
Proceedings of IEEE CDC 2002

Introducing SOSTOOLS:

A General Purpose Sum of Squares Programming Solver

Stephen Prajna∗,1, Antonis Papachristodoulou∗,1, and Pablo A. Parrilo†

∗ Control and Dynamical Systems, California Inst. of Tech., Pasadena, CA 91125 - USA

† Institut für Automatik, ETH Zürich, CH-8092 Zürich - Switzerland

Abstract

SOSTOOLS is a MATLAB toolbox for constructing
and solving sum of squares programs. It can be used
in combination with semidefinite programming soft-
ware, such as SeDuMi, to solve many continuous and
combinatorial optimization problems, as well as vari-
ous control-related problems. This paper provides an
overview on sum of squares programming, describes the
primary features of SOSTOOLS, and shows how SOS-
TOOLS is used to solve sum of squares programs. Some
applications from different areas are presented to show
the wide applicability of sum of squares programming
in general and SOSTOOLS in particular.

1 Introduction

SOSTOOLS is a free, third-party MATLAB2 toolbox
for solving sum of squares programs. The techniques
behind it are based on the sum of squares decom-
position for multivariate polynomials [1], which can
be efficiently computed using semidefinite program-
ming [16]. SOSTOOLS is developed as a consequence
of the recent interest in sum of squares polynomials
[14, 1, 13, 9, 10, 7, 6], partly due to the fact that these
techniques provide convex relaxations for many hard
problems such as global, constrained, and boolean op-
timization.

In addition to the optimization problems mentioned
above, sum of squares polynomials (and hence SOS-
TOOLS) find applications in several control theory
problems. For instance: construction of Lyapunov
functions to prove stability of a dynamical system, and
computation of tight upper bounds for the structured

1Work of the first and second authors was supported by
AFOSR MURI “Mathematical Infrastructure for Robust Vir-
tual Engineering” and “Unified Theory for Complex Biological
and Engineering Networks”, NIH/NIGMS AfCS (Alliance for
Cellular Signalling), DARPA “Enlightened multiscale simulation
of biochemical networks”, the Kitano ERATO Systems Biology
Project, and URI “Protecting Infrastructures from Themselves.”.

2A registered trademark of The MathWorks, Inc.

singular value µ. Examples of these problems, as well
as several other optimization-related examples, are pro-
vided and solved in the demo files that are distributed
together with SOSTOOLS.

This paper is based on the SOSTOOLS User’s
Guide [12], and is organized as follows. In Section 2 a
brief review on sum of squares polynomials is given and
the notion of sum of squares programs is introduced.
Section 3 describes the main features of SOSTOOLS,
including the system requirements. To illustrate how
SOSTOOLS is used, a step-by-step example in finding
a Lyapunov function for a system with a rational vector
field is given in Section 4, and finally some additional
application examples are presented in Section 5.

2 Sum of Squares Polynomials and Sum of
Squares Programs

A multivariate polynomial p(x1, ..., xn) , p(x) is a sum
of squares (SOS, for brevity), if there exist polynomials
f1(x), ..., fm(x) such that

p(x) =

m
∑

i=1

f2
i (x). (1)

It is clear from the definition that the set of sums of
squares polynomials on n variables is a convex cone,
and it is also true (but not obvious) that it is closed [13].
Condition (1) can be shown to be equivalent to the
existence of a positive semidefinite matrix Q, such that

p(x) = ZT (x)QZ(x), (2)

where Z(x) is some properly chosen vector of monomi-
als. Expressing an SOS polynomial using a quadratic
form as in (2) has also been referred to as the Gram
matrix method [1, 11].

As mentioned in the introduction, sums of squares tech-
niques can be used to provide tractable relaxations for
many hard optimization problems. A very general and
powerful relaxation methodology, introduced in [9, 10],

1

is based on the Positivstellensatz, a central result in
real algebraic geometry. The examples in this paper,
mostly taken from [9], illustrate the practical applica-
tion of these relaxation methods.

In this type of relaxations, we are interested in finding
polynomials pi(x), i = 1, 2, ..., N̂ and sums of squares
pi(x) for i = (N̂ + 1), ..., N such that

a0,j(x) +

N
∑

i=1

pi(x)ai,j(x) = 0, for j = 1, 2, ..., J,

where the ai,j(x)’s are some given constant coefficient
polynomials. Problems of this type will be termed
“sum of squares programs.” Solutions to SOS programs
like the above provide certificates, or Positivstellensatz
refutations, which can be used to prove the nonexis-
tence of real solutions of systems of polynomial equal-
ities and inequalities (see [10] for details).

To this end, the feasibility problem in SOS program-
ming will be formulated as follows3:

SOS Program 1 (Feasibility)

Find

polynomials pi(x), for i = 1, 2, ..., N̂
sums of squares pi(x), for i = (N̂ + 1), ..., N

such that

a0,j(x) +

N
∑

i=1

pi(x)ai,j(x) = 0 for j = 1, 2, ..., Ĵ , (3)

a0,j(x) +
N
∑

i=1

pi(x)ai,j(x) are SOS (≥ 0)4,

for j = (Ĵ + 1), ..., J. (4)

In this formulation, ai,j(x)’s are some scalar constant
coefficient polynomials. The pi(x)’s will be termed
SOS program variables, and the constraints (3)–(4) are
termed SOS program constraints. It is obvious that the
same program can be formulated in terms of constraints
(3) only, by introducing some extra sums of squares as
slack program variables. But avoiding this will in most
cases make the problem statement clearer.

As f(x) being an SOS naturally implies f(x) ≥ 0, and
since many problems are more naturally formulated us-
ing inequalities, we will call the constraints (4) “in-
equality constraints”, and denote them by ≥ 0. We
remind the reader of the equivalence between “nonneg-
ativity” and “sum of squares” in the cases of univariate,

3Another way of formulating sum of squares programs can be
found in the SOSTOOLS manual.

4Whenever constraint f(x) ≥ 0 is encountered in an SOS
program, it should always be interpreted as “f(x) is an SOS”.

multivariate quadratic, and binary quartic polynomials
(see [13] and the references therein). Nevertheless, it
should be noted that in the general multivariate case,
f(x) ≥ 0 in the usual sense does not necessarily im-
ply that f(x) is an SOS. The condition that f(x) is
an SOS is stricter, yet more computationally tractable,
than f(x) ≥ 0 [9, 13].

Besides feasibility, there exists another class of prob-
lems in sum of squares programming, which involves
optimization of an objective function that is linear in
the coefficients of pi(x)’s. The general form of these
optimization problems is as follows:

SOS Program 2 (Optimization)

Minimize the linear objective function

wT c,

where c is a vector formed from the (unknown) coeffi-
cients of

polynomials pi(x), for i = 1, 2, ..., N̂
sum of squares pi(x), for i = (N̂ + 1), ..., N

such that

a0,j(x) +
N
∑

i=1

pi(x)ai,j(x) = 0 for j = 1, 2, ..., Ĵ , (5)

a0,j(x) +

N
∑

i=1

pi(x)ai,j(x) are SOS (≥ 0)4,

for j = (Ĵ + 1), ..., J. (6)

where in this formulation w is the vector of weighting
coefficients in the linear objective function.

Both the feasibility and optimization problems as for-
mulated above are quite general, and in specific cases
reduce to well-known problems. In particular, notice
that if all the unknown polynomials pi are restricted
to be constants, and the ai,j(x)’s are quadratic forms,
then we exactly recover the standard LMI problem for-
mulation. Nevertheless, these extra degrees of freedom
are a bit illusory, as every SOS program can be exactly
converted to an equivalent semidefinite program [1].
For several reasons, the problem specification outlined
above has definite practical and methodological advan-
tages, and establishes a useful framework within which
many specific problems can be solved, as we will see
later in Sections 4 and 5.

3 SOSTOOLS in a Nutshell

At the present time, sum of squares programs are han-
dled by reformulating them as semidefinite programs

2

SOSP SDP

SOSP
Solution Solution

SDP

SeDuMi

SOSTOOLS

SOSTOOLS

Figure 1: Diagram depicting relations between SOS pro-
gram (SOSP), semidefinite program (SDP),
SOSTOOLS, and SeDuMi.

(SDPs), which in turn are solved efficiently e.g. us-
ing interior point methods. Several commercial as well
as non-commercial software packages are available for
solving SDPs. While the conversion from SOS pro-
grams to SDPs can be manually performed for small
size instances or tailored for specific problem classes,
such a conversion can be quite cumbersome to perform
in general. It is therefore desirable to have a compu-
tational aid that automatically performs this conver-
sion for general SOS programs. This is exactly where
SOSTOOLS comes to play5. It automates the conver-
sion from SOS program to SDP, calls the SDP solver,
and converts the SDP solution back to the solution of
the original SOS program. At present, it uses another
free MATLAB add-on called SeDuMi [15] as the SDP
solver. This whole process is depicted in Figure 1.

All polynomials in SOSTOOLS are implemented as
symbolic objects, making full use of the capabilities of
the MATLAB Symbolic Math Toolbox. This gives to
the user the benefit of being able to do all polynomial
manipulations using the usual arithmetic operators: +,
-, *, /, ^; as well as differentiation, integration, point
evaluation, etc. In addition, this provides the possibil-
ity of interfacing with the Maple6 symbolic engine and
library, which is very advantageous.

The user interface has been designed to be as simple,
easy to use, and transparent as possible. The user cre-
ates an SOS program by declaring SOS program vari-
ables (the pi(x)’s in Section 2), adding SOS program
constraints, setting the objective function, and so on.
After the program is created, the user calls one function
to run the solver. Finally, the user retrieves solutions to
the SOS program using another function. These steps
will be presented in greater details in Section 4.

5A related recent software is GloptiPoly [4], which solves
global optimization problems over polynomials, based on the
method in [6].

6A registered trademark of Waterloo Maple Inc.

SOSTOOLS is available for free under the
GNU General Public License. The software
and its user’s manual can be downloaded from
http://www.cds.caltech.edu/sostools or
http://www.aut.ee.ethz.ch/~parrilo/sostools.
It requires MATLAB version 6.0 or later, SeDuMi [15]
version 1.05, and the Symbolic Math Toolbox version
2.1.2. SOSTOOLS can be easily run on a UNIX work-
station or on a Windows PC desktop, or even a laptop.
It utilizes the MATLAB sparse matrix representation
for good performance and to reduce the amount of
memory needed. To give an illustrative figure of the
computational load, all examples in Sections 4 and 5,
except for the µ upper bound example, are solved in
less than 10 seconds by SOSTOOLS running on a PC
with Intel Celeron 700 MHz processor and 96 MBytes
of RAM. Even the µ upper bound example is solved in
less than 25 seconds using the same system.

4 Solving Sum of Squares Programs with
SOSTOOLS

SOSTOOLS can solve two kinds of SOS programs: the
feasibility and optimization problems, as formulated in
Section 2. To define and solve an SOS program us-
ing SOSTOOLS, the user simply needs to follow these
steps:

1. Initialize a SOS program, declare the SOS pro-
gram variables.

2. Define SOS program constraints

3. Set objective function (for optimization prob-
lems)

4. Call solver

5. Get solutions.

In this section, we will give a step-by-step example on
how to create and solve an SOS program. For this
purpose, we will consider the search for a Lyapunov
function of a nonlinear dynamical system. The presen-
tation given here is not meant to be comprehensive;
readers are referred to the SOSTOOLS User’s Manual
for a detailed explanation on each function used.

The Lyapunov stability theorem (see e.g. [5]) has been
a cornerstone of nonlinear system analysis for several
decades. In principle, the theorem states that an equi-
librium of the system ẋ = f(x) (with the equilibrium
assumed to be at the origin) is stable if there exists a
positive definite function V (x) such that its derivative
along the system trajectories is non-positive. For our
example, consider the system

ẋ1

ẋ2

ẋ3

 =

−x3
1 − x1x

2
3

−x2 − x2
1x2

−x3 − 3x3

x2

3
+1

+ 3x2
1x3

 , f(x), (7)

3

which has its only equilibrium at the origin. Notice
that the linearization of (7) has an eigenvalue equal to
zero, and therefore cannot be used to analyze the lo-
cal stability of the equilibrium. Assume that we are
interested to see whether a quadratic Lyapunov func-
tion V (x) with no cross-term monomials can be used
for proving stability of the system. For V (x) to be a
Lyapunov function, it must satisfy

V (x) − ǫ(x2
1 + x2

2 + x2
3) ≥ 0,

− ∂V

∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3 ≥ 0. (8)

The first inequality, with ǫ being any constant greater
than zero, is needed to guarantee positive definiteness
of V (x), whereas the second inequality will guarantee
that the derivative of V (x) along the system trajecto-
ries is non-positive. However, notice that ẋ3 is a ra-
tional function, and therefore (8) is not a valid SOS
program constraint. But since x2

3 + 1 > 0 for any x3,
we can equivalently reformulate (8) as

−(x2
3 + 1)

(

∂V

∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3

)

≥ 0.

Thus, we have the following (we choose ǫ = 1):

SOS Program 3 Find a polynomial

V (x) = a1x
2
1 + a2x

2
2 + a3x

2
3, (9)

(where the ai’s are the unknown decision variables),
such that

V (x) − (x2
1 + x2

2 + x2
3) ≥ 0, (10)

−(x2
3 + 1)

(

∂V

∂x1

ẋ1 −
∂V

∂x2

ẋ2 −
∂V

∂x3

ẋ3

)

≥ 0. (11)

We will now show how to search for Lyapunov func-
tion using SOSTOOLS. We start by defining the inde-
pendent variables x1, x2, x3 as symbolic objects and
collecting them in a vector.

>> syms x1 x2 x3;

>> vars = [x1; x2; x3];

Next, we define the decision variables, i.e., the ai in (9):

>> syms a1 a2 a3;

>> decvars = [a1; a2; a3];

Then the vector field (7) can be defined symbolically
as follows.

>> f = [-x1^3-x1*x3^2;

-x2-x1^2*x2;

-x3-3*x3/(x3^2+1)+3*x1^2*x3];

At this point, our SOS program is ready to be con-
structed. An empty SOS program is initialized by the

function sosprogram.m, with the list of independent
and decision variables as its arguments.

>> Program1 = sosprogram(vars,decvars);

The next step is to define the SOS program constraints
(10)–(11). Constraint (10) is defined using:

>> V = a1*x1^2 + a2*x2^2 + a3*x3^2 ;

>> Program1 = sosineq(Program1, V-(x1^2+x2^2+x3^2));

The first command simply defines V , and the second
command adds the inequality constraint to the already
defined SOS program.

In the same manner, Constraint (11) can be added to
our SOS program. This is performed by typing

>> Vdot = diff(V,x1)*f(1) + diff(V,x2)*f(2) + ...

>> diff(V,x3)*f(3);

>> Program1 = sosineq(Program1, -Vdot*(x3^2+1));

where the first command line explicitly constructs the
time derivative of V , and the second one adds the in-
equality constraint (11).

The SOS feasibility program has now been completely
created, and can be solved using the following com-
mand:

>> Program1 = sossolve(Program1);

The solution V (x) can then be retrieved by typing

>> SOLV = sosgetsol(Program1,V)

SOLV =

7.1525*x1^2+5.7870*x2^2+2.1434*x3^2

As we see above, in this example SOSTOOLS gives the
following V (x) as a Lyapunov function for our system:

V (x) = 7.1525x2
1 + 5.7870x2

2 + 2.1434x2
3. (12)

Notice that the whole problem is coded and solved with
only a handful of MATLAB commands.

5 More Applications

SOSTOOLS comes with several demo files containing
applications from different domains. We describe some
of these applications here; many other ones are de-
scribed in the SOSTOOLS User’s Manual.

5.1 Bound on Global Extremum
Consider the problem of finding a lower bound for the
global minimum of a function f(x), x ∈ R

n. This prob-
lem is addressed in [14], where an SOS-based approach

4

was first used. A relaxation method can be formulated
as follows. Suppose that there exists a strictly positive
r(x) such that r(x)(f(x)− γ) is an SOS, then we know
that f(x) ≥ γ, for every x ∈ R

n.

In this example we will use the Goldstein-Price test
function, which is given by

f(x) =[1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2...

+ 6x1x2 + 3x2
2)][30 + (2x1 − 3x2)

2(18 − 32x1...

+ 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

We start with r(x) = 1. If needed, we can use higher
order r(x) later. The SOS program for this problem is

SOS Program 4 Minimize −γ, such that f(x)− γ is
a sum of squares (≥ 0).

The demo file demo3.m contains the MATLAB code
for this problem. The optimal value of γ, as given by
SOSTOOLS, is γopt = 3. This is in fact the global
minimum of f(x), which is achieved at x = (0,−1).

5.2 Upper Bound of Structured Singular Value
Now we will show how SOSTOOLS can be used to
compute an upper bound for the structured singular
value µ, a crucial object in robust control theory (see
e.g. [2, 8]). The following conditions can be derived
from Proposition 8.25 of [2] and Theorem 6.1 of [9].
Given a matrix M ∈ C

n×n and structured scalar un-
certainties ∆ = diag(δ1, δ2, ..., δn), δi ∈ C, the struc-
tured singular value µ(M,∆) is less than γ, if there
exist Qi ≥ 0 ∈ R

2n×2n and rij ≥ 0 satisfying

−
n
∑

i=1

Qi(x)Ai(x) −
∑

1≤i<j≤n

rijAi(x)Aj(x) + I(x) ≥ 0,

(13)
where x ∈ R

2n,

Qi(x) = xT Qix, (14)

I(x) = −
(

2n
∑

i=1

x2
i

)2

, (15)

Ai(x) = xT Aix, (16)

Ai =

[

Re(Hi) −Im(Hi)
Im(Hi) Re(Hi)

]

, (17)

Hi = M∗e∗i eiM − γ2e∗i ei, (18)

and ei is the i-th unit vector in C
n.

Thus, the SOS program for this problem can be formu-
lated as follows:

SOS Program 5 Choose a fixed value of γ. For I(x)
and Ai(x) as described in (15)–(18), find sums of

squares

Qi(x) = xT Qix, i = 1, ..., 2n, (19)

rij ≥ 0, 1 ≤ i < j ≤ 2n, (20)

such that (13) is satisfied.

The optimal value of γ can be found for example by
bisection. In demo5.m, we consider the following M
(from [8]):

M = UV ∗, U =

a 0
b b
c jc
d f

, V =

0 a
b −b
c −jc

−jf −d

,

with a =
√

2/α, b = c = 1/
√

α, d = −
√

β/α, f =

(1 + j)
√

1/(αβ), α = 3 +
√

3, β =
√

3− 1. It is known
that µ(M,∆) ≈ 0.8723. Using demo5.m, we can prove
that µ(M,∆) < 0.8724.

5.3 MAX CUT
We will next consider the MAX CUT problem. MAX
CUT is the problem of partitioning nodes in a graph
into two disjoint sets V1 and V2, such that the weighted
number of nodes that have an endpoint in V1 and the
other in V2 is maximized. This can be formulated as a
boolean optimization problem

max
xi∈{−1,1}

1

2

∑

i,j

wij(1 − xixj),

or equivalently as a constrained optimization

max
x2

i
=1

f(x) , max
x2

i
=1

1

2

∑

i,j

wij(1 − xixj).

Here wij is the weight of the edge connecting nodes i
and j. For example we can take wij = 0 if nodes i and
j are not connected, and wij = 1 if they are connected.
If node i belongs to V1, then xi = 1, and conversely
xi = −1 if node i is in V2.

A sufficient condition for maxx2

i
=1 f(x) ≤ γ is as fol-

lows. Assume that our graph contains n nodes. Given
f(x) and γ, then maxx2

i
=1 f(x) ≤ γ if there exist a

positive definite sum of squares p1(x) and polynomials
p2(x), ..., pn+1(x) such that

p1(x)(γ − f(x)) +

n
∑

i=1

(

pi+1(x)(x2
i − 1)

)

≥ 0. (21)

This can be proved by contradiction. Suppose there
exists x ∈ {−1, 1}n such that f(x) > γ. Then the first
term in (21) will be negative and the terms under sum-
mation will be zero, thus we have a contradiction. In
relation to this, it can be noted that the SDP relax-
ation of Goemans and Williamson [3] is a special case

5

of (21), obtained by taking the pi(x)’s to be constants
(i.e., degree zero).

For the demo file, we consider the 5-cycle, i.e., a graph
with 5 nodes and 5 edges forming a closed chain. The
number of cuts for 5-cycle is given by

f(x) = 2.5− .5x1x2− .5x2x3− .5x3x4− .5x4x5− .5x5x1.
(22)

Our SOS program is as follows.

SOS Program 6 Choose a fixed value for γ. For f(x)
given in (22), find

sum of squares p1(x) =

[

1
x

]T

Q

[

1
x

]

polynomials pi+1(x) of degree 2, i = 1, ..., n

such that (21) is satisfied.

Using demo6.m, we can show that f(x) ≤ 4. Four is
indeed the maximum number of cuts for 5-cycle.

6 Concluding Remarks

We have presented a brief overview on sum of squares
polynomials and introduced the notion of sum of
squares programs. The main features of SOSTOOLS,
a general purpose sum of squares programming solver,
have been subsequently described.

We have further shown a detailed example on how SOS-
TOOLS can be used to solve control-related sum of
squares programs. From different domains we have pre-
sented several applications, such as computing bound
for global optimization, computing upper bounds for
µ, and MAX CUT combinatorial optimization, to il-
lustrate the wide applicability of sum of squares pro-
gramming and SOSTOOLS.

SOSTOOLS is under active development. Upcoming
versions of SOSTOOLS will, among other improve-
ments, provide the user with the dual solutions of the
semidefinite program to check if the optimal solution
to an optimization problem is achieved. Additionally,
special structure in the input polynomials, such as spar-
sity, symmetries, and reduction over polynomial ideals
will be fully exploited in order to speed up the compu-
tation and allow the possibility of solving larger scale
problems.

References

[1] M. D. Choi, T. Y. Lam, and B. Reznick. Sum of
squares of real polynomials. Proceedings of Symposia
in Pure Mathematics, 58(2):103–126, 1995.

[2] G. E. Dullerud and F. Paganini. A Course in
Robust Control Theory: A Convex Approach. Springer-
Verlag NY, 2000.

[3] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115–1145, 1995.

[4] D. Henrion and J. B. Lasserre. GloptiPoly:
Global optimization over polynomials with Matlab
and SeDuMi. In Proceedings of the 41st IEEE
Conf. on Decision and Control, 2002. Available at
http://www.laas.fr/~henrion/software/gloptipoly.

[5] H. K. Khalil. Nonlinear Systems. Prentice Hall,
Inc., second edition, 1996.

[6] J. B. Lasserre. Global optimization with polyno-
mials and the problem of moments. SIAM J. Optim.,
11(3):796–817, 2001.

[7] Y. Nesterov. Squared functional systems and op-
timization problems. In J. Frenk, C. Roos, T. Terlaky,
and S. Zhang, editors, High Performance Optimization,
pages 405–440. Kluwer Academic Publishers, 2000.

[8] A. Packard and J. C. Doyle. The complex struc-
tured singular value. Automatica, 29(1):71–109, 1993.

[9] P. A. Parrilo. Structured Semidefinite Programs
and Semialgebraic Geometry Methods in Robustness
and Optimization. PhD thesis, California Institute of
Technology, Pasadena, CA, 2000.

[10] P. A. Parrilo. Semidefinite programming relax-
ations for semialgebraic problems. To appear in Math-
ematical Programming, 2001.

[11] V. Powers and T. Wörmann. An algorithm for
sums of squares of real polynomials. Journal of Pure
and Applied Linear Algebra, 127:99–104, 1998.

[12] S. Prajna, A. Papachristodoulou, and P. A.
Parrilo. SOSTOOLS – Sum of Squares Op-
timization Toolbox, User’s Guide. Available
at http://www.cds.caltech.edu/sostools and
http://www.aut.ee.ethz.ch/~parrilo/sostools,
2002.

[13] B. Reznick. Some concrete aspects of Hilbert’s
17th problem. In Contemporary Mathematics, volume
253, pages 251–272. American Mathematical Society,
2000.

[14] N. Z. Shor. Class of global minimum bounds
of polynomial functions. Cybernetics, 23(6):731–734,
1987.

[15] J. F. Sturm. Using SeDuMi 1.02, a
MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and
Software, 11–12:625–653, 1999. Available at
http://fewcal.kub.nl/sturm/software/sedumi.html.

[16] L. Vandenberghe and S. Boyd. Semidefinite pro-
gramming. SIAM Review, 38(1):49–95, 1996.

6

