
Robust Control for Uncertain MDPs
with Temporal Logic Specifica>ons

Eric Wolff1, Ufuk Topcu2, and Richard Murray1

CDC 2012
12/11/12

1Caltech + 2UPenn

Outline
•  Motivation
•  System: uncertain MDP
•  Tasks: temporal logic
•  Problem statement
•  Solution
– Combine system + task
– Robust dynamic programming

•  Example

Mo>va>on

•  Goal: Naturally specify tasks
for autonomous systems

•  Reality enters:
– Autonomous systems must deal
with uncertainty

– System models are not perfect

Our Contribu>on

•  Generalize previous results
– MDPs [de Alfaro, Ding + Belta]
–  Interval MDPs [ChaVerjee]
– Robust dynamic programming [Nilim + El Ghaoui]

•  Robustness almost for free
– O(log(1/ε)) >mes more effort

Specifica>on language (LTL)o specify tasks?

Want to specify properties such as:

Response: always SIGNAL after a REQUEST arrives

Liveness: always eventually PICKUP

Safety: always remain SAFE

Priority: do JOB1 until JOB2

Guarantee: eventually reach GOAL

Linear temporal logic (LTL):

A logic for reasoning about how properties change over time

Reason about infinite sequences σ = s0s1s2 . . . of states
Propositional logic: ∧ (and), ∨ (or), �⇒ (implies), ¬ (not)

Temporal operators: U (until), � (next), � (always), � (eventually)

Specifica>on language (LTL)o specify asks?

Want to specify properties such as:

Response: �(REQUEST �⇒ SIGNAL)

Liveness: �� PICKUP

Safety: � SAFE

Priority: JOB1 U JOB2

Guarantee: � GOAL

Linear temporal logic (LTL):

A logic for reasoning about how properties change over time

Reason about infinite sequences σ = s0s1s2 . . . of states
Propositional logic: ∧ (and), ∨ (or), �⇒ (implies), ¬ (not)

Temporal operators: U (until), � (next), � (always), � (eventually)

System model (uncertain MDP)!
•  An MDP M is a tuple M = (S, A, P, s0, AP, L), where !
–  S is a finite set of states, !
–  A is a finite set of actions (e.g., motion primitives), !
–  P∶S×A×S→[0,1] is the transition probability function, !
–  s0 is the initial state, !
–  AP is a finite set of atomic propositions, and !
–  L ∶ S → 2AP is a labeling function.!

•  Control policy:!
–  π: S → A!
–  Induces Markov chain!

MDP!

Uncertain MDP!

System model (uncertain MDP)	
•  Uncertainty set for MDP transitions (likelihood,

entropy, MAP, interval, scenario, …)	
•  Control	 picks	 ac>on,	 environment	 picks	 transi>on	
•  Nominal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Uncertain	

MDP!

Uncertain MDP!

1	 2	

3	

[0.2,0.4]	

[0.6,0.9]	
1	 2	

3	

0.3	

0.7	

Problem statement

•  Given:
– Uncertain MDP M w/ ini>al state s0
– LTL specifica>on ϕ

•  Problem: Create control policy π* that maximizes
the probability of MDP M sa>sfying ϕ over
uncertainty set, i.e.

iti AP
Then,

yM und r ontrol p

. A op imal robus contro pM is
π∗ = argmax

π∈Π min
τ∈T Pπ,τ(s0 � ϕ)

System
policies

Env. policies
(uncertainty)

Tutorial example

PICKUP

START

1 2

4 3

[0.7,0.9]
{START}

{PICKUP}{PIT}

[0.2,0.3] [0.4,0.6]
[0.7,0.9]

[0.4,0.6]

[0.2,0.4]

Task: Repeatedly PICKUP and always avoid PIT

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

 
 
 

 

 

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

 
 

 

 

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

3.  Compute winning set in Mp

 

 

 

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

3.  Compute winning set in Mp

4.  Compute control policy to maximize probability
of reaching winning set (dynamic programming)
 

  S0

S1

. s0
Sr

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

3.  Compute winning set in Mp

4.  Compute control policy to maximize probability
of reaching winning set (dynamic programming)

5.  Project policy back to the original MDP

 

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

3.  Compute winning set in Mp

4.  Compute control policy to maximize probability
of reaching winning set (dynamic programming)

5.  Project policy back to the original MDP

•  Our focus: Step 4

LTL spec to automaton (1/5)
•  Spec sa>sfac>on?
–  Infinitely oken visit “good” states
– Finitely oken visit “bad” states

 
 
 

LTL spec to automaton (1/5)
•  Spec sa>sfac>on?
–  Infinitely oken visit “good” states
– Finitely oken visit “bad” states

•  Ex:
– Task: Repeatedly PICKUP and always avoid PIT
– ϕ = []<> PICKUP and [] –PIT

init good

bad

-‐PIT & -‐PICKUP

-‐PIT & PICKUP

TRUE
PIT

-‐PIT & PICKUP-‐PIT & -‐PICKUP

PIT

Product automaton (2/5)

•  Mp has behaviors that sa>sfy system and spec

Task: Repeatedly PICKUP
and always avoid PITXMp=

Product automaton (2/5)

•  Mp has behaviors that sa>sfy system and spec

XMp=

Winning sets (3/5)

•  Winning set:
– System can stay in set of states forever
–  Includes “good” states
– Excludes “bad” states

•  Problem is now to reach union of these sets

Sp
W2

W1

. s0

Reachability problem (4/5)
•  V(s) is probability of sa>sfying spec at state s

•  V(s) = 1 for s in winning sets (S1 = W1 U W2)
•  V(s) = 0 for s that cannot reach winning set (S0)
•  V(s) = ??? for s in Sr = S – (S0 U S1)

S0

S1

. s0
Sr

Robust dynamic programming (4/5)

•  Undiscounted problem [compare w/ Nilim + El Ghaoui]

•  Informally:
– V maps each state to a scalar (spec. sa>sfac>on prob.)
– p is probability distribu>on environment selects
– A(s) is the set of control ac>ons in state s
–  r(s,a) is a scalar reward

 

 

 

 

$ 3 2/E2#$
 

 

 

))722 -

! # &
For fi ite

P
P

i t l i t
s T

e and µν ope a s a e mapp
r ea h st te s � , defi e he
ν respec i e y a

(TV)(s) ∶= max
a∈A(s) [r(s, a) + min

p∈Pa
s

pTV]

 
 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

Robust dynamic programming (4/5)

•  Theorem: T operator is a contrac>on
– Based on transforma>on of product MDP
– Problem specific insight
– Weighted sup norm

•  Use contrac>on mapping theorem for
existence/uniqueness of TV* = V* fixed-‐point

•  Value iteraAon to compute V*

Solu>on overview

1.  LTL spec ϕà determinis>c Rabin automaton Aϕ

2.  Create product MDP Mp = M x Aϕ

3.  Compute winning set in Mp

4.  Compute control policy to maximize probability
of reaching winning set (dynamic programming)

5.  Project policy back to the original MDP

•  Our focus: Step 4

Complexity

•  Good?
–  n, m = # states, edges in product MDP
–  ε-‐subop>mal policy: O(n2m log(1/ε) log(1/ε)) [likelihood]

 
 
 
 

 

 

 

 

 

5#$ 3 +2/ 2 $85E GS

 

 

 

0,A ,L) det i s

∈ S�t and can b

c ude it
o ea h state s ∈ S�t d fine

nd V respecti el

(TV)(s) ∶= max
a∈A(s) [r(s, a) + min

p∈Pa
s

pTV]

 
 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

Complexity

•  Good?
–  n, m = # states, edges in product MDP
–  ε-‐subop>mal policy: O(n2m log(1/ε) log(1/ε)) [likelihood]

•  Wait!
–  LTL to DRA: O(2-‐exp(|ϕ|))
–  For LTL fragment: O(exp(|ϕ|)) [Alur]
–  For other LTL fragment: N/A (!) [Wolff, ICRA13 sub.]

 

Complexity

•  Good?
–  n, m = # states, edges in product MDP
–  ε-‐subop>mal policy: O(n2m log(1/ε) log(1/ε)) [likelihood]

•  Wait!
–  LTL to DRA: O(2-‐exp(|ϕ|))
–  For LTL fragment: O(exp(|ϕ|)) [Alur]
–  For other LTL fragment: N/A (!) [Wolff, ICRA13 sub.]

•  Takeaway: Robust policy in O(log(1/ε)) more >me [Nilim + El
Ghaoui results for likelihood uncert.]

Simula>on Results

•  Informal task: Start + end at HOME. Avoid OBSTACLES. Visit R1, R2, R3.
•  Sample trajectories: nominal (0.47 sec) + robust (5.7 sec)

Conclusions

•  Our approach:
– Uncertainty sets for MDP transi>ons
– LTL formulas describe complex tasks
– Robustness almost free [O(log(1/ε)) more >me]

•  Current work:
– Non-‐determinis>c + stochas>c environments
– Mul>-‐objec>ve

Thanks!

•  Ques>ons?

•  Funding
– NSF graduate research fellowship
– Boeing
– AFOSR

