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Abstract—Motivated partially by a control-theoretic viewpoint,
we propose a game-theoretic model, called random access game,
for contention control. We characterize Nash equilibria of random
access games, study their dynamics, and propose distributed algo-
rithms (strategy evolutions) to achieve Nash equilibria. This pro-
vides a general analytical framework that is capable of modeling a
large class of system-wide quality-of-service (QoS) models via the
specification of per-node utility functions, in which system-wide
fairness or service differentiation can be achieved in a distributed
manner as long as each node executes a contention resolution al-
gorithm that is designed to achieve the Nash equilibrium. We thus
propose a novel medium access method derived from carrier sense
multiple access/collision avoidance (CSMA/CA) according to dis-
tributed strategy update mechanism achieving the Nash equilib-
rium of random access game. We present a concrete medium access
method that adapts to a continuous contention measure called con-
ditional collision probability, stabilizes the network into a steady
state that achieves optimal throughput with targeted fairness (or
service differentiation), and can decouple contention control from
handling failed transmissions. In addition to guiding medium ac-
cess control design, the random access game model also provides
an analytical framework to understand equilibrium and dynamic
properties of different medium access protocols.

Index Terms—Contention-based medium access, control-the-
oretic analysis, game theory, Nash equilibrium, strategy update
mechanism.

I. INTRODUCTION

W IRELESS channel is a shared medium that is interfer-
ence-limited. Contention-based medium access control

(contention control) is a distributed strategy to access and share
wireless channel among contending wireless nodes. From a
control-theoretic point of view, it consists of two components:
a contention resolution algorithm that dynamically adjusts
channel access probability in response to contention in the
network and a feedback mechanism that updates a contention
measure and sends it back to wireless nodes. Contention
resolution is usually achieved through two mechanisms: per-
sistence and backoff [1]. In the persistence mechanism, each
wireless node maintains a persistence probability and accesses
the channel with this probability when it perceives an idle
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channel. In the backoff mechanism, channel access probability
is implemented through a backoff algorithm, and each wireless
node maintains a contention window and waits for a random
amount of time bounded by the contention window before a
transmission. When simultaneous accesses to the channel by
different nodes cause contention, the persistence probability or
contention window is adjusted appropriately so that contention
is reduced. Different medium access control methods differ
in terms of how they adjust these parameters in response to
contention and what contention measure they use. For example,
the standard IEEE 802.11 DCF uses a backoff mechanism and a
binary contention signal—packet collision or successful trans-
mission—in which each wireless node doubles its contention
window upon a collision (binary exponential backoff) and sets
it to the base value upon a successful transmission [2].

The choice of contention measure and contention resolution
algorithm is key to the performance of medium access methods.
“Inappropriate” choice of these two components will result in
poor performance. For example, in high-load scenarios, 802.11
DCF results in excessive collisions and, hence, low throughput
because setting to the base contention window upon successful
transmission is too drastic and each new transmission starts with
the base contention window independent of the contention level
in the network. It also has short-term unfairness problem due
to oscillation in the contention window. The binary exponential
backoff directly causes short-term unfairness. However, this os-
cillation in the contention window is unavoidable because DCF
uses a binary contention signal. In order to achieve high effi-
ciency (high throughput and low collision) and better fairness,
we need to stabilize the network into a steady state that sustains
an appropriate contention window size (or equivalently, channel
access probability) for each node. Furthermore, how we can es-
timate and implement the contention measure is important. Al-
most all medium access methods, including 802.11 DCF, adapt
to packet collisions. However, they cannot distinguish collisions
from corrupted frames that are common in wireless networks.
This leads to increased unfairness and lower throughput. To en-
sure good performance, we need to use a contention measure
whose estimation is not based on packet collisions and decouple
contention control from handling failed transmissions.

The main motivation of this work is to provide an analytical
framework to systematically study contention control and de-
sign medium access methods that could stabilize the network
around a steady state with a target fairness (or service differ-
entiation) and high efficiency. To this end, we define a gen-
eral game-theoretic model, called random access game, to cap-
ture the interaction among wireless nodes in wireless networks
with contention-based medium access. The basic idea is to re-
gard the process of contention control as carrying out a dis-
tributed strategy update algorithm to achieve the equilibrium of
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random access game. Hence the equilibrium (or steady state)
and dynamic properties of a MAC can be understood or de-
signed through the specification of the underlying random ac-
cess game.

Specifically, in random access games, a wireless node’s
strategy is its channel access probability, and its payoff func-
tion includes both utility gain from channel access and cost
from packet collision. Through the specification of per-node
utility function, we can model a large class of system-wide
quality-of-service (QoS) models, similar to that in utility
framework for network flows [3]. We characterize the Nash
equilibrium of random access games, study their dynamics, and
propose algorithms (strategy evolutions) to achieve the Nash
equilibrium. We show that system-wide fairness or service
differentiation can be achieved in a distributed manner as long
as each node executes a contention resolution algorithm that
is designed to achieve the Nash equilibrium. We thus propose
a novel medium access method derived from carrier sense
multiple access/collision avoidance (CSMA/CA) in which
each node estimates its conditional collision probability and
adjusts its channel access probability accordingly. Our method
adapts to continuous feedback signal (conditional collision
probability) rather than binary contention signal, and each node
tries to keep a fixed channel access probability (persistence
probability or equivalently contention window size) specified
by the Nash equilibrium of random access game. In addition
to controllable performance objectives via the specification of
per-node utility functions, as wireless nodes can estimate con-
ditional collision probabilities by observing consecutive idle
slots between transmissions, our access method can decouple
contention control from handling failed transmissions. As a
case study of medium access control design in the proposed
game-theoretic framework, we present a concrete medium
access method and show that it achieves optimal throughput,
low collision, and good short-term fairness and can provide
flexible service differentiations among wireless nodes.

Game-theoretic approach has recently been applied to net-
work design and control. There are two complementary per-
spectives to the game-theoretic approach: economic perspec-
tive and engineering perspective. The economic perspective as-
sumes network components or users are selfish and try to thwart
selfish behaviors or induce cooperation using external mecha-
nisms such as pricing. The engineering perspective envisions a
scenario where network components or users are willing to co-
operate but only have limited information about network states
due to various practical constraints in real networks. In such a
situation, the best an agent can do is to optimize some local or
private objective and adjust its action based on limited informa-
tion about the network state. We use noncooperative game to
“model” such a situation (especially to capture the information
structure of the system) and let network agents behave “self-
ishly” according to the game that is designed to guide individual
agents to seek an equilibrium achieving some system-wide per-
formance objective. Thus, from the engineering perspective, the
focus is not on incentive issues, but on the implementation in
practical networks. There are some controversies around the
engineering perspective. Nonetheless, game-theoretic technique
and language provide a powerful framework to reason about the
engineering systems and guide their design and control. In this
paper, we take the engineering perspective and implement dis-

tributed strategy update algorithms derived from the random ac-
cess game as prescriptive control approach for channel access.1

II. RELATED WORK

Game-theoretic approach has been applied extensively to
study random access (see, e.g., [4]–[10]). The work closest to
ours is Jin et al. [4], which studies noncooperative equilibrium
of Aloha networks and their local convergence, and Altman
et al. [6] and Borkar et al. [7], which study distributed scheme
for adapting random access. Our motivation, model, and results
are different from those works. Our random access game model
is intended as an analytical framework to reverse-engineer con-
tention control as well as to guide the design of new medium
access methods to achieve system-wide performance objec-
tives. The specific structure of random access game is derived
from a control-theoretic viewpoint of contention control, and
the utility functions are derived from the steady operating
points of existing protocols or the desired operating points we
want medium access control to achieve. Inaltekin et al. [10]
analyze Nash equilibria in multiple access with selfish nodes.
Čagalj et al. [8] study selfish behavior in CSMA/CA networks
and propose a distributed protocol to guide multiple selfish
nodes to a Pareto-optimal Nash equilibrium. We do not con-
sider such selfish behaviors of wireless users that tamper with
wireless interfaces to increase their share of channel access
as in [8]. In contrast, we use game-theoretic model to capture
the information and implementation constraints encountered in
real networks and design games to guide distributed users to
achieve system-wide performance objectives.

There are lots of works on various enhancements and im-
provements to 802.11 DCF. We will only briefly discuss some
designs that propose better contention resolution algorithms and
that improve throughput by tuning the contention window ac-
cording to the number of contending nodes. Aad et al. [11] in-
troduce a slow decrease method to improve efficiency and fair-
ness. Kwon et al. [12] propose a fast collision resolution al-
gorithm for throughput improvement. Our design is different
in terms of both contention measure and contention resolution
algorithm. Bianchi et al. [13] and Cali et al. [14] propose to
choose and compute an optimal contention window to maxi-
mize the throughput. They need sophisticated methods to es-
timate the number of contending nodes in the system, while our
method does not require that information. There also exists ex-
tensive work on 802.11 QoS provisioning (see, e.g., [15]). Our
access method can provide more flexible service differentiations
through the specification of per-node utility functions, except
for manipulating the length of interframe space.

Related work also includes [16] and [17]. Heusse et al. [16]
propose a novel idle sense access method for a single-cell wire-
less LAN, which compares the mean number of idle slots be-
tween transmission attempts to the optimal value and adopts an
additive increase and multiplicative decrease algorithm to dy-
namically control the contention window in order to improve
throughput and short-term fairness. In our access method, wire-
less nodes estimate conditional collision probabilities by ob-
serving consecutive idle slots between transmissions. Therefore,
like idle sense access method, our access method can decouple

1However, our random access game model can also serve as a descriptive
model of existing contention control protocols with selfish wireless nodes. This
part is consistent with the economic perspective.
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contention control from handling failed transmissions. Hu et al.
[17] use a similar idea to propose a novel contention control
method to maximize the bandwidth utilization and achieve pro-
portional bandwidth allocation. This method observes two ref-
erence variables, the number of consecutive idle slots and the
number of collisions between two consecutive successful trans-
missions, based on which to control the dequeueing rate of wire-
less nodes instead of dynamically tuning their contention win-
dows. Our access method dynamically adjusts the contention
window and achieves higher throughput (almost no throughput
degradation compared to the optimal throughput) and provides
a better guarantee of service differentiation.

A comparison with TCP congestion control is also in place.
Contention control has a striking similarity with congestion con-
trol. They need to handle almost the same issues such as conges-
tion/contention measure, load control (e.g., window update) al-
gorithm, and decoupling load control from handling failed trans-
missions, etc. However, the interaction among wireless nodes is
different from that among TCP flows, which means a different
framework is needed to study contention control. Actually, one
of the motivations of this work is to try to develop a parallel
story for contention control to what has been done for TCP con-
gestion control in the utility maximization framework (see, e.g.,
[3]).

III. RANDOM ACCESS GAME

Consider a set of wireless nodes in a wireless LAN with
contention-based medium access. Associated with each wire-
less node is its channel access probability 2 and a
certain contention measure it can observe at time .
Node can observe its own access probability and con-
tention measure , but not those of other nodes. It adjusts its
channel access probability based only on and

(1)

The contention measure depends on the channel access
probabilities chosen by the wireless
nodes

(2)

Here, models the contention resolution algorithms, and
models the contention measure update mechanisms. For conve-
nience, we will also denote by .

We assume that (1) and (2) have an equilibrium . The
fixed point of (1) defines an implicit relation between the equi-
librium channel access probability and contention measure

(3)

Assume is continuously differentiable and in
. Then, by the implicit function theorem [18], there exists

a unique continuously differentiable function such that

(4)

2In our description of contention control, each wireless node’s control vari-
able is its channel access probability. For the same variable, we may have dif-
ferent ways to implement it in practical networks. Window-based control is seen
as a way of “implementing” channel access probability.

Define the utility function of each node as

(5)

Being an integral, and since , is a con-
tinuous and nondecreasing function. It is reasonable to assume
that is a decreasing function: The larger the contention, the
smaller the channel access probability. This implies that
is strictly concave.

With the above utility function, we define a random access
game as follows.

Definition 1: A random access game is defined as
a triple , where is a
set of players (wireless nodes), player strategy

with , and
payoff function with utility function

and contention measure .
We constrain the strategy to be strictly less than 1

in order to prevent a node from exclusively occupying wire-
less channel. Note that the throughput of node is proportional
to if there is no collision, and can be seen as contention
price for node . Thus, the payoff function has a nice eco-
nomic interpretation: the net gain of utility from channel access,
discounted by contention cost. The key to understanding con-
tention control is to regard (1)–(2) as the strategy update algo-
rithm to achieve the equilibrium of the random access game.
Hence, the equilibrium (or steady-state) properties of a con-
tention control protocol can be understood and designed through
the specification of the utility function and the contention
measure (e.g., collision probability). Their specification de-
fines the underlying random access game whose equilibrium
determines the steady-state properties such as throughput, fair-
ness, and collision of the contention control protocol. The adap-
tation of channel access probability can be specified through

and corresponds to different strategies to approach the
equilibrium of the game.

Random access game is defined in a rather general
manner. As we saw above, it can be reverse engineered from
given medium access control methods. Regarding the design
of medium access control (i.e., forward-engineering), we can
choose to implement any contention measures and specify any
utility functions we think appropriate. To make our presentation
and theoretical development concrete, in this paper we choose
conditional collision probability as contention measure, i.e.,

(6)

where denotes the set of nodes that interfere with the trans-
mission of node . As will become clear later, such a choice of
contention measure has two nice properties, among others. First,
conditional collision probability is an accurate measure of con-
tention in the network. Each measurement of conditional colli-
sion probability provides multibit information of the contention.
This makes it easier for an equation-based contention resolution
algorithm to stabilize the network into a steady state with a target
fairness (or service differentiation) and high efficiency. Second,
wireless nodes can estimate conditional collision probabilities
without using explicit feedback, which enables the decoupling
of contention control from handling failed transmissions.
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In the rest of this section and Section IV, we focus on single-
cell wireless LANs,3 and will consider multicell wireless LANs
in Section V. Before proceeding, we summarize the assump-
tions that will be used in this paper as follows.

A0: The utility function is continuously differen-
tiable, strictly concave, and with finite curvatures that are
bounded away from zero, i.e., there exist some constants
and such that .
A1: Let and denote the smallest
eigenvalue of over by . Then,

.
A2: Functions are
all strictly increasing or all strictly decreasing.

Assumption A0 is a standard assumption in economics and can
also be seen as derived from those assumptions on function

. A1 guarantees the uniqueness of the Nash equilibrium of
the random access game. A2 guarantees the uniqueness of non-
trivial Nash equilibrium, which we will define later.

A. Nash Equilibrium

We now analyze the equilibrium of random ac-
cess game. The solution concept we use is the
Nash equilibrium [19]. Denote the strategy (channel
access probability) selection for all nodes but by

and write
for the strategy profile . A
vector of access probability is a Nash equilibrium if, for all
nodes , for all . We
see that the Nash equilibrium is a set of strategies for which no
player has an incentive to change unilaterally.

Theorem 2: Under assumption A0, there exists a Nash equi-
librium for random access game .

Proof: Since the strategy spaces are compact convex
sets, and the payoff functions are continuous and concave in

, there exists a Nash equilibrium [19].
Since payoff function is concave in , at the Nash equi-

librium, satisfies

(7)

Define function .
It is easy to verify that (7) is an optimality condition for the
following optimization problem [20]:

(8)

i.e., the Nash equilibria of the random access game are optimal
points of the problem (8).

Theorem 3: Suppose additionally assumption A1 holds.
Then, random access game has a unique Nash equilibrium.

Proof: The Hessian of function is written as

(9)

Note that

3Single-cell means that every wireless node can hear every other node in the
network—for example, a single-cell wireless access network.

and

Thus, under assumption A1

By second-order conditions [20], is a strictly concave
function over the strategy space. Therefore, the optimization
problem (8) has a unique optimal, and hence the random access
game has a unique Nash equilibrium.

The equilibrium condition (7) implies that, at the Nash equi-
librium, either takes value at the boundaries of the strategy
space or satisfies

(10)

We call a Nash equilibrium a nontrivial equilibrium if, for all
nodes , satisfies (10), and trivial equilibrium otherwise. In
the remainder of this section, we will mainly focus on nontrivial
Nash equilibria. It follows from (10) that at nontrivial Nash equi-
librium

(11)

Note that the right-hand side of the above equation is indepen-
dent of . Thus, for any .

Theorem 4: Suppose assumption A2 holds. If the random
access game has a nontrivial Nash equilibrium, it must be
unique.

Proof: Suppose that there are two nontrivial Nash equi-
libria and . From (11), we require that there exist
such that, for all

Since is one-to-one, . Without loss of generality,
assume that is increasing and . Thus, for
all . By (10), , which contra-
dicts the fact that is a decreasing function. Thus, random
access game has a unique nontrivial Nash equilibrium.

Theorem 4 complements Theorem 3. Although A1 guaran-
tees the uniqueness of nontrivial Nash equilibrium when there
is one, it only gives a sufficient condition for the uniqueness.
When there exist nontrivial Nash equilibria while A1 does not
hold, A2 guarantees the uniqueness of nontrivial equilibrium.

Each node can choose any utility function it thinks ap-
propriate. If all nodes have the same utility functions, the system
is said to have homogeneous users. If the nodes have different
utility functions, the system is said to have heterogeneous users.
The motivation for studying systems of heterogeneous users is
to provide differentiated services to different wireless nodes. To
this end, we further differentiate among symmetric and asym-
metric equilibria as follows.

Definition 5: A Nash equilibrium is said to be a symmetric
equilibrium if for all , and an asymmetric
equilibrium otherwise.

For a system of homogeneous users, both symmetric and
asymmetric Nash equilibria are possible. For example, take

with and . In
addition to nontrivial symmetric Nash equilibrium that
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satisfies , , when the number of
wireless nodes there exists a family of nontrivial asym-
metric Nash equilibria that satisfy ,

for all and .
Since by symmetry there must be multiple asymmetric Nash

equilibria if there exists any, the following result follows directly
from Theorems 3 and 4.

Corollary 6: For a system of homogeneous users, suppose
assumption A1 or A2 holds. If the random access game has a
nontrivial Nash equilibrium, it must be unique and symmetric.
More generally, for a system with several classes of homoge-
neous users, under the same assumption, if the random access
game has a nontrivial Nash equilibrium, it must be unique and
symmetric.4 5

Corollary 6 guarantees the uniqueness of nontrivial Nash
equilibrium, and moreover, it guarantees fair sharing of wireless
channel among the same class of wireless nodes and provides
service differentiation among different classes of wireless
nodes. This will facilitate the analysis of dynamic property of
random access games and the design of medium access control.

Remark: Since some player takes a strategy at the boundary
of the strategy space at trivial Nash equilibrium, a trivial Nash
equilibrium usually has great unfairness or low payoff. There-
fore, nontrivial Nash equilibrium is desired. If there does not
exist any nontrivial Nash equilibrium for a random access game,
we may need to look for an alternative solution other than the
Nash equilibrium. For example, we may use Nash bargaining
framework in cooperative game theory to derive a desired equi-
librium solution.

B. Dynamics of Random Access Game

The dynamics of game studies how interacting players could
converge to a Nash equilibrium. It is a difficult problem in gen-
eral, as pointed out in [19] that “game theory lacks a general
and convincing argument that a Nash outcome will occur.” In
the setting of random access, players (wireless nodes) can ob-
serve the outcome (e.g., packet collision or successful transmis-
sion) of the actions of others, but do not have direct knowledge
of other player actions and payoffs. We consider repeated play
of random access game and look for an update mechanism in
which players repeatedly adjust strategies in response to obser-
vations of other player actions so as to achieve the Nash equi-
librium.

The simplest strategy update mechanism is of best response
sort: At each stage, every node chooses the best response to the
actions of all the other nodes in the previous round. Mathemat-
ically, at stage , node chooses a channel access
probability

(12)

4For a system with several classes of users, a Nash equilibrium is symmetric
if the users of the same class choose the same strategy at equilibrium.

5There are many ways to give conditions on the existence of nontrivial Nash
equilibrium ( see [21]) for one example condition. Here, we do not do that since
those conditions intended for the game with arbitrary utility functions are re-
strictive. It is more sensible to give the existence condition for a concrete game
with concrete utility functions; see Section IV-A for an example.

Clearly, if the above dynamics reach a steady state, then this
state is a Nash equilibrium. Nonetheless, there are no conver-
gence results for general games using these dynamics.

We thus consider an alternative strategy update mechanism
called gradient play [22]. Compared to “best response” strategy,
gradient play can be viewed as a “better response.” In gradient
play, every player adjusts a current channel access probability
gradually in a gradient direction suggested by observations of
other player actions. Mathematically, each node updates
its strategy according to

(13)

where the stepsize can be a function of the strategy
of player and “ ” denotes the projection onto the player
strategy space. The gradient play admits a nice economic inter-
pretation if we interpret the conditional collision probability
as contention price for node : If the marginal utility is
greater than contention price, we increase the access probability,
and if the marginal utility is less than contention price, we de-
crease the access probability. The following result is immediate.

Lemma 7: By the equilibrium condition (7), the Nash equi-
libria of random access game are fixed points of the gradient
play (13), and vice versa.

Theorem 8: Suppose assumptions A0 and A1 hold. The gra-
dient play (13) converges to the unique Nash equilibrium of
random access game if, for any , the stepsize

.
Proof: Consider function

. Define a matrix . We have

Since is symmetric, , and hence

By Taylor expansion, we have

where . Now,
by the projection theorem [20]

from which we obtain
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Thus, we have

Thus, if , . We
see that will keep increasing until the system reaches a
fixed point of (13). By Theorem 3 and Lemma 7, under assump-
tions A0 and A1, (13) has a unique fixed point in strategy space.
Hence, the gradient play (13) converges to the unique Nash equi-
librium of random access game .

Theorem 8 guarantees the convergence of distributed gradient
play to the Nash equilibrium. If a backoff mechanism is imple-
mented, each node updates its contention window as
follows:

(14)

Equation (14) follows from the relation that re-
lates channel access probability to a constant contention
window . This relation can be derived under the decou-
pling approximation for a set of wireless nodes with constant
contention windows (see, e.g., [23] and [24]). The decoupling
approximation is an extremely accurate approximation, as
validated by extensive simulations reported in, e.g., [23] and
[24]

In practice, there will be estimation error in the contention
measure. Then, the gradient play can be written as

(15)

where denotes the estimation error in node ’s conditional
collision probability.6 We assume that the estimation errors are
bounded, i.e., there exists a constant such that
. We will show that under certain conditions, the gradient play

(15) with estimation error converges to a neighborhood of non-
trivial Nash equilibrium, where the size of the neighborhood de-
pends on the accuracy of the contention measure estimation.

Theorem 9: Let be a nontrivial Nash equilibrium. Suppose
that is nonsingular. Then, there exist a and a unique
continuously differentiable function defined
on a -neighborhood of the origin such that

(16)

Proof: At nontrivial Nash equilibrium , we have

(17)

6For the simplicity of presentation, we choose the same stepsize for all wire-
less nodes and neglect the projection operation. However, similar results as those
of Theorems 9 and 10 can be established for the general case with heteroge-
neous stepsizes and the projection operation. The key is to note that function
�� � � � ��� ��� � ��� � � is one-to-one for fixed �, and then
apply the implicit function theorem for nonsmooth functions.

If is nonsingular, function

satisfies the

conditions of the implicit function theorem [18]. The result fol-
lows directly from the implicit function theorem.

Theorem 10: Assume the same conditions as in Theorem 8.
For any , there exists a such that if , then
the gradient play (15) with estimation errors converges into an
-neighborhood of nontrivial Nash equilibrium.

Proof: By Theorem 9, for any , there exists a such
that implies that .

Now, under the gradient play (15), we have

If ,
will keep increasing. Therefore, the gradient play (15) will
enter at least once into a region defined by

. Take any
, and we have , i.e., there exits a such

that and . It follows
that the gradient play (15) will enter at least once into a neigh-
borhood of defined by .
Once it enters into this neighborhood, the gradient play will
stay inside a larger neighborhood defined by .

Theorem 10 is the robust verification of the gradient play to
the estimation error. It holds even under weaker condition that
only requires the estimation errors to eventually remain within a
-neighborhood of the origin. Being a dynamic feedback-based

protocol, contention control usually operates at a region where
the equilibrium condition is approximately satisfied due to var-
ious practical factors or constraints. Theorem 10 guarantees that
this region is in a small neighborhood of the equilibrium, and
thus the performance of the medium access method derived
from the random access game is determined by the equilibrium.

C. Medium Access Control Design

Our ultimate purpose for studying random access games is to
design medium access method with better performance. Corol-
lary 6 and Theorem 8 suggest that random access games provide
a general analytical framework to model a large class of system-
wide QoS models (mainly in terms of throughput) via the spec-
ification of per-node utility functions, and system-wide fairness
or service differentiation can be achieved in a distributed manner
as long as each node executes a contention resolution algorithm
that is designed to achieve the nontrivial Nash equilibrium.

Based on this understanding of the equilibrium and dy-
namics of random access games, we propose a novel medium
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TABLE I
MEDIUM ACCESS METHOD VIA GRADIENT PLAY

access method derived from CSMA/CA7: instead of executing
exponential backoff upon collisions, each node estimates its
conditional collision probability and adjusts its channel access
probability and contention window according to the gradient
play (13)–(14); see Table I for a formal description (see
Section IV-C for more explanation on notations). Our method
adapts to continuous feedback signal (conditional collision
probability) rather than binary feedback (packet collision)
and stabilizes the network around a steady state specified by
the Nash equilibrium of random access game. Therefore, it
can achieve controllable performance objectives by choosing
appropriate per-node utility functions. Our access method
is an equation-based control, and its performance (such as
throughput, collision and fairness) is determined by the Nash
equilibrium. Note that specifies how
far the current state is from the equilibrium. The contention
window adjustment is small when the current state is close to
the equilibrium, and large otherwise, independent of where
the equilibrium is. This is in sharp contrast to the approach
taken by 802.11 DCF, where window adjustment depends on
just the current window size and is independent of where the
current state is with respect to the target equilibrium. Thus, our
access method can achieve better contention control and better
short-term fairness.

Now, consider how wireless nodes can estimate conditional
collision probabilities. Let denote the number of consecu-
tive idle slots between two transmissions. Here, “a transmis-
sion” corresponds to a busy period in the channel when only a
node transmits (i.e., a successful transmission) or multiple nodes
transmit simultaneously (i.e., a collision). Since has the geo-
metric distribution with parameter , its mean is given by

. Thus, each node can estimate its condi-
tional collision probability by observing the average number of
consecutive idle slots according to

(18)

7We can also design medium access methods based on the ordinary Aloha-
type access method [25]. One of the main differences would be that, without
CSMA, wireless nodes have to estimate the contention measure based on ex-
plicit feedback (i.e., failed transmissions).

With this estimation of the contention measure, our access
method can decouple contention control from handling packet
losses and is immune to those problems incurred in methods
that infer channel contention from packet collisions.

In Section IV, we will study a concrete random access game
and the corresponding medium access control design as a case
study for the proposed design methodology in game-theotic
framework. We will discuss more on the design of our medium
access method.

IV. A CASE STUDY

We have mostly ignored the design of utility functions in
the previous section. In the following, we will derive utility
functions and random access games from the desired operating
points and design medium access methods accordingly.

Consider a single-cell wireless network with classes of
users. Each class is associated with a weight , and without
loss of generality, we assume . We
want to achieve maximal throughput under the weighted fair-
ness constraint

where is the throughput of a class- node. Let .
Under the assumption of the Poisson arrival process [25], the
channel idle probability is approximately

(19)

and the aggregate successful packet transmission probability is
. Hence, the aggregate throughout can be written as

which achieves maximum at that solves

(20)

where is the packet payload, is the duration of an idle slot,
and and are the durations the channel is sensed busy be-
cause of a successful transmission and during a collision, re-
spectively.

Now, consider how to achieve the weighted fairness. When
there is a large number of nodes accessing the channel, each user
should sense approximately the same environment on average,
and we can assume that each user has the same conditional col-
lision probability.8 Thus, with equal packet payload sizes the
throughput ratio between users of different classes is approxi-
mately the ratio between their channel access probabilities, i.e.,
we require

(21)

The users of each class are associated with the same utility
and thus the same function .

Note that at the nontrivial Nash equilibrium,
for all . Thus, condition (21) can be achieved at a

8This assumption is similar to the decoupling approximation made in [23]
and other works in performance analysis of 802.11 DCF.
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nontrivial Nash equilibrium if we design utility functions such
that

(22)

By (19)–(20), a nontrivial equilibrium that achieves maximal
throughput should satisfy

(23)

Equations (22)–(23) plus assumption A2 are the constraints on
the desired utility functions that achieve the maximal throughput
under the weighted fairness constraint at the nontrivial equilib-
rium. Note that when the number of wireless nodes is large,
should be very small. A convenient choice that approximately
satisfies the above constraints is

(24)

from which we derive a utility function

(25)

With this utility function, we define a random access game
where all players have the same strategy space with
and different user classes are identified with different choices of
the utility functions (25) with different weights.

Remark: The way we derive utility function (25) follows
the same idea as in reverse-engineering (4)-(5): to derive the
utility function and game from the equilibrium. To see this,
note that the equilibrium condition (4) or equivalently (10) is
encapsulated in (11). In the above utility function design, we
derive function from the desired equilibrium [see (24)]
from which we derive the marginal utility or equivalently

. We then obtain the utility function by integration.

A. Nash Equilibrium

Now let us study the equilibrium of random access game .
Lemma 11: Suppose . Then, random ac-

cess game has a unique nontrivial Nash equilibrium.
Proof: Suppose there are class- nodes, each with a

channel access probability . Let . Note

that when , , and when

,

if . Since and are
continuous functions of , there exists a solution to the fol-
lowing equilibrium equation [i.e., (11)]:

if . Thus, there exists a nontrivial Nash equi-

librium for random access game . Fur-
thermore, defined by (24) satisfies assumption A2. It fol-
lows from Theorem 4 that the nontrivial Nash equilibrium must
be unique.

Theorem 12: Suppose additionally . Then,
random access game has a unique and nontrivial Nash equi-
librium.

Proof: We have

(26)
and

(27)

where . Note that

. is a positive semidefinite matrix of rank 1, and

thus . Therefore, if ,
. It follows from Theorem 3 that random access

game has a unique Nash equilibrium. Since, by Lemma 11,
has a nontrivial Nash equilibrium, the unique equilibrium

must be nontrivial.

B. Dynamics

Assume that each node adjusts its strategy according
to gradient play

(28)

(29)

where the stepsize . Note that the Nash equilibria of
random access game are the fixed points of (28), and vice
versa. The following result is immediate.

Theorem 13: Suppose .
Then, the system described by (28) converges to the unique and
nontrivial Nash equilibrium of random access game if, for
any , the stepsize .

Proof: The result follows directly from Theorem 8.
The condition is a mild as-

sumption and admits a very large region in the parameter space.
The Nash equilibrium can be easily calculated by numerically
solving fixed point (10). If we consider a system of homogenous
users, we choose the same utility function, i.e., the same weight

for all users. If we want to provide differentiated services, we
can choose larger value of for the users of a higher priority
class. For example, in wireless access network, we can assign
a large value to the access point, because usually downlink
traffic is greater than the traffic of mobile nodes.

C. Medium Access Control Design

We design a medium access method according to channel
access probability and contention window update mechanism
(28)–(29) by modifying a CSMA/CA access method such as
802.11 DCF [2]. The basic access mechanism in DCF works
as follows. A node wishing to transmit senses the channel for a
period of time equal to the distributed interframe space (DIFS)
to check if it is idle. If the channel is determined to be idle, the
node starts to transmit a DATA frame. If the channel is consid-
ered to be busy, the node waits for a random backoff time ,
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an integer uniformly distributed in the window be-
fore attempting to transmit. Upon successful reception of the
DATA frame, the receiving node waits for a short interframe
space (SIFS) interval and then sends an ACK frame. When the
node detects a failed transmission, it doubles the contention
window (exponential backoff). In order to avoid channel
capture, a node must wait for a random backoff time, in the
same way as if the channel is sensed busy, between two con-
secutive new packet transmissions. Note that DCF employs a
discrete-time backoff scale. The time immediately following an
idle DIFS is slotted with slot-time size . The backoff time
counter is decremented as long as the channel is sensed idle
during a time slot, and frozen when the channel is sensed busy,
and reactivated when the channel is sensed idle again for a DIFS.
The node transmits when the backoff time counter reaches zero.
See [2] for more details.

As described in Section III-C, our medium access method
makes two key modifications to 802.11 DCF. Instead of ad-
justing contention window to a binary feedback signal
(packet loss or successful transmission) and using exponential
backoff algorithm, each node estimates its conditional colli-
sion probability , which is a continuous feedback, and adjusts

according to algorithm (28)–(29).
There are several parameters in our medium access method.

The parameter depends only on the protocol parameters such
as the duration of an idle slot that are specified by the system
designer. The maximal channel access probability affects the
number of the equilibria of random access game but not
the location of the equilibrium (i.e., the equilibrium proper-
ties of our design) once it satisfies the condition specified in
Section IV-A. The weight determines the fairness or ser-
vice differentiation. The system designer will specify a set of
weights, according to the levels of quality of services he wants
to provide, and each wireless node will choose a weight that
corresponds to the specific level of service it desires. The pa-
rameters and determine the dynamic properties
such as stability and responsiveness. The stepsize affects the
convergence speed. In practice, we will choose a constant step-
size for all nodes. The number of transmissions, , for
each node before updating its channel access probability and
contention window, affects the convergence speed and the ac-
curacy of the conditional collision probability estimation. Note
that in strategy update algorithm (28)–(29), is not real time,
but represents the stages at which the random access game is
played. In our design, each node repeatedly plays game every

transmissions, and the channel access probability
and contention window are fixed between consecutive plays. If

is too large, it will take a longer time to reach the
Nash equilibrium, but if is too small, it will result
in large estimation error in the average number of consecutive
idle slots between transmissions and thus conditional collision
probability. In order to achieve a good tradeoff between conver-
gence speed and estimation accuracy, we will choose a relatively
small value for and estimate average number of con-
secutive idle slots between transmissions using an exponential
weighted running average

(30)

TABLE II
PARAMETERS USED TO OBTAIN NUMERICAL RESULTS

where . If is small, we weight history less, and if
is large, we weight history more. The running average works as
a low-pass filter, and by choosing appropriate value, it gives
better estimate than the “naive” estimator .

By our access method, the system is designed to reach and op-
erate around the Nash equilibrium of random access game .
Thus, its performance is determined by the Nash equilibrium of

. Consider a system of greedy nodes that always have packets
to transmit. Denote the equilibrium channel access probability
of node by ; we can calculate its throughput and condi-
tional collision probability as follows:

(31)

(32)

where idle probability and

See Table II for other notations. Here, for simplicity, we have
assumed an equal payload size. The throughput for general pay-
load size distribution can calculated in a similar way [23], and
the aggregate throughput is the summation of over all nodes .

D. Performance

We have conducted numerical experiments to evaluate the
performance of our medium access method. We develop a
packet-level simulator that implements our method and the
standard 802.11 DCF basic access method (i.e., no RTS/CTS).
The values for the parameters used to obtain numerical results
are summarized in Table II. The system values are those speci-
fied in the 802.11b standard with DSSS PHY layer [2]. Under
these specifications, and .
We set , which corresponds to a contention window
size of 16. In all simulations, we set the following values of
the control parameters: , , and

. The simulation results reported aim to zoom in on
specific properties of our access method.
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Fig. 1. Throughput comparison.

1) Throughput and Collision Overhead: We consider a net-
work of homogeneous users with perfect channel (i.e., there is
no corrupted frame that is due to channel error) and compare the
throughput achieved by our access method and 802.11b DCF as
well as the maximal achievable throughput as our method is in-
tended to achieve optimal throughput. In our design, each node
has the same weight of 1, i.e., , since we consider ho-
mogenous users. In our numerical experiments with DCF, after
a packet’s th failed transmission, the contention window
resets to the base contention window, where denotes the max-
imum backoff stage and is set to 5 for 802.11b. This is also
equivalent to the packet being discarded after failed retrans-
missions.

Fig. 1 shows the aggregate throughput achieved by our design
and DCF and the maximal achievable throughput. Our design al-
most achieves the optimal throughout, with only a slightly lower
than optimal throughput for a network of a very small number
of competing nodes. This also confirms that the approximations
(19) and (24) made in deriving the utility functions (25) are very
accurate approximations, and the contention measure estimator
(18) and (30) give fairly accurate estimation of the conditional
collision probability.

Compared to DCF, for a network of a very small number
of wireless nodes, DCF provides a slightly higher throughput
than our design. However, as the number of nodes increases,
our access method achieves much higher throughput. With DCF,
each new transmission starts with the base contention window
and executes binary exponential backoff upon collisions, while,
with our access method, nodes choose a constant contention
window determined by the Nash equilibrium, which is “op-
timal” for the current contention level in the network. Thus,
for a system of many competing nodes where the contention in
the network is heavy, DCF will incur much more packet col-
lisions than our access method, which results in much lower
throughput, as shown in Fig. 1. This is further confirmed by
the comparison of collision overhead between DCF and our ac-
cess method, as shown in Fig. 2. Our access method achieves a
very small, almost constant collision probability, better tradeoff
between channel access and collision avoidance, and hence a
higher throughput that is sustainable over a large range of num-
bers of competing nodes. Practically, this means that our access
method can achieve higher throughput, but with fewer transmis-
sions than DCF, which will benefit the whole system in many

Fig. 2. Conditional collision probability comparison.

Fig. 3. Fairness comparison for a network of 40 competing nodes.

aspects such as lower energy usage and less interference to the
wireless nodes of neighboring cells.

2) Fairness: It is well known that 802.11 DCF has a
short-term fairness problem due to binary exponential backoff
process. In our access method for a system of homogeneous
users, wireless nodes have the same contention window size,
specified by the symmetric Nash equilibrium of random ac-
cess game . Thus, it is expected to have a better short-term
fairness. Fig. 3 compares short-term fairness of our access
method and DCF using Jain fairness index for the window
sizes that are multiples of the number of wireless nodes
[26]. Denote by the number of transmissions of node
over a certain time window. Jain fairness index is defined
by , and higher index means better
fairness. We can see that our method provides much better
short-term fairness than 802.11 DCF.

3) Dynamic Scenario: To evaluate the responsiveness and
the convergence of our access method, we consider a dynamic
scenario as follows. In the beginning, there are five greedy
nodes in the network, which has converged to the equilibrium
or the steady operating point. After 1004 more transmissions,
five more nodes join in to compete for channel access. The five
nodes then leave after 3000 transmissions. Fig. 4 shows the
evolution of channel access probability and the corresponding
contention window size of a long-stay node and a short-stay
node, respectively. We see that our access method reaches the
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Fig. 4. Evolution of channel access probability and the corresponding con-
tention window.

new equilibrium or steady operating point after only about
totally 65 transmissions. That is about seven transmissions for
each wireless node. The evolutions of different wireless nodes
follows roughly the same trend. This is because they observe
the same signal to estimate their contention measure, though the
times when the long-stay node and the short-stay node update
their channel access probabilities and contention windows are
four transmissions away.

In order to respond quickly to the channel contention, in
our access method when a wireless node enters the system
or starts to have data to send after being idle, it will monitor
the channel for a certain amount of time before transmitting
to estimate current channel contention . Based on this es-
timation, it will set its starting channel access probability
to . In our simulation for the
dynamic scenario, after entering the network, the short-stay
nodes monitor the channel for the duration of three consecutive
transmissions to estimate current channel contention to set
the starting channel access probability and the corresponding
contention window. This reflects in Fig. 4 where the starting
channel access probability and contention window of the
short-stay node are close to the channel access probability and
contention window of the long-stay node.

4) Throughput Under Unreliable Channel: We now con-
sider the network with unreliable channel, i.e., there exist cor-
rupted frames due to channel error. Fig. 5 shows the aggregate

Fig. 5. Throughput comparison of our design and 802.11b DCF with different
frame error rates.

throughput achieved by our design and 802.11b DCF, with zero,
10%, 20%, and 40% frame error rates, respectively. We see that,
as expected, our contention resolution algorithm is insensitive
to channel error, and the throughput degradation comes solely
from the corrupted frames due to channel error.

The impact of channel error on DCF is a bit “twisted.” When
the number of nodes is very small, the channel error leads
to larger degradation in throughput. This is because packet
collision is rare in this situation, and channel error results in
more backoff and hence fewer transmissions. However, when
the number of nodes is large, the channel error actually helps.
This is because packet collision is frequent in this situation, and
additional backoff due to the corrupted frames greatly reduces
the chance of packet collision. Note that we have assumed an
i.i.d channel error model. If the channel error comes in bursts,
it will lead to greater throughput degradation of DCF and make
DCF interact adversely with higher layer protocols such as TCP
congestion control. Our access method has no such problems
since its contention resolution algorithm is insensitive to the
channel error.

5) Service Differentiation: As discussed before, we can
provide service differentiation by choosing different utility
functions for different classes of users. Regarding the concrete
medium access method we consider, each node will receive
different services by choosing different weights . For the
simplicity of presentation, we consider two classes of users.
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Fig. 6. The throughput ratio of a class–1 node with weight � � � to a class–2
node with weight � � ���.

Fig. 7. The aggregate throughput versus the number of nodes.

Assume that class 1 has users with weight , corre-
sponding to a higher priority of service, and class 2 has users
with weight , corresponding to a lower priority of
service. Fig. 6 shows the throughput ratio of a class-1 node to a
class-2 node versus the total number of nodes for two different
scenarios: two classes have equal number of users, and class 1
has fixed number of users. We see that the throughput ratio is
almost exactly . This also confirms that the condition
(21) is a very accurate approximate requirement for achieving
the desired service differentiation.

Fig. 7 shows the corresponding aggregate throughput by our
access method. We see that our design almost achieves the max-
imal achievable throughput. This again confirms that the ap-
proximations (19) and (24) made in deriving the utility func-
tions (25) are very accurate approximations.

V. EXTENSION TO MULTICELL NETWORKS

We now extend the above development to multicell wire-
less LANs in which some wireless nodes (e.g., those at the
boundaries of the cells) may belong to more than one cell.
Multicell networks are difficult to analyze because of the
asymmetric information involved at different nodes. Mathemat-
ically, this reflects in the fact that the Jacobi matrix of the user
payoff functions is not a symmetric

matrix. Nonetheless, we can still establish the uniqueness
and convergence of the Nash equilibrium by generalizing the
aforementioned conditions.

It is straightforward to verify that Theorem 2 holds for the
multicell network, i.e., under assumption A0 there exists at least
one Nash equilibrium for random access games . Let be the
Jacobi matrix of the contention measure vector , i.e.,

, and denote by the smallest eigenvalue of matrix
over .

Theorem 14: Suppose assumption A0 holds and
. Then, random access game has a unique Nash equilibrium.

Proof: Since A0 holds, there exists at least one Nash
equilibrium, denoted by . Define function

. Note that . Let
. By Taylor expansion, we

have

where . If ,
for any . Now suppose there exists another

Nash equilibrium, denoted by , then . However,
by equilibrium condition (7)

which contradicts the relation . Thus, random access
game has a unique Nash equilibrium.

The condition is a generalization of assump-
tion A1. As far as we know, our proof method for the unique-
ness of the equilibrium is new. It only uses basic property of
convexity, and is expected to provide a general technique to es-
tablish the uniqueness result.

Theorem 15: Assume the same conditions as in Theorem 14
and the same constant stepsize for the gradient play for all
wireless nodes. The gradient play (13) converges to the unique
Nash equilibrium of random access game if the stepsize

.
Proof: First note that the Nash equilibrium of random ac-

cess game is the fixed point of the gradient play (13), and vice
versa. Define a mapping

The gradient play can be written as .
Note that .
If we can show that is a contraction mapping, then the
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gradient play is a contraction mapping, too. Now, assume a con-
stant stepsize for all nodes. For any two points and in the
strategy space, we have

where , and in
the third inequality we apply the same trick as in the proof of
Theorem 14. We see that if the stepsize ,

. Thus is a contraction
mapping, and so is the gradient play. By the contraction map-
ping theorem [18], the gradient play will converge to the unique
fixed point of (13), i.e., the unique Nash equilibrium of random
access game .

The above condition on the stepsize looks strong, but seen
from the proof, it is overly conservative. We are seeking other
techniques to better bound the matrix norm to weaken this con-
dition. If the medium access method designed according to the
gradient play (13) of random access game is used in multi-
cell wireless LANs, Theorems 15 guarantees that it will operate
around the equilibrium of random access game and achieve
the performance specified by the equilibrium.

VI. SOME COMMENTS ON REVERSE- ENGINEERING

The dynamic model (1)–(2) of contention control is very gen-
eral. The function is usually a deterministic function, while
the function may be deterministic if the contention measure
is a continuous variable or stochastic if the contention measure
is a discrete variable. In the derivation of the utility function
in Section III, we have implicitly assumed a continuous con-
tention measure. If a discrete contention measure is used, the
fixed point equation is usually not dictated directly by function

as in (3). Instead, the fixed point may be dictated by a certain
function that relates the channel access probability and the
average contention measure

(33)

Starting with this fixed point equation and following the same
procedure as in (4)–(5), we can define the utility function and
a random access game and interpret the contention control pro-
tocol as a distributed strategy update algorithm to achieve the
equilibrium of this game.

Take the IEEE 802.11 DCF as an example. DCF responds to
whether there is a collision, and hence the measure of contention

in DCF is a binary feedback signal whose dependence on

the channel access probability vector can be modeled by
stochastic function

with probability
with probability

It is well established that for a single-cell wireless LAN at steady
state, the average channel access probability relates to the con-
ditional collision probability as follows [23]:

where is the base contention window and is the
maximum backoff stage. Following the procedure (4)–(5) to de-
rive a utility function , we can define a random access game
with payoff and interpret DCF as a distributed
strategy update algorithm to achieve the corresponding Nash
equilibrium. Note that the dynamics of DCF cannot be described
by (stochastic) gradient play. The convergence of DCF to the
Nash equilibrium is guaranteed by the stability of the underlying
Markov chain that describes the dynamics of DCF. However, we
can design a medium access method according to the gradient
play of this game, which will achieve the same throughput as
that by DCF, but with better short-term fairness.

One of the key aspects of our reverse-engineering is to re-
verse-engineer the equilibrium (or steady operating point) of
the contention control protocol, i.e., the equilibrium of the re-
sulting game should recover the equilibrium (or steady oper-
ating point) of the contention control protocol; see (3) and (33).
Our random access game framework applies to any dynamic
contention-based medium access methods that have a steady op-
erating point, such as the stabilized Aloha [25].

VII. CONCLUSION

We have developed a game-theoretic model for contention
control and propose a novel medium access method derived
from CSMA/CA, in which each node estimates its conditional
collision probability and adjusts its persistence probability or
contention window according to a distributed strategy update
mechanism achieving the Nash equilibrium. This results in
controllable performance objectives through the specification
of per-node utility functions. As wireless nodes can estimate
conditional collision probabilities by observing consecutive
idle slots between transmissions, we can decouple contention
control from handling failed transmissions. As a case study of
medium access control design in the proposed game-theoretic
framework, we present a concrete medium access method that
achieves optimal throughput, low collision, and good short-term
fairness and can provide flexible service differentiations among
wireless nodes. In addition to guiding medium access control
design, the random access game model also provides an an-
alytical framework to understand equilibrium properties and
dynamic properties of different medium access protocols.

This paper has been focusing on laying out a theoretical
framework. Much work remains to take it from a promising
design framework to a full-fledged medium access control
protocol. We are extending the framework to the network
where wireless nodes have arbitrary traffic patterns (e.g., bursty
packet arrival), which will be reported elsewhere. We will
search for other contention resolution algorithms that could
achieve Nash equilibria of random access games and other
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contention measures that admit robust estimation. We are
also studying the issue of ensuring time fairness in a wireless
network with rate diversity. We are also investigating the coex-
istence of our access method and 802.11 DCF that use different
contention signals: how the resource is allocated to and shared
among wireless nodes using different medium access methods.
This issue is important for the deployment of the new access
method. We also plan to implement our access method in a
testbed to evaluate its performance against realistic physical
characteristics of a network, especially to study the robust
estimation of conditional collision probability and examine
the setting of various control parameters that determine the
dynamic properties of the access method.
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