Model Checking with Automata
An Overview

Vanessa D. Carson
Control and Dynamical Systems, Caltech
Contents

• Motivation
• Overview Software Verification Techniques
• Model Checking
 – System Modeling
 – Specification Modeling
 – Verification
• Next Lecture
Motivation

Software bugs are hard to find

• Example: Mars Polar Lander 1999
 – Study Martian weather, climate, water and CO₂ levels
 – Last telemetry sent prior to atmospheric entry
 – Potential software/hardware error
 • Logic for engine cutoff that engaged when lander legs were deployed ~40 m above ground
 • Some vibration caused sensors to trip engine cut-off
 • Input and its effects on state not considered appropriately

Software systems are complex

• Multiple processes running concurrently
 • sensors, planners, actuators
 • complexity of process interleavings
 • reasoning about distributed systems
• Interested in systems that do not halt

Assure that system behaves as intended
Software Testing

Simulation and Testing

- Proving coverage
 - Rarely possible to check all software interactions
- Tools: Code coverage tools, parsers, random testing

Formal Verification

Deductive Verification

- System Model
- Proof in Logical Calculus

Model Checking

- System Model + System Spec
- YES/NO

- Proof methods
- Algorithmic methods

- Complex systems => large models
 - DV: Length of proof/expertise
 - MC: physical limitations
- Tools: Isabelle, HOL, ACL2, PVS (DV), SPIN (MC)
Concurrency and Shared Variables

Two processes P_0 and P_1 executing on a single core CPU

P_0 and P_1 are loaded into the processor and executed one at a time according to a schedule.

P_0 and P_1 may share some memory and may read and write to it.

Determines what process to put into context based on some scheduling algorithm.

<table>
<thead>
<tr>
<th>Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
</tr>
<tr>
<td>OS process</td>
</tr>
<tr>
<td>P_1</td>
</tr>
<tr>
<td>P_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0Var=100</td>
</tr>
<tr>
<td>writeBuf="xy"</td>
</tr>
<tr>
<td>OSVar='root'</td>
</tr>
<tr>
<td>P_1Var=50</td>
</tr>
</tbody>
</table>

Shared variable between process P_0 and P_1.
Concurrency Issues

P₀ while True do
 getScienceData(scienceData);
 writeToBuffer(writeBuff, scienceData);
 writeToFile(writeBuff, scienceFile);
 clearBuffer(writeBuff);
end while;

P₀ writes science data to scienceFile

Science Data Overwritten!

P₁ while True do
 getSpacecraftHealthData(healthData);
 writeToBuffer(writeBuff, healthData);
 writeToFile(writeBuff, healthFile);
 clearBuffer(writeBuff);
end while;

P₁ writes spacecraft health data to healthFile
Model Checking Process

- **Modeling**: Convert a design to a formalism accepted by a model checker.

- **Specification**: State the properties that the design must satisfy.

- **Verification**: Verify correctness of specification with respect to the model.

Verification is performed automatically by an exhaustive search of the state space of the system.
System Modeling

![Diagram of System Modeling]

- **System Model**
- **Specification**
- **Verification**
 - **MODEL CHECKER**
 - **YES**
 - **NO**
 - **Specification Met**
 - **Counterexample Found**
int x = 13;
while (x == 13) {
 x = x + 2;
 while (x > 0) {
 x = x/2;
 }
}

A finite state automaton is a tuple $(\Sigma, S, S_0, \Delta, F)$ where
Σ is a finite alphabet
S is a finite set of states
$S_0 \subseteq S$ is the set of initial states
$\Delta \subseteq (S \times \Sigma \times S)$ is a set of transition relations
$F \subseteq S$ is a set of final states
A run of the automaton $r = s_0 \ s_1 \ s_2 \ s_3 \ s_2 \ s_3 \ s_2 \ s_3 \ s_2 \ s_3 \ s_0$

A run of a finite state automaton A is a sequence of transitions $\rho = s_0 \ s_1 \ldots s_n$ of states $s_i \in S$ such that $s_0 \in S_0$ and $(s_i, l_i, s_{i+1}) \in \Delta, \forall i \in \mathbb{N}$.

A finite run ρ is accepting \iff the final state $s_f \in F$.
Modeling with Büchi Automata

- Most concurrent systems do not halt during normal execution
- Decide on acceptance of ongoing, potentially infinite executions
 - OS schedulers, control software
- Require Finite State Automata over *infinite* words

A ω-run of a finite state automaton A is an infinite sequence $\rho = s_0s_1...s_n...$ of states $s_i \in S$ such that $s_0 \in S_0$ and $(s_i, l_i, s_{i+1}) \in \Delta, \forall i \in \mathbb{N}$.

The run ρ is *accepting* $\iff \exists s \in F, \exists s_i = s$ for infinitely many $i \in \mathbb{N}$.
In other words, there exists $s \in F$ that appears infinitely often.

A *Büchi* automaton is a finite state automaton that accepts infinite runs.
Büchi Automaton Language

- Two state Büchi automaton A
- Initial and accepting state s_0
- Accepts infinite number of symbol a
- $L(A) = \{\text{set of } w\text{-words over } \{a,b\} \text{ with infinitely many } a\text{'s}\}$
- $L(A) = \{(b*a)^w \}$

The *language* of an automaton A, $L(A) \subseteq \Sigma^\omega$ is the set of ω-words for which there exists a run ρ of A and that run is accepting.
Mutual Exclusion

Problem
- P₀ alters the variable `writeBuf` over some execution steps
- P₁ gets triggered while P₀ is in the process of overwriting variable `writeBuf`
- `writeBuf` is in an inconsistent and unpredictable state

Solution
- Avoid simultaneous use of a common resource
- Divide code into **critical sections** to protect shared data
- **Mutual exclusion** algorithms exist
 - Lamport’s Bakery, Peterson’s, …

<table>
<thead>
<tr>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀Var=100</td>
</tr>
<tr>
<td><code>writeBuf=“xy“</code></td>
</tr>
<tr>
<td>OSVar=’root’</td>
</tr>
<tr>
<td>P₁Var=50</td>
</tr>
</tbody>
</table>
Mutual Exclusion Example

Problem Description

- Two asynchronous processes P_0 and P_1
- P_0 and P_1 share a variable $turn$
- P_0 and P_1 can not be in their critical section at the same time
- P_0 shall eventually enter into its critical region
- Model variables of interest
 - Shared variable state
 - Location of execution with program counter
Program Translation

• Manna, Pnueli (1995) Program translation formula
 - takes a sequential program and transforms to a first order formula
 that represents the set of transitions of the program

The initial states of each process P_i are described by the formula

$$S_0(V, PC) \equiv pc = m \land pc_o = \bot \land pc_1 = \bot$$

where \bot indicates the process has been activated.

Apply translation procedure C, then for each process P_i

$$pc_i = l_i \land pc_i' = NC_i \land True \land turn' = turn$$
$$pc_i = NC_i \land pc_i' = CR_i \land turn = i \land turn' = turn$$
$$pc_i = CR_i \land pc_i' = l_i \land turn' = (i + 1) mod(2)$$
$$pc_i = NC_i \land pc_i' = NC_i \land turn \neq i \land turn' = turn$$
$$pc_i = l_i \land pc_i' = l_i' \land False \land turn' = turn$$
Mutex Model

\(P_0 \text{ has lock} \)

\[
P_0::l_0: \text{while True do}
\begin{align*}
NC_0: & \text{ wait(turn = 0);} \\
CR_0: & \text{ turn := 1;}
\end{align*}
\text{end while;}
\]

\(P_1 \text{ has lock} \)

\[
P_1::l_1: \text{while True do}
\begin{align*}
NC_1: & \text{ wait(turn = 1);} \\
CR_1: & \text{ turn := 0;}
\end{align*}
\text{end while;}
\]

Note: This is a Kripke Model. Kripke => Büchi transformation exists.
Mutex Büchi Model

\[P_0 \text{ has lock}\]

\[P_1 \text{ has lock}\]
Specification

System Model

Specification

Verification
MODEL CHECKER

YES Specification Met

NO Counterexample Found
Modeling Specifications

Goal: Model desirable properties of a system as correctness claims.

• Proving essential *logical correctness* properties *independent of*
 – Execution speeds
 • relative speeds of processes, instruction execution time
 – Probability of occurrence of events
 • packet loss, failure of external device

• Two types of *correctness claims* [Lamport 1983, Pnueli 1995]
 – *Safety* set of properties the system may not violate
 • *State properties*: Claims about reachable/unreachable states
 – System invariant: holds in every reachable state
 – Process assertion: holds in specific reachable states
 – *Liveness* set of properties the system must satisfy
 • *Path properties*: Claims about feasible/unfeasible executions

• Several techniques available
 – LTL, Propositional Logic, Büchi Automata
LTL Specification

Commonly used LTL formulas

<table>
<thead>
<tr>
<th>FORMULA</th>
<th>DESCRIPTION</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>□¬φ</td>
<td>Safety</td>
<td>Invariance</td>
</tr>
<tr>
<td>□φ</td>
<td>Always p</td>
<td>Guarantee</td>
</tr>
<tr>
<td>◊q</td>
<td>Eventuallly q</td>
<td>Response</td>
</tr>
<tr>
<td>p → ◊q</td>
<td>p implies eventually q</td>
<td>Recurrence</td>
</tr>
<tr>
<td>p → q ∪ r</td>
<td>p implies q until r</td>
<td>Stability</td>
</tr>
<tr>
<td>□◊p</td>
<td>Always eventually p</td>
<td>Correlation</td>
</tr>
<tr>
<td>◊□p</td>
<td>Eventually always p</td>
<td></td>
</tr>
<tr>
<td>□◊p</td>
<td>Eventually always p</td>
<td></td>
</tr>
<tr>
<td>◊p → ◊q</td>
<td>Eventually p implies eventually q</td>
<td></td>
</tr>
</tbody>
</table>

Let E be the complete set of ω-runs and let ϕ be a correctness property formalized as an LTL property.

The system satisfies the property ϕ if and only if all the ω-runs in E do.
Mutual Exclusion Example

Problem Description

- Two asynchronous processes P_0 and P_1
- P_0 and P_1 share a variable $turn$
- P_0 and P_1 cannot be in their critical section at the same time
- P_0 shall eventually enter into its critical region

Model variables of interest
- Shared variable state
- Location of execution with program counter

```
P_0::l_0: while True do
    NC_0: wait(turn = 0);
    CR_0: turn := 1;
    end while;
l'_0

P_1::l_1: while True do
    NC_1: wait(turn = 1);
    CR_1: turn := 0;
    end while;
l'_1
```
 Mutex Specification

“Both processes can not simultaneously be in their critical regions”

\[\square \neg (CR_0 \land CR_1) \]

“The process \(P_0 \) will eventually enter its critical region”

\[\Diamond CR_0 \]

Mutual Exclusion Property

Liveness Property

For every temporal logic formula there exists a Büchi automaton that accepts precisely those runs that satisfy the formula.
Properties of Büchi Automata

• Closed under intersection and complementation.
 – There exists an automaton that accepts exactly the intersection of the languages of a set of automata
 – There exists an automaton that recognizes the complement of the language of the given automaton

• Language emptiness is decidable
 – Whether the set of accepting runs is empty

The verification problem is equivalent to an emptiness test for an intersection product of Büchi automata.
Verification

System Model

Specification

Verification
MODEL CHECKER

Specification Met

YES

Specification

Countercexample Found

NO

YES
Verification Condition

Goal: Verify that all possible behaviors of the model of the system A satisfy the specification S.

The system A satisfies the specification S when \(L(A) \subseteq L(S) \).

Let \(\overline{L(S)} \) be the language \(\Sigma^\omega - L(S) \), then \(L(A) \cap \overline{L(S)} = \emptyset \).

If I is empty, then A satisfies S.
If I is not empty, then A can violate S, and I contains at least one complete counterexample that proves it.
Complementing the Specification

LTL Specification

\[S \equiv (\Diamond CR_0) \land (\square \neg (CR_0 \land CR_1)) \]

Taking the negation

\[\neg S \equiv \neg ((\Diamond CR_0 \land \square \neg (CR_0 \land CR_1))) \]

\[\iff \square \neg CR_0 \lor \Diamond (CR_0 \land CR_1) \]

Büchi Automata Specification

Taking the negation

\[\neg (CR_0 \land CR_1) \]

\[\neg CR_0 \]

\[\neg \neg CR_0 \]

Taking the complement

\[(CR_0 \land CR_1) \]

\[CR_0 \]

\[\neg CR_0 \]

\[\neg \neg CR_0 \]
Goal: Construct an automaton that recognizes the union of languages of both automata.

\[
\overline{L(S)} = \{ \epsilon (\neg CR_0 \land CR_1)^* (CR_0 \land CR_1)(\omega)^*, \epsilon (\neg CR_0)^* \}
\]
Intersection Of Automata

Goal: Construct an automaton that recognizes the intersection of languages of both automata.

System Model A

Complement of Specification, \overline{S}

$$A \cap \overline{S} = \{ \Sigma, Q_A \times Q_{\overline{S}}, \Delta', Q_A^0 \times Q_{\overline{S}}^0, S_A \times F_{\overline{S}} \}$$

where Q_A are the states of the model A and $Q_{\overline{S}}$ are the states of the specification \overline{S}.

Also, $(< s_i, x_j >, a, < s_m, x_n >) \in \Delta' \iff (s_i, a, s_m,) \in \Delta_A$ and $(x_j, a, x_n) \in \Delta_{\overline{S}}$
Partial Representations of Intersection Automaton

No initial conditions to sub-automaton
Mutex Büchi Model/Spec
Verification of Mutual Exclusion

Any state of the form \((x, sk)\) is not reachable from any initial state.

The transition to \(x\) implies both critical regions have been entered simultaneously.

The system satisfies the mutual exclusion property.

Checking non-emptiness of Büchi automaton B is equivalent to finding a strongly connected component that is reachable from an initial state and contains an accepting state.
Partial Representations of Intersection Automaton

No initial conditions to sub-automaton
Verification of Liveness Property

- Tarjan’s DFS algorithm for finding strongly connected components
 - $O(\text{num states} + \text{num transitions})$
 - Double DFS
- Found accepting run that has an accepting state with cycle back to itself
- Counterexample found
 - $<i0,s0><y0,s1><y0,s2><y0,s3>^*$

The system does not satisfy the *absence of starvation* property.
Note on Automaton Unwinding

Automaton

Computational Path
Next Time

- State space reduction
 - Abstractions
 - Partial Order Reduction
 - Compositional Reasoning
 - Symbolic Model Checking
References