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ReviewRobustness of Cellular Functions

new momentum, and these will play a central role inJörg Stelling,1,* Uwe Sauer,2 Zoltan Szallasi,3

Francis J. Doyle, III,4 and John Doyle5 addressing this complexity. Apparently, mathematical
models in biology as well as “network cartoons” are1Max Planck Institute for Dynamics

of Complex Technical Systems idealizations and not perfect representations of reality.
Their value is to be judged by the novel insights theyD-39106 Magdeburg

Germany bring to our understanding of cellular complexity.
Formal approaches require and entail a precise repre-2 Institute of Biotechnology

ETH Zürich sentation and unbiased manipulation of knowledge.
Once biological knowledge is formalized, the rules ofCH-8093 Zürich

Switzerland mathematics take over; this may often provide a fresh
insight into biology (Endy and Brent, 2001; May, 2004).3 Children’s Hospital Informatics Program

Harvard Medical School For instance, the suggestion that adaptation to constant
stimuli by the bacterial chemotaxis system is a robustBoston, Massachusetts 02115

4 Institute for Collaborative Biotechnologies property of the network, and not a result of fine-tuning
of biochemical parameters, originated from studies ofand Department of Chemical Engineering

University of California a simplified mathematical model (Barkai and Leibler,
1997). Detailed theoretical and experimental analysisSanta Barbara, California 93106

5 Control and Dynamical Systems later confirmed this proposition (Alon et al., 1999). Like-
wise, signaling pathways (Huang and Ferrell, 1996; LeeCalifornia Institute of Technology

Pasadena, California 91125 et al., 2003), cell cycle regulation (Borisuk and Tyson,
1998; Morohashi et al., 2002; Pomerening et al., 2003),
and developmental control circuits (von Dassow et al.,
2000; Meir et al., 2002; Eldar et al., 2002, 2003) displayedSummary
aspects of robust behavior in silico as well as in vivo. In
many of these examples, moreover, model developmentRobustness, the ability to maintain performance in the

face of perturbations and uncertainty, is a long-recog- led to new biological understanding validated by exper-
iment.nized key property of living systems. Owing to intimate

links to cellular complexity, however, its molecular and As these examples illustrate, understanding the de-
sign principles ensuring robustness requires an analysiscellular basis has only recently begun to be under-

stood. Theoretical approaches to complex engineered of degrees of complexity that often cannot be grasped
by intuition alone. This bears similarities to the situationsystems can provide guidelines for investigating cellu-

lar robustness because biology and engineering em- for highly evolved engineered systems with complex
control circuits guaranteeing reliable performance of vi-ploy a common set of basic mechanisms in different

combinations. Robustness may be a key to under- tal functions under conditions of uncertainty (Csete and
Doyle, 2002). In this review, we therefore focus on gen-standing cellular complexity, elucidating design prin-

ciples, and fostering closer interactions between ex- eral design principles that underlie robustness in biologi-
cal systems and their role for gaining a deeper under-perimentation and theory.
standing of cellular complexity. We will discuss the
relevance of understanding robustness—What is theIntroduction

Biological systems maintain phenotypic stability in the tangible outcome of studying this issue for life sciences?
Such an overarching concept as robustness will cer-face of diverse perturbations arising from environmental

changes, stochastic events (or intracellular noise), and tainly play several roles in biological research. It can be
viewed as an overall evolutionary design principle or agenetic variation. It has long been recognized that this

robustness is an inherent property of all biological sys- scientific approach. More optimistically, it may be the
panacea to the ailments affecting large-scale dynamictems and is strongly favored by evolution (de Visser et

al., 2003). In development, robustness is described as modeling of biological systems. At the least, in the hands
of pragmatic researchers it can function as a tool pro-“canalization” toward a specific outcome from uncertain

starting conditions (Waddington, 1942). Despite this ducing testable biological hypotheses.
central role in biology, there is still a limited understand-
ing of what robustness precisely is and how it is accom- The Concept of Robustness
plished at the cellular or molecular level (Hartman et In general, robustness means the persistence of a sys-
al., 2001). A major reason is that robustness and the tem’s characteristic behavior under perturbations or
apparent complexity of cellular systems are intimately conditions of uncertainty. Already at the level of exact
linked and, therefore, both are difficult to understand definitions, robustness is a complicated topic. We argue
(Lauffenburger, 2000; Carlson and Doyle, 2002). During that assessment of robustness requires that one be pre-
the recent “rediscovery” of robustness, however, formal cise about the behavior that is robust and on the nature
approaches, such as mathematical modeling, gained of uncertainty; robustness properties can drastically

change by altered specifications (Stelling et al., 2004).
Even in theoretical engineering disciplines, however,*Correspondence: stelling@mpi-magdeburg.mpg.de



Cell
676

various mathematical characterizations exist that are
not exactly equivalent (Cover and Thomas, 1991; Zhou
et al., 1995), which highlights the need for conceptual
advances. In biology, the concept of robustness closely
relates to “stability,” “homeostasis,” and “canalization,”
but it covers a broader class of phenomena (Kitano,
2002; Carlson and Doyle, 2002). For instance, homeosta-
sis refers to maintaining a steady state, but robustness
can also apply to dynamic processes in development.
It is important to note that robustness (such as stability)
encompasses a relative not an absolute property be-
cause no system can maintain stability for all its func-
tions when encountering any kind of perturbation.
Hence, we have to specify (1) which characteristic be-
havior remains unchanged and (2) for which type of
disturbances or uncertainties this invariance property
holds. Figure 1. Mapping from Parameter Space to Behavior Space

In engineering and biology, the characteristic behavior
Here, we calculated the relative period of oscillations for a simplified

can be interpreted as a “desired system characteristics” model of the circadian clock in Drosophila (Leloup and Goldbeter,
or “performance” (Carlson and Doyle, 2002), thereby 1998) depending on two of the model’s parameters, namely, the
directly connecting robustness and functionality. In rela- maximal rates for transcription of per and tim. Gray lines indicate the

reference point regarding the parameter values, at which oscillationstively simple systems, robustness is often equivalent to
have a period of approximately 24 hr. In the white region, no oscilla-a dynamical regime. Investigations of genetic oscillators
tions occur.may thus focus on the persistence of a regular periodic

solution, which does not preclude quantitative changes
(in period or amplitude of the oscillations) to occur (Bar- chemical species involved (McAdams and Arkin, 1997).
kai and Leibler, 1997). Delineating the key function of Noise in gene expression with potential amplification
a particular cellular subsystem, however, is not trivial and propagation by regulatory dynamics can induce
(Morohashi et al., 2002). Even key inputs and outputs phenotypic variation (Thattai and van Oudenaarden,
may not be evident in complex networks. The circadian 2001; Elowitz et al., 2002; Blake et al., 2003). For instance,
clock, for example, has to provide stable oscillations, autoregulation (Becskei and Serrano, 2000; Thattai and
but it is unclear whether period, amplitude, phase, or van Oudenaarden, 2001) and “stochastic focusing” (simi-
entrainment by light determine the function for the or- lar to the repression of output noise by signal noise in
ganism (Allada, 2003). More complications arise in cellu- control engineering) (Paulsson et al., 2000) contribute
lar information processing, which needs sensitive and to resistance against noise. Cells, however, seem to
robust detection, amplification, and decoding of input

have evolved mechanisms to control noise for avoiding
signals (Freeman, 2000). Hence, the claim of higher order

detrimental effects (Fraser et al., 2004) as well as for
behavior to be robust and thereby to confer functional

exploiting noise to generate beneficial diversity (Raser
advantage requires careful justification.

and O’Shea, 2004). Again, this underlines that the analy-Cells face uncertainties in the form of externally in-
sis of robustness in complex systems requires detailedduced perturbations owing to variable environments
specifications of functions, disturbances, and ro-(modified inputs) and of internal perturbations such as
bustness measures considered.mutations that affect or entirely remove components

and interactions (changed system parameters). Measur-
Robustness, Complexity, and Designing the robustness of a system means to determine the
In both biology and advanced technology, the primarybehavior (the output or performance) as a function of
function of a system is usually robust to a wide rangethe input (the disturbance) (Savageau, 1971; Ma and
of perturbations, yet these systems can show extremeIglesias, 2002). A mathematical model thereby serves
fragility toward other (even seemingly much smaller) per-as a mapping from input space to output space. Focus-
turbations and/or other functions. This coexistence ofing on the effects of perturbations in kinetic parameters,
extremes in robustness and fragility (“robust yet fragile”)Figure 1 shows this dependency for a simplified model
perhaps constitutes the most salient feature of highlyof the circadian oscillator in Drosophila (Leloup and
evolved or designed complexity. Human-designed tech-Goldbeter, 1998). For instance, changes in the two pa-
nology has well-understood mechanisms, which are de-rameters (maximal transcription rates) considered may
liberately hidden from the user. In contrast, we have littlealter the oscillator’s period or completely abolish oscilla-
systems level understanding of biological complexity.tions. The size of the oscillatory region can serve as a
Here, we argue that by combining the fragmented yetmeasure of robustness (Ma and Iglesias, 2002; Moro-
complementary knowledge in both domains, robustnesshashi et al., 2002). However, as the example demon-
and its associated tradeoffs offer a powerful perspectivestrates, the resulting behavior depends on the direction
on biological complexity.of perturbations, indicating complex synergistic or an-

The concept of “highly optimized tolerance” (HOT)tagonistic interactions between the parameters.
points out that fixed and limited resources, which areAnother important source of uncertainties are sto-
characteristic of technology and biology, call for impor-chastic fluctuations resulting from the random character

of biochemical reactions and low copy numbers of tant robustness tradeoffs. For instance, even minimal
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constraints can completely change the “emergent” phe- argue that general design principles exist—with the ap-
nomena of extremely simplified models (Carlson and propriate caution about general principles and simple
Doyle, 1999, 2000). The tradeoffs result from robustness stories of complexity and robustness. We therefore fo-
(tolerance) being in some sense a conserved quantity, cus on a common set of basic mechanisms that confer
and in particular cases even hard robustness “conserva- robustness to biological and engineered systems alike.
tion laws” exist (Csete and Doyle, 2002). More generally,
making one feature robust to a class of perturbations Redundancy
makes the same or other features fragile to that or other The simplest strategy to protect against failure of a spe-
perturbations. These tradeoffs, however, can be quite cific component is to provide for alternative ways to
subtle even in simple systems. Hence, in design or evo- carry out the function that the component performs. At
lution, robustness, which is adapted to the intended the molecular level, this backup strategy or “genetic
function of a system and the associated uncertainties, buffering” (Hartman et al., 2001) may be brought about
must be carefully distributed. HOT therefore emphasizes by duplicate genes with identical roles or by different
a necessary connection between complexity and ro- genes that constitute alternative but functionally over-
bustness. For instance, cellular complexity appears to lapping pathways. In contrast to redundant systems in
arise mainly from robustness as a design goal (Hartwell engineering, however, identical genes that do not di-
et al., 1999; Lauffenburger, 2000). Shielding certain func- verge in functionality or regulation would not survive in
tions of a system may require additional control loops; evolution (Krakauer and Plotkin, 2002). Instead, structur-
this shielding leads to higher complexity and new poten- ally different entities perform overlapping functions, which
tial sources of fragility (Carlson and Doyle, 2002). lead to the suggestion to use “degeneracy” as a more

Cancer offers an intuitive illustration for these con- appropriate term (Edelman and Gally, 2001).
cepts. Under “normal operation,” our cells’ intracellular Closer investigation of robustness in cellular networks
mechanisms provide a certain robustness of their be- resulting from redundant genes or pathways, thus, offers
havior (which includes a variety of functions and de- one approach to uncover design principles. In this re-
mands) to diverse perturbations. Cells as components spect, many studies suffer from the fact that direct links
of an organism (network) collectively reduce the impact between robustness and gene or pathway function were
of environmental perturbations. Thus, the “collective of not established. These approaches relied on indirect
cells” inherits some of the cells’ robustness, augmenting evidence such as sequence similarity or topological
it by synergistic network level interactions. However, proximity owing to unspecified interactions. Graph the-
cellular fragility can produce robustness at the network ory, for instance, suggests that robustness is a feature
level, and increasing robustness from the cells’ perspec- only of specific classes of redundant networks (Albert
tive may be highly detrimental to the organism. Apopto- et al., 2000), into which cellular networks do not per se
sis of cells carrying potentially damaging, e.g., onco- have to belong.
genic, mutations is an example for the former, whereas
uncontrolled, robust growth of neoplastic cells is an Feedback Control
example for the latter. Cancer occurs when a cell devel-

Control circuits play a decisive role in maintaining cellu-
ops a new behavior that—from its own perspective—is

lar functions in the face of internal or external uncertain-
very robust (e.g., against prohibitive signals from the

ties. In brief, by using the output of a function to be
organism). The causative perturbations may be physi-

controlled in order to determine appropriate input sig-cally small and localized but require large and “complex”
nals, feedback enables a system to regulate the outputchanges in information. Viral oncogenes that hijack a
by monitoring it (Figure 2). Negative feedback can re-single cell’s robustness mechanisms are a particularly
duce the difference between actual output and a givenpotent example. More generally, the “rare” nature of
set point, thereby dampening noise and rejecting pertur-fragility reinforces the need to address stochastic
bations. Model-based design and engineering of smallevents. The network in turn may not be robust to rare
artificial genetic circuits provides direct means for test-behaviors that are abnormal but active. Cancer cells
ing the predicted features of regulatory schemes in vivothereby can create a function that kills the organism, its
(Hasty et al., 2002). For instance, negative autoregula-ultimate fragility. Thus, cancer is a multilayered example
tion of a transcription factor stabilized its steady-stateof “robust yet fragile.”
expression levels despite the inherent noise in transcrip-More specifically for the cellular level we focus on,
tion. Autoregulation proved advantageous for a rangemodel-based scenarios of gene network evolution in
of biologically plausible parameters, and high gain ofchanging environments, in which robust behavior was
the feedback loop enhanced the effect (Becskei andrequired, favored simple expression patterns and tem-
Serrano, 2000). This work confirmed predictions alreadyporally stable, highly organized structures (Bornholdt,
made in a classical theoretical study of stability in gene2001). In experimental studies, independently evolved
regulation (Savageau, 1974). Similarly, robustness of anstrains of E. coli showed convergent patterns of devel-
oscillatory circuit constructed from three transcriptionalopment toward higher fitness (Cooper et al., 2003). Fi-
repressors (Elowitz and Leibler, 2000) was revealed.nally, robustness may in fact not impose barriers to

Positive feedback (or autocatalysis), in general, en-evolution but instead enhance “evolvability” because
hances sensitivity. This is primarily required for robustrobustness enables genotypic variability without imme-
cellular decisions that need to be derived from noisydiate functional consequences, shortening the path to
and graded input signals and to be maintained (Angelifavorable phenotypes (Kirschner and Gerhart, 1998; de
et al., 2004). Consequently, engineered switches resem-Visser et al., 2003). Hence, although many specific as-

pects of the implicit robustness tradeoffs are open, we bling units for cellular decision making relied on positive
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Figure 2. Control by Negative Feedback

(A) General scheme of negative feedback showing a plant (cellular function that is to be controlled) and a controller (regulatory circuit) that feeds
back to the plant’s input. We consider integral feedback control, where the output signal has to track a reference signal despite perturbations.
(B) Rejection of a disturbance when the gain of the feedback loop is varied from low (black) to high (light gray).

feedback (Gardner et al., 2000; Becskei et al., 2001). topologies, that is, the (static or dynamic) pattern of com-
ponents and their interactions. They detected separableDepending on the desired functionalities, thus, both

forms of feedback and combinations thereof can convey clusters in metabolic (Ravasz et al., 2002), protein-protein
interaction (Rives and Galitski, 2003), gene regulatoryrobustness (Freeman, 2000). However, it is essential to

note that the role of feedback involves hard tradeoffs, (Segal et al., 2003; Ihmels et al., 2004), and integrated
networks (Tanay et al., 2004). Moreover, topologicalresulting from a “law” on the conservation of robustness

(Csete and Doyle, 2002). Feedback introduces fragilities analysis suggested that cellular regulation uses recur-
rent, simple building blocks (“network motifs”) to per-such as the possibility of self-sustaining and cascading

failures induced by positive feedback, for instance, in form functions such as feedback control (Shen-Orr et
al., 2002; Milo et al., 2002; Lee et al., 2002; Yeger-Lotemuncontrolled tumor growth (Kitano, 2004). A high gain

in negative feedback leads to steady-state stability, but et al., 2004). Differences between the extracted modules
and canonical pathways (Ravasz et al., 2002; Rives andfragilities enter in potentially inaccurate transient re-

sponses (Figure 2) because time-varying perturbations Galitski, 2003; Ihmels et al., 2004) may be explained by
more flexible concepts of modularity, which allow onecan be amplified (Csete and Doyle, 2002).

Thus, the degree to which a control circuit contributes component to occur in several units (Hartwell et al.,
1999) or participate dynamically in the formation of mod-to robustness strongly depends on the circuit design,

the control objective, and the type of perturbations af- ules (Han et al., 2004).
In many domains besides biology, it has been pro-fecting the system. Well-balanced positive and negative

feedback can lead to a blend of sensitivity and stability. posed that encapsulation of simpler functions in mod-
ules can reduce the risk of catastrophic failure by pre-Another possibility for achieving higher robustness con-

sists in combining multiple levels of regulation, for in- venting that damage in one part spreads throughout the
network (Hartwell et al., 1999; Albert et al., 2000). Manystance, controlled transcription, translation, posttrans-

lational modification, and degradation. Often when highly cellular networks are claimed to have a “scale-free” or-
ganization with few central hubs and many nodes bear-precise and reliable behavior is indispensable for overall

cellular functionality, multiple intertwined feedback ing few links (Barabási and Oltvai, 2004). Such structures
were suggested to resist random perturbations becauseloops operate. The circadian clock (Cyran et al., 2003)

and developmental control circuits (see below) provide of a low probability that a perturbation affects the sensi-
tive hubs (Albert et al., 2000; Jeong et al., 2000; Ravaszgood examples for these aspects.
et al., 2002). However, it is unclear to what extent these
high-level abstractions are able to capture network func-Modularity

A central, increasingly accepted notion is that cells are tionality because experimental observations barely sup-
port key predictions of the theory (Hahn et al., 2004).composed of “functional units” or “modules” (Hartwell

et al., 1999; Lauffenburger, 2000; Csete and Doyle, 2002; If, for instance, crosstalk was vital for coordination of
cellular functions, the pure topological argument im-Nurse, 2003; Han et al., 2004). Modules constitute semi-

autonomous entities that show dense internal functional plying equal importance of all interactions would not
hold. Moreover, robustness of modules is distinct fromconnections but looser connections with their environ-

ment. Modularity, the encapsulation of functions, can robustness of collections of modules such as pathways
or cells. Thus, we will have to account for the interplaycontribute to both robustness of the entire system (by

confining damage to separable parts) and to evolvability between different cellular networks, their potential dy-
namics, and foremost, a rigorous comparison with ex-(by rewiring of modules or by modifications in modules

that are unnoticeable from the outside) (Hartwell et al., perimental observations.
1999). Synthetic lethality of yeast genes predominantly
acting in the same (intrinsic) or a functionally similar Hierarchies and Protocols

Protocols encompass the set of rules underlying the(extrinsic) pathway concurs with a modular system
(Hartman et al., 2001). Several groups analyzed network efficient management of relationships between the parts
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(i.e., modules) that constitute a system. They include back at the level of receptor methylation conferred
robustness, which later was confirmed experimentallythe organizational structures for embedding modules

and the interfaces between modules that allow for sys- (Alon et al., 1999). A control perspective on this model
finally indicated that bacteria have adopted the standardtem function. Feedback, for instance, is a particular

protocol. General currencies for energy and reduction engineering trick of integral feedback control: the time
integral of the difference between actual output and setequivalents in metabolism and shared mechanisms of

gene expression, covalent modifications, or controlled point is fed back into the system via the methylation
state of the receptor (Yi et al., 2000). As integral feedbackdegradation in regulation provide common standards

for interactions between the parts (Csete and Doyle, is necessary and sufficient for robust steady-state con-
trol, it explains robustness of phenomena such as per-2002). Protocols, hence, are of primary importance for

an understanding of how information in living cells is fect adaptation, homeostasis, and noise rejection (Csete
and Doyle, 2002). Hence, identifying equivalent controlintegrated (Hartwell et al., 1999), but they have received

little attention in the context of cellular robustness. schemes in biology and engineering may be a promising
path to understanding cellular complexity.As one particular type of protocol, an efficient means

for coordination in complex systems is to organize a However, control at the receptor level is by far not
sufficient to understand bacterial chemotaxis. Long-system hierarchically, namely to establish different lay-

ers of integration to reduce the costs of information range interactions between receptors (Sourjik and Berg,
2004) as well as the control of the flagellar motor bytransmission (Guimerà et al., 2001). Cellular control con-

strains the system’s possible behavior on a lower level phosphorylated CheY (Cluzel et al., 2000) are highly co-
operative, causing a high gain of the signal transductionby regulation at higher levels. In transcriptional regula-

tion, the presence of RNA polymerase offers a wide pathway. Concomitantly, the steady-state concentra-
tion of CheY-P must be maintained at the most sensitivevariety of different gene expression patterns, controlled

by regulation recruitment (Ptashne and Gann, 1997). region of the motor response curve, while E. coli to a
certain extent seems to use molecular noise to induceCombinatorial control via associated factors and spe-

cific transcription factors adjusts the actual transcrip- behavioral variability for optimizing its search for nutri-
ents (Korobkova et al., 2004). Multistage feedback regu-tion rate. This enables the cell to establish global to

local layers of regulation by controlling the availability lation downstream of the receptor complex that involves
CheA/CheZ and impinges on CheY could be a key toof increasingly specific components (Holstege et al.,

1998). In bacterial cell cycle regulation, for instance, the overall robustness of chemotaxis (Almogy et al.,
2001). We anticipate that such intertwined feedbackgenome-wide analysis of gene expression revealed such

a hierarchical control architecture (Laub et al., 2000). loops will be of even greater importance for understand-
ing more complex networks. A model-based compari-Similar themes appear in translation and intracellular

proteolysis. This separation of functions, and their inte- son of chemotaxis in E. coli and B. subtilis illustrates
potential benefits of such an approach. While the net-gration at higher levels, could constrain the effects of

local deregulation and provide common standards for work topology, albeit constructed from similar proteins,
is quite different (Figure 3), the analysis revealed a con-robust coordination of cellular functions (Csete and

Doyle, 2002; Ravasz et al., 2002). A major challenge thus servation of the “core logic.” Moreover, additional feed-
back loops in B. subtilis make specific features of theconsists in elucidating the links between different levels

of organization to see how protocols and hierarchies system more robust (Rao et al., 2004), underlining the
connection between robustness and (regulatory) com-handle the tradeoffs between robustness and efficiency

(Stelling et al., 2002, 2004). plexity. Hence, chemotaxis is an excellent example for
nested feedback as a means to achieve robustness,
and it underlines individual roles and significances thatBacterial Chemotaxis
different instances of feedback possess in cellular regu-Bacterial chemotaxis, in particular in E. coli, is one of
lation (Freeman, 2000).the best-studied model systems for signal transduction.

The relative simplicity of the chemotaxis system contrib-
uted to its selection. The network (Figure 3) encom- Microbial Metabolic Networks

By interconnecting hundreds of intracellular metabolitespasses transmembrane receptors, the adaptor CheW,
a two-component signaling system (CheA/CheY), the through extensive networks of biochemical reactions,

cellular metabolism ensures appropriate supply of alloutput of which controls the motor’s tumbling fre-
quency, and CheR/CheB that modify CheA’s activity cellular components, energy, and cofactors from a wide

range of nutrients. Global organization and propertiesvia the receptor’s methylation state (Hazelbauer et al.,
1993). Despite the system’s apparent simplicity, it shows of metabolic networks (Almaas et al., 2004; Covert et

al., 2004; Stelling et al., 2002) become tractable throughfeatures of advanced biological regulation such as high
sensitivity to environmental changes over a broad dy- their large-scale in silico reconstruction (Papin et al.,

2004) and experimental methods for functional analy-namic range, adaptation to constant stimuli enabling its
operation in a noisy environment, and robustness (Alon sis of network operation (Sauer, 2004). Perhaps the

most astounding property of microbial metabolism is itset al., 1999).
In a pioneering theoretical study, Barkai and Leibler evolved robustness to sustain survival and proliferation

upon extensive environmental or genetic perturbations.(1997) suggested that specifically the property of perfect
adaptation (but not, for instance, the adaptation time) Robust growth under ever-changing environmental

conditions is mostly ensured by genetic and enzyme-is robust to variation in the components’ biochemical
properties. In their simplified biochemical model, feed- level regulation, which modifies the availability and effi-
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Figure 3. Logic of Chemotaxis Pathways in
E. coli and B. subtilis

Homologous Che proteins operate in both
organisms (gray ellipses), but some compo-
nents occur only in E. coli (green ellipses) or
in B. subtilis (blue ellipses). Similarly, most of
the interactions that control receptor modifi-
cation by methylation and phosphorylation of
the regulators are shared (black lines); colors
indicate organism-specific detail. In response
to an attractant, the overall regulation results
in an increased running frequency, enabling
the bacteria to move into the direction of a
gradient. As denoted by the small circles,
however, the signs of interactions have to
differ because ligand binding reduces CheA
activity in E. coli but increases it in B. subtilis.
The figure was adapted from Rao et al. (2004),
which provides additional detail on the regu-
latory mechanisms.

ciency of connections between network components flux redirection (Papp et al., 2004). The remaining frac-
tion of 37%–68% was simply not relevant under the(Ihmels et al., 2003). The two underlying principles of

environmental robustness are modularity and hierarchi- conditions investigated.
Generally, genetic buffering and functional complemen-cal organization. Spatially (e. g. organelles) but mostly

chemically (e.g., particular degradation or biosynthesis tation are not equally distributed. Most peripheral anabolic
pathways are essential unless their product is suppliedpathways) isolated functional modules that carry dis-

crete functions are controlled in a hierarchical manner externally (e.g., amino acids). Thus, knockouts are lethal
with some genetic robustness from few duplicate genes.that restricts module operation to the appropriate condi-

tions. On top of the hierarchical cascade are multitarget Peripheral catabolic pathways, in contrast, are often re-
dundant with multiple or broad specificity enzymes andregulation mechanisms such as, for example, carbon

catabolite repression, which controls expression of deg- transporters, with the 20 hexose transporters of Saccharo-
myces cerevisiae as a particularly extreme example (Oz-radation pathways for a large number of alternative but

less preferred substrates (Warner and Lolkema, 2003). can and Johnston, 1999). This difference reflects the
cell’s ecological challenge to synthesize a well-definedInduction/repression of individual pathways by their

cognate substrate/product is typically at the lower end set of cellular components from whatever nutrients are
available. All peripheral catabolic fluxes finally mergeof the regulation cascade.

Buffering of minor heritable genetic variation within a into the interconnected network of central metabolism
that catalyzes the most massive fluxes that distributepopulation such as single-nucleotide polymorphism is

a key element in understanding human disease (Hart- the material flow into biosynthesis, energy generation,
or waste. While extensive duplicate genes contribute toman et al., 2001). In haploid microbes, this buffering

becomes mostly apparent as genetic robustness against genetic robustness of some microbes like S. cerevisiae,
mostly the modular structure confers significant ro-null mutations with many dispensable genes under a given

condition (Gerdes et al., 2003; Giaever et al., 2002). The bustness to central metabolism. A prominent example
of biochemically and genetically distinct but functionallytwo primary mechanisms that bring such robustness

about are redundancy of components (genetic buffering) redundant pathways are the two main routes of glucose
metabolism, glycolysis and the pentose phosphateand modules with overlapping functions (functional

complementation) (Gu, 2003). For metabolism, it has pathway, that can often substitute for each other (Sauer
et al., 2004). In some cases, the exact molecular causebeen estimated that about one quarter of those gene

deletions that have no apparent phenotype are compen- for robustness has been elucidated by quantifying the
flux redistribution in knockout mutants, as illustratedsated by genetic buffering with duplicate genes and

significantly less by functional complementation through by the local flux rerouting in Escherichia coli pyruvate
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Figure 4. Distribution of Metabolic Fluxes at the Glycolysis-Krebs Cycle Interface in E. coli

Top entries in the boxes denote fluxes in wild-type, whereas bottom entries provide the values for a knockout mutant of both pyruvate and
kinase isoenzymes. Flux values are relative to the specific glucose uptake rate and were obtained from glucose-limited continuous cultures
at a growth rate of 0.4 h�1 (Emmerling et al., 2002). The local bypass of pyruvate kinase via malic enzyme and PEP carboxylase is highlighted
with bold arrows.

kinase mutants with an otherwise unaltered phenotype often leads to the same phenotype of the mature organ-
ism. The analysis of developmental control networks,(Figure 4).

Lastly, metabolic network operation is relatively ro- however, involves an additional layer of complexity:
while, for example, microbial metabolic networks arebust to stochastic fluctuations. Despite natural varia-

tions in the absolute concentrations of metabolites and limited to the inner environment of a single cell, develop-
mental control circuits involve a rich network of intercel-enzymes within individual cells of a population or in

independent experiments, the physiological phenotype lular communication as well. Detailed analysis of the
segment polarity network of Drosophila highlights howand the distribution of intracellular fluxes remain rather

stable (Fischer and Sauer, 2003). As a corollary of such the principle of robustness can be applied to studying
multicellular systems.stochastic robustness, manipulation of individual en-

zyme concentrations within a metabolic pathway rarely Segmentation is a key step during embryonic develop-
ment (DiNardo et al., 1994). Layers of cells become com-affects the molecular flux through the pathway, and thus

the phenotype, provided the enzymes follow Michaelis- mitted to various differentiation fates by the exclusive
activation of genes such as wingless or engrained (Di-Menten kinetics and are not saturated with substrate

as is typically the case (Kacser and Burns, 1973). The Nardo et al., 1994). The activation of these genes follows
a highly coordinated spatial distribution with sharp bound-consequence of this stochastic robustness is “appreci-

ated” as network resilience to genetic manipulations aries between expressing and nonexpressing cell layers.
The sharp spatial (and often temporal) gradients imply ain metabolic engineering of cellular functions (Bailey,

1999). The molecular basis is primarily feedback control, high level of robust regulation, which is of great research
interest. Molecular biology has mapped out a significantwhere the distributed kinetic properties of all enzymes

in a pathway buffer natural noise in the pathway compo- portion of the topology of the segment polarity network,
but reliable kinetic parameters could be determined withnents. Finally, the single robustness mechanisms oper-

ate in a highly organized, overall architecture. Coopera- much less certainty (von Dassow et al., 2000). Therefore,
the network topology cannot be turned directly into ation is an essential aspect of it because, for instance,

switching between redundant pathways requires some dynamic model, which is usually the starting point to
understanding dynamic pattern formation. At this junc-sort of feedback. The architecture might thus allow

highly optimized tradeoffs between different objectives, tion, von Dassow et al. (2000) turned to robustness as an
overall simplifying criterion. This practice is somewhatone of which is robustness (Csete and Doyle, 2004).
reminiscent of the use of conservation laws in physics:
certain end states can be correctly predicted even if theDevelopmental Control Circuits

The development of multicellular organisms is in many intervening dynamic states cannot be precisely de-
scribed. In this case, if the network topology is correctways the most studied and appreciated example of ro-

bust networks. Despite a wide range of experimental and ensures robust behavior, then random sets of ki-
netic parameters should often produce the required spa-and “real life” perturbations, the developmental program
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tial distribution of gene expression patterns. Von Das- shared certain parameter properties that were not pres-
ent in the non-robust models. Furthermore, these sharedsow et al. (2000) found that for robust behavior in terms

of resistance to changes of kinetic parameters within properties could be readily translated into actual biologi-
cal concepts, such as the diffusion properties of a givenup to a 1000-fold range, they needed to add two more

regulatory interactions, completing two positive feed- protein. Several such concrete biological hypotheses
were then tested and validated by direct biological ex-back loops. Circumstantial evidence supported the exis-

tence of these regulatory interactions. However, the to- perimentation.
Bottom-up or top-down modeling of cellular regula-pology of the network required corrections because the

model did not maintain robustness under certain condi- tory subnetworks has been attempted both by academic
groups and commercial ventures (Schoeberl et al., 2002;tions such as cell division. Consequently, several changes

were introduced, most notably the inclusion of the Kansal, 2004; Christopher et al., 2004). This requires
the careful and detailed coupling of individual biologicalsloppy pair gene (Albert and Othmer, 2003). This up-

dated topology produced robust patterning in a highly components, such as protein concentrations, by dy-
namic interactions. Although, the upfront knowledge-simplified model under a wide variety of conditions in-

cluding cell divisions and gene mutations (Albert and based effort is obviously significant, it also ensures its
appeal to biologists: the dynamic interactions driving theOthmer, 2003). In a more detailed analysis, Ingolia (2004)

demonstrated that most of the behavior of the segment model are based on established biological knowledge.
However, quantitative modeling approaches require thepolarity network model could be understood in terms

of bistability generated by positive feedback of gene identification of a significant number of kinetic parame-
ters, mostly by minimizing the deviations between mea-expression in individual cells. In particular, random pa-

rameter sets that did not conform to the rules ensuring surements and model predictions. Currently, this is the
major bottleneck in model development. For instance,bistability almost never produced the required pattern,

whereas half of the parameter sets satisfying this crite- the identification methods can be rather misleading for
certain networks and overfitting often occurs when therion generated it. This was not completely unexpected

because of the all or none type expression of genes, the ratio of parameters to be optimized relative to high-
quality experimental information is unfavorable. How-prepattern as a prerequisite for robust gene expression,

and our knowledge on a significant number of sharp ever, as the analysis of developmental circuits indicates,
a correct network topology ensuring robustness mayswitches in biology governed by bistable positive feed-

back loops (Pomerening et al., 2003; Sha et al., 2003; be the crucial information needed. In this way, relevant
dynamic models can be created mainly based on topol-Lai et al., 2004).

The increasingly detailed investigation of the segment ogy without the necessity of accurate parameter optimi-
zation, thus avoiding the well-known artifacts associ-polarity network, therefore, suggests that modularity,

positive feedback loops, common protocols, and the ated with such approaches. Thus, “topology driven’
robustness may provide the remedy to the numeroushierarchical organization of gene expression regulation

by transcription factors are necessary and sufficient to ailments affecting large-scale dynamic modeling of bio-
logical networks.ensure the robustness of this particular regulatory net-

work. Whether other developmental regulatory networks
resist such decomposition remains to be seen, but we Conclusions
cannot exclude the possibility that nature employs more The view that biological systems are highly resistant to
complex design principles than the bottom-up assembly perturbations is largely undisputed, while no generally
of human engineering. accepted approach to the analysis of robustness in cel-

lular systems exists. In any instance, however, one has
to take into account that robustness refers to the mainte-Robustness as a Research Tool

The study by von Dassow et al. (2000) exemplifies how nance of specific functionalities of a system subjected
to specific perturbations. The current knowledge aboutthe principle of robustness could be exploited for studying

dynamic networks when kinetic parameters are largely robustness in biological systems, and the cellular design
principles underlying it, shows a large bias. At very highunknown. A more pointed scientific strategy, where the

robustness criterion is used to produce testable hypoth- levels of abstraction, concepts such as highly optimized
tolerance elaborate general features, namely the trade-eses, relies on the following logic: biological systems

are robust—therefore an appropriate mathematical rep- off between efficiency and robustness and necessary
connections between robustness and complexity. Large-resentation must also be robust. Consequently, mecha-

nistic details that are necessary to satisfy this criterion scale topological analysis gives clues on structural fea-
tures that could confer robustness to cellular function.form testable hypotheses. This approach is best exem-

plified by a study on the mechanistic basis of the robust Both high-level approaches, however, currently suffer
from the fact that their central hypotheses remain toBMP morphogen gradient in Drosophila embryo devel-

opment. Eldar et al. (2002) created an ordinary differen- be evaluated by analyzing specific biological examples
through mathematical modeling and experimental ob-tial equation-based model that included only a few regu-

latory proteins known to play a key role in this system. servation. At the other end of the spectrum, studies of
robustness in small systems proved successful. TheirThe relative simplicity of the model allowed the creation

and meaningful analysis of a large number of model extension to more complex systems may enable one to
infer general design principles.networks based on random parameter sets. Only a sub-

set of all model networks, less than one percent, dis- We argue that future investigations should be guided
by and specifically address current hypotheses on aplayed robust behavior. Remarkably, robust networks
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Carlson, J., and Doyle, J. (2000). Highly optimized tolerance: ro-common set of mechanisms that contribute to robust-
bustness and design in complex systems. Phys. Rev. Lett. 84, 2529–ness in biology and engineering. The relative importance
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Natl. Acad. Sci. USA 99, 2538–2545.

of cellular networks, and the integration of cellular func-
Christopher, R., Dhiman, A., Fox, J., Gendelman, R., Haberichter,tionality across hierarchies could be of predominant in-
T., Kagle, D., Spizz, G., Khalil, I.G., and Hill, C. (2004). Data-driven

terest. The notion of cells being composed of robust computer simulation of human cancer cell. Ann. NY Acad. Sci.
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and optimal hierarchical networks. Physica A 299, 247–252. rhythms in Drosophila incorporating the formation of a complex

between PER and TIM proteins. J. Biol. Rhythms 13, 70–87.Hahn, M., Conant, G., and Wagner, A. (2004). Molecular evolution
in large genetic networks: does connectivity equal constraint? J. Ma, L., and Iglesias, P. (2002). Quantifying robustness of biochemical

network models. BMC Bioinformatics 3, 38.Mol. Evol. 58, 203–211.

Han, J.-D., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., May, R. (2004). Uses and abuses of mathematics in biology. Science
303, 790–793.Dupuy, D., Walhout, A., Cusick, M., Roth, F., and Vidal, M. (2004).

Evidence for dynamically organized modularity in the yeast protein- McAdams, H.H., and Arkin, A. (1997). Stochastic mechanisms in
protein interaction network. Nature 430, 88–93. gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819.
Hartman, J., Garvik, B., and Hartwell, L. (2001). Principles of the Meir, E., von Dassow, G., Munro, E., and Odell, G. (2002). Ro-
buffering of genetic variation. Science 291, 1001–1004. bustness, flexibility, and the role of lateral inhibition in the neuro-

genic network. Curr. Biol. 12, 778–786.Hartwell, L., Hopfield, J., Leibler, S., and Murray, A. (1999). From
molecular to modular cell biology. Nature 402 Suppl., C47–C52. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and

Alon, U. (2002). Network motifs: simple building blocks of complexHasty, J., McMillen, D., and Collins, J. (2002). Engineered genetic
circuits. Nature 420, 224–230. networks. Science 298, 824–827.

Morohashi, M., Winn, A., Borisuk, M., Bolouri, H., Doyle, J., andHazelbauer, G.L., Berg, H.C., and Matsumura, P.M. (1993). Bacterial
motility and signal transduction. Cell 73, 15–22. Kitano, H. (2002). Robustness as a measure of plausibility in models

of biochemical networks. J. Theor. Biol. 216, 19–30.Holstege, F., Jennings, E., Wyrick, J., Lee, T., Hengartner, C., Green,
M., Golub, T., Lander, E., and Young, R. (1998). Dissecting the regula- Nurse, P. (2003). Understanding cells. Nature 424, 883.
tory circuitry of a eukaryotic genome. Cell 95, 717–728. Ozcan, S., and Johnston, M. (1999). Function and regulation of yeast

hexose transporters. Microbiol. Mol. Biol. Rev. 63, 554–569.Huang, C.-Y., and Ferrell, J. (1996). Ultrasensitivity in the mitogen-
activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, Papin, J., Stelling, J., Price, N.D., Klamt, S., Schuster, S., and Pals-
10078–10083. son, B.O. (2004). Comparison of network-based pathway analysis

methods. Trends Biotechnol. 22, 400–405.Ihmels, J., Eldar, A., and Barkai, N. (2003). Principles of transcrip-
tional control in the metabolic network of Saccharomyces cerevis- Papp, B., Pál, C., and Hurst, L.D. (2004). Metabolic network analysis
iae. Nat. Biotechnol. 22, 86–92. of the causes and evolution of enzyme dispensability in yeast. Nature

429, 661–664.Ihmels, S., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., and
Barkai, N. (2004). Revealing modular organization in the yeast tran- Paulsson, J., Berg, O., and Ehrenberg, M. (2000). Stochastic focus-
scriptional network. Nat. Genet. 31, 370–377. ing: fluctuation-enhanced sensitivity of intracellular regulation. Proc.

Natl. Acad. Sci. USA 97, 7148–7153.Ingolia, N.T. (2004). Topology and robustness in the Drosophila seg-
ment polarity network. PLoS Biol. 2(6): e123 DOI: 10.1371/journal. Pomerening, J.R., Sontag, E.D., and Ferrell, J.E., Jr. (2003). Building
pbio.0020123. a cell cycle oscillator: hysteresis and bistability in the activation of

Cdc2. Nat. Cell Biol. 5, 346–351.Jeong, H., Tombor, B., Albert, R., Oltvai, Z., and Barabási, A.-L.
(2000). The large-scale organization of metabolic networks. Nature Ptashne, M., and Gann, A. (1997). Transcriptional activation by re-
407, 651–654. cruitment. Nature 386, 569–577.
Kacser, H., and Burns, J.A. (1973). The control of flux. Symp. Soc. Rao, C., Kirby, J., and Arkin, A. (2004). Design and diversity in bacte-
Exp. Biol. 27, 65–104. rial chemotaxis: a comparative study in Escherichia coli and Bacillus

subtilis. PLoS Biol. 2(2): e49 DOI: 10.1371/journal.pbio.0020049.Kansal, A.R. (2004). Modeling approaches to type 2 diabetes. Diabe-
tes Technol. Ther. 6, 39–47. Raser, J.M., and O’Shea, E.K. (2004). Control of stochasticity in

eukaryotic gene expression. Science 304, 1811–1814.Kirschner, M., and Gerhart, J. (1998). Evolvability. Proc. Natl. Acad.
Sci. USA 95, 8420–8427. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., and Barabási, A.-L.

(2002). Hierarchical organization of modularity in metabolic net-Kitano, H. (2002). Systems biology: a brief overview. Science 295,
1662–1664. works. Science 297, 1551–1555.

Rives, A., and Galitski, T. (2003). Modular organization of cellularKitano, H. (2004). Cancer as a robust system: implications for anti-
cancer therapy. Nat. Rev. Cancer 4, 227–235. networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133.

Sauer, U. (2004). High-throughput phenomics: experimental meth-Korobkova, E., Emonet, T., Vilar, J.M.G., Shimizu, T.S., and Cluzel,
P. (2004). From molecular noise to behavioural variability in a single ods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 58–63.
bacterium. Nature 428, 574–578. Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., and Fischer, E.

(2004). The soluble and membrane-bound transhydrogenases UdhAKrakauer, D., and Plotkin, J. (2002). Redundancy, antiredundancy,
and the robustness of genomes. Proc. Natl. Acad. Sci. USA 99, 1405– and PntAB have divergent functions in NADPH metabolism of Esch-

erichia coli. J. Biol. Chem. 279, 6613–6619.1409.

Lai, K., Robertson, M.J., and Schaffer, D.V. (2004). The sonic hedge- Savageau, M. (1971). Parameter sensitivity as a criterion for evaluat-
ing and comparing the performance of biochemical systems. Naturehog signaling system as a bistable genetic switch. Biophys. J. 86,

2748–2757. 229, 542–544.

Savageau, M. (1974). Comparison of classical and autogenous sys-Laub, M., McAdams, H., Feldblyum, T., Fraser, C., and Shapiro, L.
(2000). Global analysis of the genetic network controlling a bacterial tems of regulation in inducible operons. Nature 252, 546–549.
cell cycle. Science 290, 2144–2148. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., and Müller, G. (2002).

Computational modeling of the dynamics of the MAP kinase cas-Lauffenburger, D. (2000). Cell signaling pathways as control mod-
ules: Complexity for simplicity? Proc. Natl. Acad. Sci. USA 97, 5031– cade activated by surface and internalized EGF receptors. Nat. Bio-

technol. 20, 370–375.5033.

Lee, T., Rinaldi, N., Odom, D., Bar-Joseph, Z., Gerber, G., Hannett, Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D.,
and Friedman, N. (2003). Module networks: identifying regulatoryN., Harbison, C., Thompson, C., Simon, I., Zeitlinger, J., et al. (2002).



Review
685

modules and their condition-specific regulators from gene expres-
sion data. Nat. Genet. 34, 166–176.

Sha, W., Moore, J., Chen, K., Lassaletta, A.D., Yi, C.-S., Tyson, J.J.,
and Sible, J.C. (2003). Hysteresis drives cell-cycle transitions in
Xenopus laevis egg extracts. Proc. Natl. Acad. Sci. USA 100, 975–
980.

Shen-Orr, S., Milo, R., Mangan, S., and Alon, U. (2002). Network
motifs in the transcriptional regulation network of Escherichia coli.
Nat. Genet. 31, 64–68.

Sourjik, V., and Berg, H. (2004). Functional interactions between
receptors in bacterial chemotaxis. Nature 428, 437–441.

Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E.D.
(2002). Metabolic network structure determines key aspects of func-
tionality and regulation. Nature 420, 190–193.

Stelling, J., Gilles, E.D., and Doyle, F.J., III. (2004). Robustness prop-
erties of circadian clock architectures. Proc. Natl. Acad. Sci. USA
101, 13210–13215.

Tanay, A., Sharan, R., Kupiec, M., and Shamir, R. (2004). Revealing
modularity and organization in the yeast molecular network by inte-
grated analysis of highly heterogeneous data sets. Proc. Natl. Acad.
Sci. USA 101, 2981–2986.

Thattai, M., and van Oudenaarden, A. (2001). Intrinsic noise in gene
regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619.

von Dassow, G., Meir, E., Munro, E., and Odell, G. (2000). The seg-
ment polarity network is a robust developmental module. Nature
406, 188–192.

Waddington, C.H. (1942). Canalization of development and the inher-
itance of acquired characters. Nature 150, 563–565.

Warner, J.B., and Lolkema, J.S. (2003). CcpA-dependent carbon
catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67, 475–
490.

Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R.,
Pinter, R.Y., Alon, U., and Margalit, H. (2004). Network motifs in
integrated cellular networks of transcription-regulation and protein-
protein interaction. Proc. Natl. Acad. Sci. USA 101, 5934–5939.

Yi, T.-M., Huang, Y., Simon, M., and Doyle, J. (2000). Robust perfect
adaptation in bacterial chemotaxis through integral feedback con-
trol. Proc. Natl. Acad. Sci. USA 97, 4649–4653.

Zhou, K., Doyle, J.C., and Glover, K. (1995). Robust and Optimal
Control (Upper Saddle River: Prentice Hall).


