit a \land \Box \diamondsuit b \land \Box \diamondsuit c \land \Box \neg x$

Figure: Driving task, with optimal run (blue) and feasible run (red).

Cost: $J_{opt} = 49$ and $J_{feas} = 71$ (units) **CPU time:** $t_{opt} = 2.5$ and $t_{feas} = 0.68$ (sec)