Robust Control for Uncertain MDPs with Temporal Logic Specifications

Eric Wolff¹, Ufuk Topcu², and Richard Murray¹ CDC 2012 12/11/12

¹Caltech + ²UPenn

Outline

- Motivation
- System: uncertain MDP
- Tasks: temporal logic
- Problem statement
- Solution
 - Combine system + task
 - Robust dynamic programming
- Example

Motivation

• **Goal**: Naturally specify tasks for autonomous systems

- Reality enters:
 - Autonomous systems must deal with uncertainty
 - System models are not perfect

Our Contribution

- Generalize previous results
 - MDPs [de Alfaro, Ding + Belta]
 - Interval MDPs [Chatterjee]
 - Robust dynamic programming [Nilim + El Ghaoui]

Robustness almost for free
– O(log(1/ε)) times more effort

Specification language (LTL)

Want to specify properties such as:

- Response: always SIGNAL after a REQUEST arrives
- Liveness: always eventually PICKUP
- Safety: always remain SAFE
- Priority: do JOB1 until JOB2
- Guarantee: eventually reach GOAL

Linear temporal logic (LTL):

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \implies (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \Box (always), \diamondsuit (eventually)

Specification language (LTL)

Want to specify properties such as:

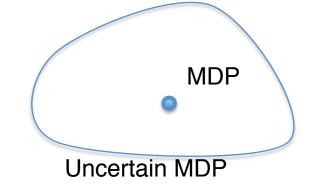
- Response: \Box (REQUEST \implies SIGNAL)
- Liveness: □◇ PICKUP
- Safety: □ SAFE
- Priority: JOB1 \mathcal{U} JOB2
- Guarantee: \diamondsuit GOAL

Linear temporal logic (LTL):

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \implies (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \Box (always), \diamondsuit (eventually)

System model (uncertain MDP)

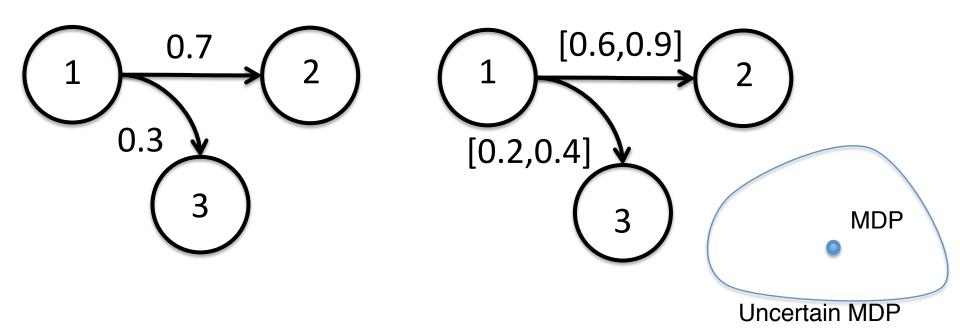
- An **MDP** M is a tuple $M = (S, A, P, s_0, AP, L)$, where
 - S is a finite set of states,
 - A is a finite set of actions (e.g., motion primitives),
 - $P:S \times A \times S \rightarrow [0,1]$ is the transition probability function,
 - $-s_0$ is the initial state,
 - AP is a finite set of atomic propositions, and
 - -L: S \rightarrow 2^{AP} is a labeling function.
- Control policy:
 - $-\pi: S \rightarrow A$
 - Induces Markov chain



System model (uncertain MDP)

- Uncertainty set for MDP transitions (likelihood, entropy, MAP, interval, scenario, ...)
- Control picks action, environment picks transition
- <u>Nominal</u>

<u>Uncertain</u>

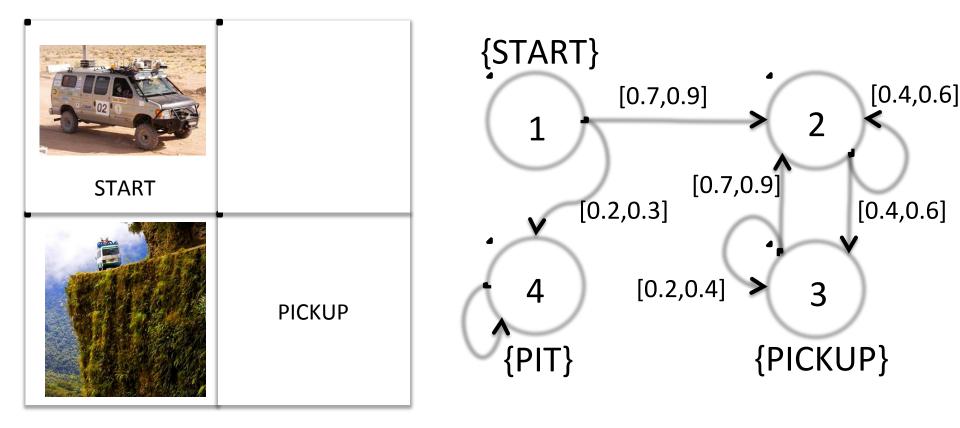


Problem statement

- Given:
 - Uncertain MDP M w/ initial state s_0
 - LTL specification ϕ
- Problem: Create control policy π* that maximizes the probability of MDP M satisfying φ over uncertainty set, i.e.

$$\pi^* = \arg \max \min_{\substack{\tau \in \mathcal{T} \\ \uparrow \\ \text{System} \\ \text{policies}}} \mathbb{P}^{\pi,\tau}(s_0 \vDash \varphi)$$

Tutorial example



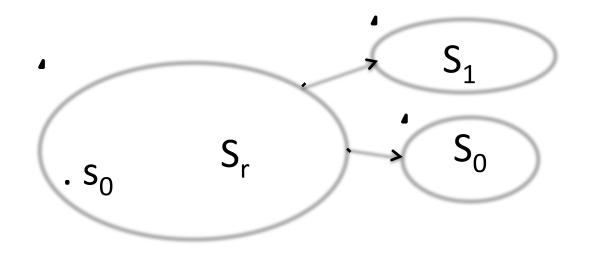
Task: Repeatedly PICKUP and always avoid PIT

1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}

- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$

- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$
- 3. Compute winning set in M_p

- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$
- 3. Compute winning set in M_p
- 4. Compute control policy to maximize probability of reaching winning set (dynamic programming)



- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$
- 3. Compute winning set in M_p
- 4. Compute control policy to maximize probability of reaching winning set (dynamic programming)
- 5. Project policy back to the original MDP

- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$
- 3. Compute winning set in M_p
- 4. Compute control policy to maximize probability of reaching winning set (dynamic programming)
- 5. Project policy back to the original MDP

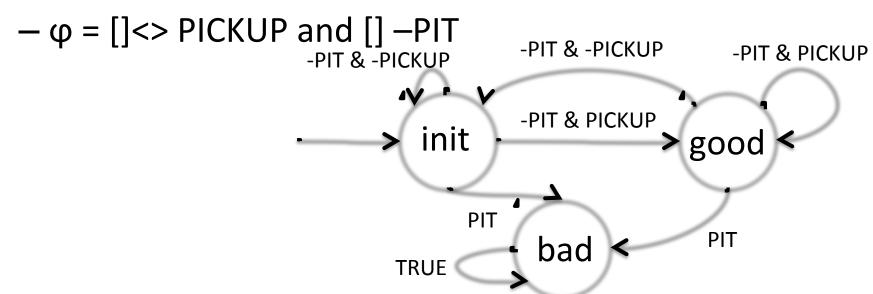
• Our focus: Step 4

LTL spec to automaton (1/5)

- Spec satisfaction?
 - Infinitely often visit "good" states
 - Finitely often visit "bad" states

LTL spec to automaton (1/5)

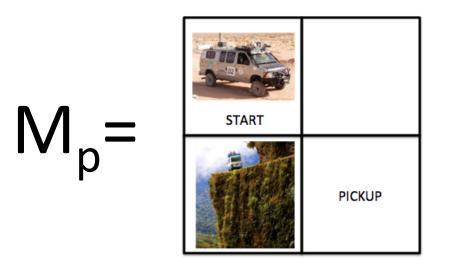
- Spec satisfaction?
 - Infinitely often visit "good" states
 - Finitely often visit "bad" states
- Ex:
 - Task: Repeatedly PICKUP and always avoid PIT



Product automaton (2/5)

Х

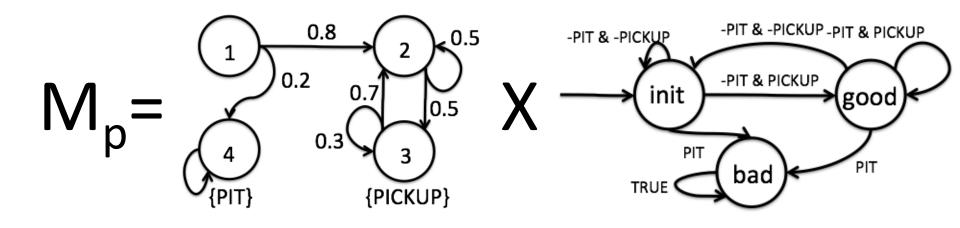
• M_p has behaviors that satisfy system and spec



Task: Repeatedly PICKUP and always avoid PIT

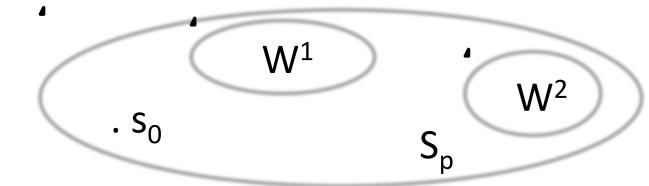
Product automaton (2/5)

• M_p has behaviors that satisfy system and spec



Winning sets (3/5)

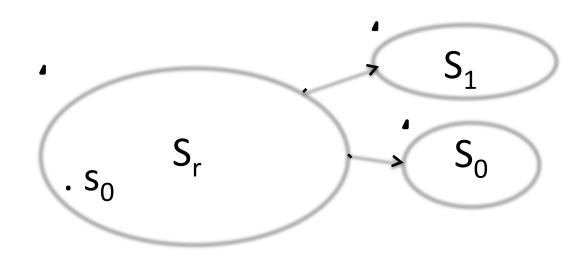
- Winning set:
 - System can stay in set of states forever
 - Includes "good" states
 - Excludes "bad" states



• Problem is now to reach union of these sets

Reachability problem (4/5)

- V(s) is probability of satisfying spec at state s
- V(s) = 1 for s in winning sets $(S_1 = W^1 U W^2)$
- V(s) = 0 for s that cannot reach winning set (S₀)
- V(s) = ??? for s in $S_r = S (S_0 \cup S_1)$



Robust dynamic programming (4/5)

• Undiscounted problem [compare w/ Nilim + El Ghaoui]

- Informally:
 - V maps each state to a scalar (spec. satisfaction prob.)
 - p is probability distribution environment selects
 - A(s) is the set of control actions in state s
 - r(s,a) is a scalar reward

$$(TV)(s) := \max_{a \in A(s)} \left[r(s,a) + \min_{p \in \mathcal{P}_s^a} p^T V \right]$$

Robust dynamic programming (4/5)

- Theorem: T operator is a contraction
 - Based on transformation of product MDP
 - Problem specific insight
 - Weighted sup norm

- Use contraction mapping theorem for existence/uniqueness of TV* = V* fixed-point
- Value iteration to compute V*

- 1. LTL spec $\phi \rightarrow$ deterministic Rabin automaton A_{ϕ}
- 2. Create product MDP $M_p = M \times A_{\phi}$
- 3. Compute winning set in M_p
- 4. Compute control policy to maximize probability of reaching winning set (dynamic programming)
- 5. Project policy back to the original MDP

• Our focus: Step 4

Complexity

- Good?
 - n, m = # states, edges in product MDP
 - ϵ -suboptimal policy: O(n²m log(1/ ϵ) log(1/ ϵ)) [likelihood]

$$(TV)(s) := \max_{a \in A(s)} \left[r(s,a) + \min_{p \in \mathcal{P}_s^a} p^T V \right]$$

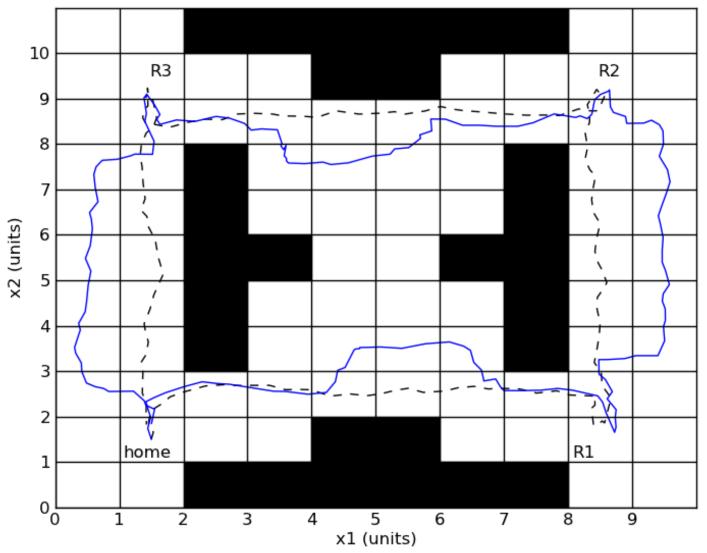
Complexity

- Good?
 - n, m = # states, edges in product MDP
 - ϵ -suboptimal policy: O(n²m log(1/ ϵ) log(1/ ϵ)) [likelihood]
- Wait!
 - LTL to DRA: $O(2-exp(|\phi|))$
 - For LTL fragment: $O(exp(|\phi|))$ [Alur]
 - For other LTL fragment: N/A (!) [Wolff, ICRA13 sub.]

Complexity

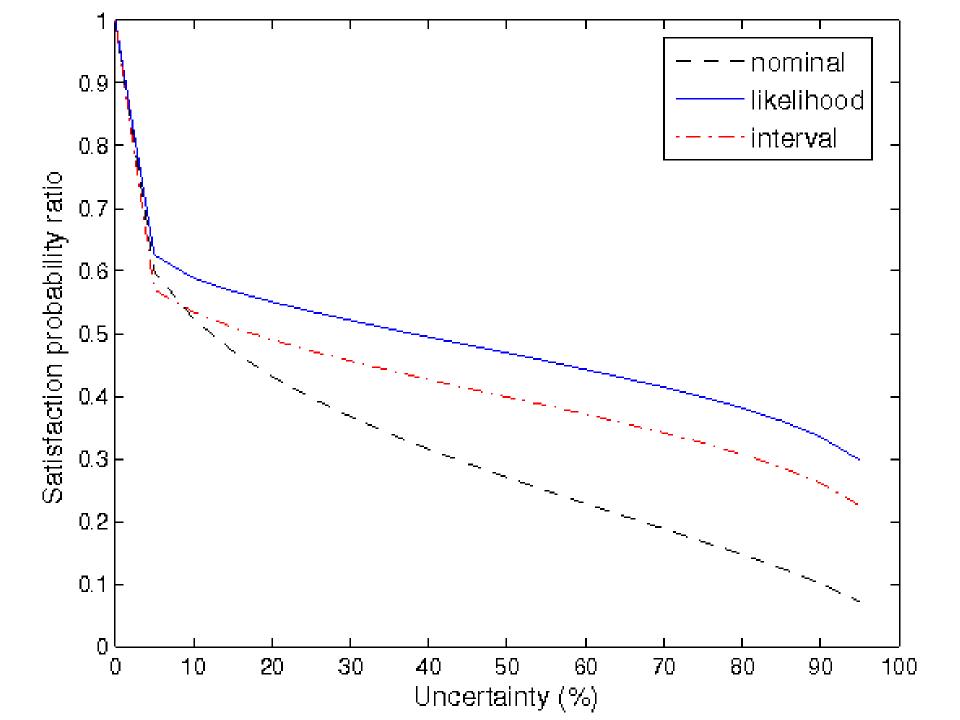
- Good?
 - n, m = # states, edges in product MDP
 - ϵ -suboptimal policy: O(n²m log(1/ ϵ) log(1/ ϵ)) [likelihood]
- Wait!
 - LTL to DRA: $O(2-exp(|\phi|))$
 - For LTL fragment: $O(exp(|\phi|))$ [Alur]
 - For other LTL fragment: N/A (!) [Wolff, ICRA13 sub.]
- Takeaway: Robust policy in O(log(1/ε)) more time [Nilim + El Ghaoui results for likelihood uncert.]

Simulation Results



• Informal task: Start + end at HOME. Avoid OBSTACLES. Visit R1, R2, R3.

• **Sample trajectories**: nominal (0.47 sec) + robust (5.7 sec)



Conclusions

- Our approach:
 - Uncertainty sets for MDP transitions
 - LTL formulas describe complex tasks
 - Robustness almost free [O(log($1/\epsilon$)) more time]
- Current work:
 - Non-deterministic + stochastic environments
 - Multi-objective

Thanks!

• Questions?

- Funding
 - NSF graduate research fellowship
 - Boeing
 - AFOSR

