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Abstract— This paper considers jointly optimal design of cross- implicitly predefines a route for any source-destination pair
layer congestion control, routing and scheduling for ad hoc of a static network, independent of the pattern of traffic
wireless networks. We first formulate the rate constraint and = yemand and interference/contention among links. This may
scheduling constraint using multicommodity flow variables, and - - . . .
formulate resource allocation in networks with fixed wireless result mncongestlon at somg region while other reg"?r,‘s are
channels (or single-rate wireless devices that can mask channelunder-utilized. To use the wireless spectrum more efficiently,
variations) as a utility maximization problem with these con- we should exploit multiple paths based on the pattern of
straints. By dual decomposition, the resource allocation problem traffic demand and interference/contention among links. As

naturally decomposes into three subproblems: congestion control, \ye || see below, routing is then determined from the rate
routing and scheduling that interact through congestion price. . .
and scheduling constraints.

The global convergence property of this algorithm is proved. We . i .
next extend the dual algorithm to handle networks with time-  Lastly, TCP congestion control algorithms can be inter-
varying channels and adaptive multi-rate devices. The stability preted as distributed primal-dual algorithms over the Internet
of the resulting system is established, and its performance is tg maximize aggregate utility, see e.g. [13], [20], [15]. This
characterized with respect to an ideal reference system which garies of work implicitly assumes a network where link
has the best feasible rate region at link layer. . . o

We then generalize the aforementioned results to a general capacities are T'Xed. _and rOl_Jte.S qre pre'SpeC.'f'ed' .Here, we
model of queueing network served by a set of interdependent extend the basic Utlllty maximization formulation with rate
parallel servers with time-varying service capabilities, which constraints at nodes and additional constraints on scheduling
models many design problems in communication networks. We gt link layer.
show that for a general convex optimization problem where a = \\is model the contention relations between wireless links

subset of variables lie in a polytope and the rest in a convex set, - . L
the dual-based algorithm remains stable and optimal when the as a conflict graph (see e.g. [11]). This construction indicates

constraint set is modulated by an irreducible finite-state Markov  Which groups of links mutually interfere and cannot be active
chain. This paper thus presents a step toward a systematic way simultaneously. The feasible rate region at link layer is the

to carry out cross-layer design in the framework of “layering as  convex hull of the corresponding rate vectors of independent
optimization decomposition” for time-varying channel models.  ¢ots of the conflict graph. We introduce multi-commodity
flow variables to formulate rate constraint at the network
|. INTRODUCTION layer, and formulate resource allocation in wireless ad hoc
We consider the problem of congestion control and resoungetworks with fixed channel or single-rate devices as a utility
allocation (through routing and scheduling) over a multimaximization problem with those constraints. We then apply
hop wireless ad hoc network. Traditionally, network protocoluality theory to decompose the system problem vertically
take a strictly layered structure and implement congestiomo congestion control subproblem and routing/scheduling
control, routing and scheduling independently at differeisubproblem that interact through congestion prices. Based on
layers. However, wireless spectrum is a scarce resource, #nd decomposition, a distributed subgradient algorithm for
it is important to use the wireless channel efficiently. In ordgeint congestion control, routing and scheduling is obtained,
to achieve high end-to-end throughput and efficient resourasd proved to approach arbitrarily close to the optimum of
utilization, congestion control, routing and scheduling shouttie system problem. This algorithm motivates a joint design
be jointly designed while the architectural separation amomghere the source adjusts its sending rate according to the
them is preserved. congestion price generated locally at the source node, and
The need for joint design across these three layers is mdiackpressure from the differential price of neighboring nodes
vated by three observations. First, wireless channel is a shaiedsed for optimal scheduling and routing. We next extend the
medium and interference-limited. Unlike in wireline networkslual subgradient algorithm to wireless ad hoc networks with
where links are disjoint resources with fixed capacities, in diine-varying channels and adaptive multi-rate devices. The
hoc wireless networks the link capacities are “elastic” argtability of the resulting system is proved, and its performance
the contention among links provide a fundamental constraistcharacterized with respect to an ideal reference system.
for resource allocation (see e.g. [3]), i.e., they determine theWe then extend the aforementioned results to a gener-
feasible rate region at link layer. alized model of queueing network that is served by a set
Second, most routing schemes for ad hoc networks sele€tinterdependent parallel servers with time-varying service
paths that minimize hop count (see e.g. [12], [25]). Thisapabilities. This general technique leads to results regarding



the stability and optimality of dual algorithm in face of time-methodology. As we will see in this paper, duality theory leads
varying parameters, extending most of the earlier publicatiotts a natural “vertical” decomposition into separate designs
in this area that assumes deterministic channel models. Wedifferent layers that interact through congestion price.
show that for a general convex optimization problem whereRecent publications along this line of “layering as optimization
subset of variables lie in a polytope and the rest in a convdecomposition” [5] includes [31], [8] for TCP/IP interaction,
set, the dual-based algorithm remains stable and optimal wi84] for routing and resource allocation, [4], [16] for TCP
the constraint set is modulated by an irreducible finite-staé@d physical layer, and [3], [17], [18], [32] for joint TCP and
Markov chain. media access control or scheduling.

Il. RELATED WORK

The work in [13], [15], [20], [21] provides a utility-based
optimization framework for Internet congestion control. The Consider an ad hoc wireless network with a 8ebf nodes
same framework has been applied to study the congest®td a setl of logical links. These links are directed, though
control over ad hoc wireless networks (see, e.g., [4], [36], [33)€ assume connectivity to be symmetric, i.e., ligki) € L
[3], [18]). In [3], the authors study joint congestion controif and only if (i,j) € L. We assume a static topology and
and media access control for ad hoc wireless network, a@dch linkl has a fixed finite capacity; bits per second when
formulate rate allocation as a utility maximization problenactive, i.e., we implicitly assume that the wireless channel
with the constraints that arise from contention for channis fixed or some underlying mechanism is used to mask the
access. This paper substantially extends [3] to include routiggannel variation so that the wireless channel appears to have
and to study the network with time-varying channel and multg fixed rate. This assumption will be relaxed in Section V.
rate devices. Wireless channel is a shared medium and interference-limited

In [22], the authors use multi-commodity flow variablesvhere links contend with each other for exclusive access to
to characterize the network capacity region for a wirele¢ge channel. We will use the conflict graph to capture the
network with time-varying channel, and propose a joint routingontention relations among links. The feasible rate region
and power allocation policy to stabilize the system whenevat link layer is then a convex hull of the corresponding
the input rates are within this capacity region. In [11], theate vectors of independent sets of the conflict graph. We
authors study the impact of interference on multi-hop wirele¥gll further introduce multi-commodity flow variables, which
network performance. They model wireless interference usiagrrespond to the link capacities allocated to the flows towards
the conflict graph, and show that there is an opportunigifferent destinations, to describe the rate constraint at network
for achieving throughput gains by employing an interferencéyer. The resource allocation is then formulated as a utility
aware routing protocol. We use the same construction to modhximization problem with schedulability and rate constraints.
the contention relations among wireless links. In [7], [14], the
authors use a similar model to study the problem of jointl
routing the flows and scheduling the transmissions to detér-
mine the achievable rates in multi-hop wireless networks. All In this paper, we consider a network with primary inter-
these works focus on the interaction between link and netwdekence: links that share a common node cannot transmit
layers, and try to characterize the achievable rate regionagtreceive simultaneously, but links that do not share nodes
network layer. We include the end-to-end transport layer, andn do so. The same interference model has been used in
as such, the network uses congestion control to automaticadlyg. [14], [36]. It models a wireless network with multiple
explore the achievable rate region while optimizing somghannels available for transmission. For example, simultaneous
global objective for the end users. communications in a neighborhood are enabled by using

The stochastic Lyapunov function method is a powerful toairthogonal CDMA or FDMA channels. Under this interference
to prove the stability of Markovian system [1], [29]. Especiallynodel, we can construct a conflict graph [11] that captures
Theorem 3.1 in [29] provides sufficient conditions for thé¢he contention relations among the links. In the conflict graph,
stability of general Markov chain. We combine convex analyseach vertex represents a link, and an edge between two vertices
with stochastic Lyapunov method to establish the stability amnotes the contention between the two corresponding links:
optimality properties of networks with time-varying channelghese links cannot transmit at the same time. Fig.1 shows an
Our result is applicable to a variety of time-varying systemsxample of a wireless ad hoc network and its conflict graph.
that can be solved or modelled by dual algorithms. Similar
result is obtained in other contexts through different techniques
(28], [6].

Our goal is to present a systematic approach to cross-layer
design, not only to improve the performance, but more impor-
tantly, to make the interactions between different layers more
transparent. Motivated by the duality model of TCP/AQM,
which is an example of “horizontal” decomposition via dual
decomposition, researchers have extended the utility maxig. 1. Example of an ad hoc wireless network with 4 nodes and 6 logical
mization framework to provide a general cross-layer desidjpks and the corresponding conflict graph

IIl. M ODEL

Schedulability and Rate Constraint




Given a conflict graph, we can identify all its independewherei € N, k€ D, i # k, andz* =0 if [i,k] € S x D.
sets of vertice’s The links in an independent set can transmit Solving the system problem (4)-(6) directly requires coordi-
simultaneously. LetE denote the set of independent setsation among possibly all sources and links, thus is impractical
with each independent set indexed by We represent an in real network. Since (4) is a convex optimization problem
independent set as a|L|-dimensional rate vectar®, where with strong duality, distributed algorithms can be derived by

the Ith entry is formulating and solving its Lagrange dual problem. In the
o iflce next section, we will solve the dual problem and interpret the
rp = { 0 otherwise resulting algorithm in the context of joint design of congestion

] ) ] ] ] control, routing and scheduling.
The feasible rate regioH at the link layer is then defined as

the convex hull of these rate vectors IV. CROSSLAYER DESIGN VIA DUAL DECOMPOSITION

1 := {r = Zaere7 ae >0, Zae = 1} (1) A. Dual Algorithm

Consider the dual to the primal problem (4,5,6):
Thus, given a link flow vectoy, the schedulability constraint P P ( )
says thaty should satisfyy € II. m>iBlD(p) @)
Let D denote the set of destination nodes of network layer p=

flows. Let £, > 0 denote the amount of capacity of lifk j) ~With partial dual function

ellocated to the flow to'destln'atldp Thenf; ;=3 1cp fw. D)= max S Uz - Y phat
is the aggregate capacity on lifk j). From the schedulability @s>0,fk >0 B iEN hCD ik
constraint,f := { f; ;} should satisfy Y 4 Z ) ®)
f cll (2) j:(4,7)€EL :(4,4)EL
subjectto  feTl 9)

Let ¥ > 0 denote the flow generated at nodeéowards
destinationk. Then the aggregate capacity for its incoming/here we relax only the constraint (5) by introducing Lagrange
flows and generated flow to the destinatioshould not exceed multiplier pj for nodei € N and destinatiork € D. The
the summation of the capacities for its outgoing flows;to ~maximization problem in (8) can be decomposed into the

following two subproblems
af < N = >0 fFieN, keD, itk 3)
j:(i,4)EL 3:(4,4)EL Dy(p) = max Z Us(zs) — szps (10)

Equation (3) is the rate constraint for resource allocation. = s
It is similar to multicommodity flow model for the routing and

of data flows in the network, but we give multi-commodity
flow variables a different interpretation as the amount of link Da(p) = max > opf (Z fFi- Zf}%) (11)
", . . . fk.>o0 - —~ - ’
capacities allocated to the flows of different destinations. 3 J J
subjectto  feTl (12)

B. Problem Formulation where we use, to denote the multipliep? if [i,k] € S x D.

We usel € L or alternatively node paiti,j) € N x N If we interpretp} as the congestion price, the first subproblem
to denote a link. We also stack up the entries of any tensgrcongestion control [20], [21], and the second one is the joint
ti; (or t]) to construct a vector, denoted Hy; ;} (or {#/}) routing and scheduling since to solve it we need to determine
or justt. Assume the network is shared by a Sebf sources the amount of Capacmfk that link (i,7) is allocated to
indexed bys. For notational simplicity, we assume that therg-ansmit the data flow towards destinatién Thus, by dual
is at most one flow between any node and destination pa&composition, the flow optimization problem decomposes
li, k], and uses or alternatively node paifi,k] € S x D to into separate “local” optimization problems of transport and
denote a network layer flow. network/link layers, respectively, and they interact through
Assume each source attains a utility Us(zs) when it congestion prices.
transmits at rater; packets per second. We assuitig is The congestion control problem (10) admits a unique max-
continuously differentiable, increasing, and strictly concav@nizer
Our objective is to choose source rates and allocated

capacmesf so as to solve the following global problem: 5(p) = U; 1(2?5) (13)
max S Us(as) ) Which adjusts the source rate according to the congestion price
s 20,f;20 s of the source node. In contrast to traditional TCP congestion
subjectto  «F< ST gE- ST gk (s) control where the source adjusts its sending rate according
j:(id)EL 5:(GA)EL to the aggregate price along its path, in our algorithm the
fell (6) congestion price is generated locally at the source node.

1An independent set of vertices is a set of vertices that has no edges betweelr}lote that, since

each other.

2The extension to the situation with multiple flows between any node- Zp’f (Z ffj — ijkl) = Z fi’fj (pi.c 7p§) ,
i J J

destination pair is straightforward. i4,k



problem (11)-(12) is equivalent to the following problem  Eq.(18) says that, if the demand (p(¢)) for bandwidth at
_ N Lk node i for the flow to destinationt exceeds the effective
Do(p) = max > fugmax(p —p)  (14) capacityy”, f*,—3", f*,, the pricep will rise, which will in
biect t o I 15 turn decrease the demand (see eq.(13)) and increases effective
subjectto  f € (15) capacity (see eq.(14)). Also, note that eq.(18) is distributed
This motivates the following joint scheduling and routingind can be implemented by individual nodes using only local

algorithm: information.
1) For each link(i, ), find destinationk* such thatk* < The above dual algorithm motivates a joint congestion
argmaxy,(p¥ — p¥), and definew; ; = p¥~ — p". control, routing and scheduling design where at the trans-
2) Scheduling: choosﬁj such that port layer sourcess individually adjust their rates accord-
_ ing to the local congestion price, and nodgesindividu-
fearg‘}‘eaﬁ(_;awwfw (16) ally update their prices according to (18); and at the net-
2,7

work/link layer nodesi solve the scheduling (16) and route

There may exist multiple maximizers, but we always piclata flows accordingly. In summary, we have the following
an extreme point maximizér An extreme point maximizer =3t =GR R edian Algorithm

corresponds to a maximal independent set of the flow cofffime &

tention graph. The scheduling (16) is a difficult problem fof) Each nodei implicitly updates its price with respect to
ad hoc wireless network. We will discuss its solution in detayestinationk

in Subsection IV-C.

3) Routing: over link (i,7), send an amount of bits for »{(t+1) = [pf(t)+e( «f(p(t))
destinatjonk:* according to the rate determined by the above S ey - S fEew) )1t
scheduling. J:(6,5)€L J:(GA)EL

Thew; ; values represent the maximutifferential congestion
price of destinationk packets between nodésand j. The
above algorithm uselkack-pressuréo do optimal scheduling slot .

and find optimal routing Note that 1)-3) is equivalent to 2) Congestion control: each source nadadjusts its sending
solve the problem (11)-(12) by the following assignment 0 for the period, according to local congestion price

and passes the prigg to all its neighbors. Note that (¢) is
interpreted as the congestion price at the beginning of time

0 ifk # Kk
Now we come to solve the dual problem (7). Note that) Each nodei collects congestion price information from
the dual functionD(p) is not differentiable, asD,(p) is a itS neighbor j, finds destinationk(t) such that k() «
piecewise linear function and not differentiable. Therefore, Vs max (pi(f)—pﬁ? (t)), and Calcu.lat.es dlffergnt|a| priag ;(t) =
cannot use the usual gradient methods, we will instead sokié” (t) — ;' (+) and passes this information to its neighbors.

Foif e = k*
ff?j:{ o wo(t) = U, " (pa (1))

the dual prob|em using Subgradient method. 4) SChEd.U”ng: each nodecollects differential price infor-
Suppose( f£;) is the solution from the above joint routingmation from its neighbors in the previous period, and in the
and scheduling algorithm. It is easy to verify that beginning of period allocates a capacity; ; () over link (i, ;)
such that

gt () =Y I =D ffilp) — 25 (p) (17) _
j j F(#) € argmax > wii(t)fi;
is a subgradieftof dual function D(p) at point p. Thus, ek

by the subgradient method [26], [2], we obtain the following) Routing: over link(, ), send an amount of bits for destina-

pEE+1) = [PF(t) +7e( @f (p(t)
’(_ Z 185 ®() = _ Z Fate() ) )17 B. Convergence Analysis
J:(4,5) €L J:(4,0)€L

(18) In this subsection, we prove the convergence property of
. . . . Algorithm 1. Subgradient may not be a direction of descent,
where v, is a positive scalar stepsize, and ‘+' denotes trBa .
L T : ut makes an angle less th& degrees with all descent
projection onto the sef®* of non-negative real numbers. .~ . . X :
directions. Thus, the new iteration may not improve the dual
3A point in a convex set is an extreme point if it cannot be written as @0St for all values of the stepsize. Using results on the
convex combination of other points in the convex set. convergence of the subgradient method [26], [2], we show that,

2 L . . Lo - ) )
The above joint routing and scheduling recovers the DRPC policy i constant stepsize, the algorithm is guaranteed to converge
reference [22], except that step 2 is scheduling here and power allocation

there, and data is routed based on destination here and “commodity” there. i@aVithin a neighborhood of the optimal value. For diminishing
show that the DRPC policy follows mathematically from dual decompositiostepsize, the algorithm is guaranteed to converge to the optimal

Similar decomposition result for the network with deterministic Wireles§a|ue We would like a distributed implementation of the
channel is also revealed in the journal version of [22] and [18]. )

5Given a convex functiof : R — R, a vectord € R™ is a subgradient _SUbgradiem algprithm, and thus a constant stepsize- g
of f at a pointu € R™ if f(v) > f(u) + (v —u)Td, Vv € R™. is more convenient. Note that the dual cost usually will not



monotonically approach the optimal value, but wander arountterfere and have the same interference/contention relations
it under the subgradient algorithm. The usual criterion for staith other links. Corresponding to each directed link pair
bility and convergence is not applicable. We will use a simildi, ), (j,¢) € L, define an undirected link:, j) with weight
definition of convergence as in [3]. Lett) := %Zizlp(T) W
be the average price by tinme ©J
Definition 1: Let p* denote an optimal value of the dualLet L’ denote the set of undirected links afid’ the corre-
variable. Algorithm 1 with constant stepsize is said to converggonding set of weights, the scheduling problem (16) is then
statistically to p*, if for any § > 0 there exists a stepsize equivalent to the maximum weighted matching problem on the
such that limsup,_,., D(B(t)) — D(p*) < 0. weighted graphG’ = (N, L’,W’). Note that an (maximal)
Clearly, an optimal valug* exists. The following theorem, independent set in the conflict graph will correspond to a
proved in the Appendix, guarantees the statistical convergerjogaximal) matching in this undirected graph.
of the subgradient method. Maximum weighted matching problem can be computed in
Theorem 2:Let p* be an optimal price. If the norm of thepolynomial time (see, e.g., [23]), but this requires centralized
subgradients is uniformly bounded, i.e., there exiStsuch implementation. If implemented over an ad hoc network,
that ||g(p)||2 < G for all p, then Algorithm 1 converges each node needs to notify the central node of its weight and
statistically top*. local connectivity information such that the central node can
The assumption of bounded norm for subgradigfit) is reconstruct the network topology as a weighted graph. This
reasonable, sincg is finite and we always have an uppewill lead to an immense communication overhead which is
bound onz in practice. Note thaD(p) > D(p*) always holds. expensive in time and resources. There also exist simpler
Since D(p) is a continuous function, Theorem 2 implies thagreedy sequential algorithms to compute a weighted matching
the congestion price approacheg* statistically when the at most a factor of 2 away from the maximum (see. e.g.,

= max{wi,jci,j, wj,icj.,i}'

stepsizey is small enough. [24]). But they also require centralized implementation. We
Let the primal function (the total achieved network utility)seek a distributed algorithm where each node participates in
be P(z) and achieve its optimum at*. Define Z(¢) := the computation itself using only local information.

%Zizo x(7), the average data rate up to timeAs time goes A few distributed approximation algorithms exist for max-
to infinity, Z(¢) must be in the feasible rate region (determinenum weighted matching problem, see e.g. [30], [33], [9].
by egs. (5)-(6)), otherwisg(t) will go unbounded as time goesIn [9], the author presents a simple distributed algorithm to
to infinity, which contradicts Theorem 2. compute a weighted matching at most a factor of 2 away from
Theorem 3:Let z* be the optimal source rates. Under th&he maximum in linear running timé&(|L’|). This algorithm
same assumption of Theorem 2, the following inequality holds a distributed variant of the sequential greedy algorithm
a2 presented in [24]. We utilize this algorithm to solve our
liminf P(Z(t)) > P(z") — = (19) scheduling problem (16) distributedly, as summarized below.

t—oo - - - 0 - -
Note thatP(z) < P(z*) holds for anyz in the feasible _Algorithm 2: Distributed Scheduling Algorithm
rate region. Sincé(z) is continuous, Theorem 3 implies that=aCh node carries out the following steps:

the average source rate approaches the optirhathen~ is 1) Calculate weightw] ; = max{w; e ;,wjic;:} for each
small enough. directed link pair (s, ), (,4) € L incident upon it. Ties are

broken randomly.
_ 2) Find nodej* such thatw! .. is maximized over all links
C. Scheduling over Ad Hoc Networks (i, §) € L’ with free neighboré;:

We now come to the scheduling problem (16). Schedulingdf having received anatchingrequest from;*, then link (i, j*)
over ad hoc network is a difficult problem and in general NRs a matched link. Nodesends anatchedreply to;* and adrop
hard. To see this, note that problem (16) is equivalent tonaessage to all other free neighbors.
maximum weight independent set problem over the conflieOtherwise, node sends anatchingrequest to node*.
graph, which is NP-hard for general graphs. However, witB) Upon receiving anatchingrequest from neighbaor:
the primary interference model we show that problem (16)f ; = j*, then link (:,j) is a matched link. Node sends a
can be reduced to the maximum weighted matching prohlenmatchedreply to node;j and adrop message to all other free
which is polynomial time solvable. As one of the extensions imeighbors.

Subsection VI-A, we will see a NP-hard scheduling problemf j - j*, node: just stores the received message.

The scheduling problem (16) is to maximize the weighted) Upon receiving amatchedreply from neighborj, node:
sum of the link capacities with the schedulability constraint. Knows link (i, j) is @ matched link, and senddeop message to
is defined on a weighted digraph whose link weiglts; can all other free neighbors.
take negative value. To see how it is related to the maximus) Upon receiving adrop message from neighbgr, node
weighted matching problem, first note that, > 0if w; ; <0 knows that;j is in a matched link, and excludgdrom its free
and vice versa. Second, note that lirfksj) and(j, ¢) mutually neighbors set.

6) If node: is in a matched link or has no free neighbors, no

°A matching in a graph is a subset of links, no two of which share frther action is taken. Otherwise, it will repeat steps 2)-5).
common node. The weight of a matching is the total weight of all its link . . .

S]5) Matched links are allowed to transmit. Nodes in a

A maximum weighted matching in a graph is a matching whose weight - ‘ ) ] 7 |
maximized over all matchings of the graph. matched link(, j) will schedule the directed link, which gives




valuew; ;, to transmit. where the “global” aggregate congestion price along the whole
path needs to be fed back to the source node. Also, there is

Steps 2)-6) is the distributed algorithm for maximun@o communication overhead for routing, since we basically
weighted matching problem. A link that has been chosen @&t routing for free from the scheduling. The majority of
be in the matching is called matched link. Nodes that are ng@mmunication overhead is for scheduling. E€tdenote the
incident upon any matched link are called free.matching maximum degree of nodes in the network, the communication
request is sent to inquire the possibility to choose the lifkverhead for scheduling i©(K|L|) per node per time slot.
with a neighbor as a matched link. atchedreply is sent to Thus, our design has a low communication overhead.
confirm that the link with a neighbor is matched. A node sends
drop message to tell its neighbors that it is not free anymore.V. JOINT DESIGN INNETWORKS WITH TIME-VARYING
Define a link(i, j) to be locally heaviest link if for bott and CHANNELS
J» its weight is maximized over all links with free neighbors. |n the last section, we consider the joint congestion control,
We can see that this algorithm selects locally heaviest links @iting and scheduling design for wireless ad hoc networks
matched. Thus, Algorithm 2 is a locally optimal schedulingwith fixed channels or single-rate devices, i.e., the capacity

Comparing to the known results in the literature, the above is a constant when link is active. However, recent years
distributed scheduling algorithm for ad hoc wireless netwotkave seen the growing popularity and demand of multi-rate
is one of the best distributed algorithms in terms of compwvireless network devices (e.g., 802.11a cards) that can adjust
tational complexity and performance bound. It has a linegansmission rate according to the time-varying channel state
complexity O(|L'[). Such a low complexity is important for and improve overall network utility. Here, we consider a
the scalability and efficiency of ad hoc wireless network. |bintly optimal layers 2-3-4 design over networks with time-
achieves a performance 92 of the maximum weight in the varying channels and adaptive multi-rate devices.
worst case and, in practice, our numerical simulations show
it typically achieves a performance within aboyts of the A Algorithm and Convergence Analysis
maximum weight.

As for the overall performance of our cross-layer design
with this approximate scheduling, we can extend the resSYv
in [19] to show that the performance is no worse than th
achieved by an exact design with a feasible rate redibh

We assume that time is slotted, and the channels are fixed
ithin a time slot but independently change between different
i)tg. Let h(t) denote the channel state in time slat
orresponding to the channel stdtethe capacity of link]
(and in practice 2IT) at the link layer. Moreover, in Section :S cl(h) when ac_t|ve. and .the f_ea3|b!e .rate reglon.at the link
X S ; . ayer isII(h), which is defined in a similar way as in (1). We
VIl we will see that this distributed scheduling algorithm onl . e
: T urther assume that the channel state is a finite state process
results in a very small degradation in the performance of the,, " . o . , .
’ L . with identical distributiong(k) in each time slIé and define
cross-layer design for the network with time-varying channe{he mean feasible rate region as
since in this situation the exact solution of the scheduling Is g
not as important and reasonable approximations work well. M:={F:7=> q(h)r(h),r(h) € T(h)} (20)
h
Ideally, we would like to have a joint design of congestion

control, routing and scheduling, which solves the following
Utility function and global parameterThe utility function ytjlity maximization problem

is determined by the objective of the end user such as fairness

D. Implementation Issues

requirement. The smaller the global paramejerthe closer a0 % 50 D Us(as) (21)
does the algorithm converge to the optimal point. Its value o Z . .
can be chosen guided by simulations. subjectto = < ,'(EELfm‘ - ,-.<;€ij’i’
Congestion price and queueingy natural choice of conges- ’ ’”i cN & éé itk 22)
tion price is queue length. Each node does not need to keep per et ’ ’ 3
€

flow information but distinguishes flows by their destinations.
Therefore, each node should manage separate queues for flgaever, if we solve the above problem via dual de-
going to different destination nodes. composition, we may get a link rate assignment which
Message passing and communication overh&mth node s infeasible for the channel state at a given time slot.
needs to communicate its congestion price information to iigstead we directly extend Algorithm 1 with a modifi-
neighbors. This can be achieved by periodically broadcastipgtion to handle time-varying channel. For convenience,
this information to its neighbors or its neighbors can activelye describe the algorithm in details in the following:
send inquiring message to ask for this information. Algorithm 3: Joint Design Algorithm over Networks with
We now examine the implications of our design to theTime-varying Channels
layered and distributed network architecture. Our congestion
control is not an end-to-end scheme. Each source node adjustg s straightforward to extend our results to the network where the channel
its sending rate according to the local congestion price. Th§§\e process is modulated by a hidden Markov chain. -
h . ication overhead for congestion contr I_Even if the cha_nnel state is a continuous process, we_pnly have _flnlte
there Is no communicati gest @hoices of modulation schemes. The corresponding capacities take discrete
This is very different from the end-to-end congestion contrehiues.




At time ¢ Consider the the Lyapunov functiovi(p) = ||p — p*[3, we
1) Each node updates its price with respect to destination have

pEE+1) = [ [pF®) +( 2F (1) E[AV:(p)Ip]
7(, Z FEi () = _ Z fFi@®) )T, = E[V(p(t+1)) = V(p®) | p(t) = pl (26)

ek Fomer 2 = E[V(lpt) —v9@E)]T]) — Ve(®) | p(t) = p)

and passes the prigé to all its neighbors. Herg | denotes the = BV =ak0) = V) o =
. _ -~ T _pF) =

integer function floor, and for the simplicity of the presentation B E[i Wg;p(tz) (2(p(t)2 P7) 79(;;(1&))) | p(t) =7]
we let congestion price takes integer values with appropriate = 2vg(p)" (" —p) + v Ellglp®))llz | p(t) = p]
unit. < 299" (0" —p) +1°G?

2) Congestion control: each source nodadjusts its sending

rate for the period, according to local congestion price where we again use the assumption that the norm(pft))

is bounded above bg. SinceD(p) is a convex function, we

zs(t) = UL (ps(t). further get
3) Each nodei collects congestion price information from E[AVi(p)lp] < 2¢(D(p*) — D(p)) + +>G?
its neighbor j, find destination k(t) such that k() € Let
arg maxy, (pf (t) — p%(¢)), and calculate differential price; ;(t) =
P ) - p¥P (1) and passes this information to its neighbors. §=_  max lp — p*|l2
4) Scheduling: after collecting differential price information D(p)=D(pr)<rG?

from its neighbors in the previous period, in the beginningnd defined = {p: |lp—p*l2 <6} We obtain
of period¢ each node: monitors the channel statgt:) and

~ . 22 22
allocates a capacity; ; () over link (i, j) such that EAV(p)lp] < —v"G"Ipeac + 7 G Ipea
Fyearg max S wis(t)fi (25) whereZ is the index function. Thus, by Theorem 3.1 in [29],
FEMR() (SEp ’ which is an extension of Foster’s criterion [1], the Markov
chainp(t) is stable. [ |

Again we will always pick an extreme-point maximizer in the . .
above scheduling. Note that, although we assume that chanr;éqhe above proof shows that the distance to the optimal

state has a stationary distribution, the nodes do not need’to has nggaﬂve cond|t|9nal mean drift fpr "’.\” prices that
know this statistics but only the current channel state. have su_fﬁmen_tly Ia_rge distance ", an_d implies that the
5) Routing: over link(, j), send an amount of bits for destina.SOngestion price will stay near” wheny is small enough.
tion k(t) according to the rate determined by the scheduling.

B. Performance Evaluation

The above algorithm for joint design cannot be derived from We now characterize the performance of the joint design in
the dual decomposition of the problem (21)-(23). Howeveterms of the dual and primal objective functions.
we will use the problem (21)-(23) as a reference system,Theorem 5:Algorithm 3 converges statistically to within
and characterize the performance of the above algorithm w2 /2 of the optimal valueD(p*), i.e.,
respect to it. _ — . )

Note that congestion prig& () is proportional to the queue D(E[p(e0)]) = D(p*) <~G7/2, (27)
length at node for the flows to destinatiod. It takes discrete wherep(c) denotes the state of the Markov chain in steady
values, i.e., the queue length scaled fayThus, congestion giate.
price p(t) evolves according to a discrete-time, discrete-spacepgte thatD(p) > D(p*) always holds. SinceD(p) is a
Markov chain. We need to show that this markov chain isntinuous function, Theorem 5 implies that the congestion
stable, i.e., the congestion price process reaches a steady p approache* statistically when stepsize is small
and does not become unbounded. It is easy to check taghygn.
the Markov chain has a countable state space, but is nofrheorem 6:The source rates(t) is a stable Markov chain.
necessarily irreducible. In such a general case, the state spaegeover, let P(z) be the primal function and:* be the

is partitioned in transient sdt and different recurrent classesoptima| source rates of the system problem (21)-(23), we have
R;. We define the system to Istableif all recurrent states are tne following inequality

positive recurrent and the Markov process hits the recurrent )

states with probability one [29]. This will guarantee that the P(E[z(c0)]) > P(a*) — £7 (28)
Markov chain will be absorbed/reduced into some recurrent 2

class, and the positive recurrence ensures the ergodicity of #igerex(co) denotes the state of the Markov chaift) in the

Markov chain over this class. We have the following steady state.
Theorem 4:The Markov chain described by equation (24) Similarly, E[z(c0)] is the average data rate and must be
is stable. in the feasible rate region (determined by eqgs. (22)-(23)),

Proof: Denote the dual function of the problem (21)otherwise the average queue lenglip(oo)] will go un-
(23) by D(p) with an optimal pricep* and subgradien§(p). bounded. Thus, Theorems 6 implies that the average source



rate approaches the optimal of the ideal reference system (3igwer, link state such as loss rate, or any other link metric.
(23) when stepsizey is small enough. Theorems 5 and @ollowing dual decomposition, we can obtain similar cross-
show that, surprisingly, the joint congestion control, routintayer congestion control, routing and scheduling algorithms as
and scheduling in Algorithm 3 can be seen as a distributéallows. In step 3) of Algorithms 1 and 3, find the destination
algorithm to approximately solve the ideal reference systehit) such thatk(t) € argmaxy(p¥ — pf — Afﬁj) and define
problem that is not readily solvable due to stochastic channgl . — pf(ﬂ _ p;?@) _ /\fgﬂ_ All other steps in Algorithms 1
variations. and 3 remain the same.
Our proofs for stability and performance bounds, shown in The introduction ofA¥; facilitates the implementation of
the Appendix, are rather general. They only use the genefghny functionalities. For example, ik is an increasing
properties of convexity and Markovity and the definition ofynction of transmitting power, we can do energy-aware
subgradients. As we will see in Subsection VI-C, the abowheduling and avoid those links with high power. If it is

results can readily be extended to other network optimizati@f increasing function of link loss rate, we can do link-state-

problems. aware scheduling and avoid less reliable links. It can also help
to improve performance in delay. In our original design, the
C. Implementation Issues flows find their way to destinations by moving in directions of

creasing congestion price. Thus, some data may take a long
th to its destination, which could lead to significant delay
o large network. By taking\ proportional to the link length,

e can align the nodes to route data in the direction of their
ggﬁtinations, and thus improve the performance in delay.

Channel Probing Each node needs to know the channé‘e
states over the links to its neighbors. This can be achie
by each node broadcasting a pre-specified pilot signal to
neighbors, which calculate their SNR upon receiving the pil
signal and send back SNR values to the node. Each node

estimate the current channel state by the SNR values. ¢ gapility and Optimality of A Generalized Time-Varying
Global Parameter The unit of time by which Algorithm 3 Queueing Network

updates is decided by the nature of the wireless channel. Itrhe stability and performance bounds obtained in Section

should not be too large, since the channel state is assurQ/ed . o
to be fixed within a time slot. Our model is suitable for the! &€ rather general. Here we further elaborate this point in
: $he context of a generalized model of queueing network and

wireless channel with long enough coherence time. R . .
general convex optimization. Consider a model of queueing
network that is served by a generalized switch [27]. The
generalized switch consists of a sét of interdependent
A. Ad Hoc Network with Secondary Interference parallel servers with time-varying service capabilities. The

We have considered the network with primary interferencéérvers are interdependent in that they may not provide
Conflict graph is a rather general construction and can &ervice simultaneously. Switch state follows a discrete-
commodate other types of interference models. For examgig)e, irreducible finite-state Markov chain. At each time
we may consider the network with secondary interferencglot ¢, the switch can choose a scheduling decisien
Links mutually interfere with each other whenever either tHgom a finite set £, which captures the interdependency
sender or the receiver of one is within the interference range@fong the servers specifying which subsets of servers can
the sender or receiver of the other. This roughly correspon@@ active simultaneously. Each scheduling decision has
to the virtual carrier sensing using RTS-CTS exchange astli¢ associated vector of service rate§(h(t)) at which
IEEE 802.11 standard [10]. The conflict graph for the netwoieues are served, wherg(t) denotes the switch state
with secondary interference is more complicated. We cah time ¢. As in Section Il and V, for each switch state
follow Section Il and IV, and formulate a utility optimization 2 the feasible service rate region is defined 1a&) :=
problem for the system and carry out cross-layer design in the: 7 = >__acr°(h), ac >0, >  a. =1}, and let the
same way. However, the scheduling problem (16) will be mughvitch state distribution bg(h), the mean feasible rate region
more difficult, and is actually NP-hard. It is easy to desigi$ then defined asl := {7 : 7 = >_, q(h)r(h),r(h) € II(h)}.
some heuristic algorithm but is hard to bound its performance Assume that the network is shared by aSeff users, which
However, due to the broadcast nature of wireless chann#jll attain a strictly concave utilityU(z) when the arrival
it may be possible to develop a good distributed algorithfidte for each uses is z,. Suppose that we can represent

for maximum weight independent set problem derived fromthe “routing” of the user service requirement by a linear
wireless network. function H(z) of the arrival rates{z,}. Let the achieved

service rate of each servebe denoted by;, and we represent

B. Network Cost the “aIIocatior_f’ of the server _capacities by_a Iinear_function
' A(f) of service rates{f;}. Since the service requirement
In our system model, we have only considered the usgiould not exceed the allocated service capacity, we have the

utility. We can introduce a variablg} ; for each link(i, j) o following inequality constraintf (z) < A(f). The following
represent the cost incurred by using the link to transmit flogptimization problem

to destinationk. Our objective will be to maximize net-gain
Y Us(s) =X ) 1 A fF; to strike a balance between user F
utilities and network cost. Link co@tﬁj can be a function of subjectto  H(z) < A(f) & fell (30)

VI. EXTENSIONS AND VARIATIONS

U(z) (29)



can be solved by the following dual algorithm _ ‘W

#(t) = 2(p(t)) = argmaxU(x) —pT (OH(z)  (31) N o
F(t) = F(p(t)) € arg m?XpT(t)A(f) st f € I(A(t)) (32) Eiigi.rezc.tion'aAl.Simple network with two network layer flows. All links are
p(t+1) = [p(t) +y(H(z(p(t)) — A(f (O (33)

Using the same notation as in Section V, we can readily shgw Fixed Channel and Single-rate Devices
the following general results:

Theorem 7:The Markov chain described by equation (33
is stable.

Theorem 8:The algorithm (31)-(33) converges statisticall
to within vG2/2 of the optimal of the system proble(@9) —
(30), i.e.,

In this subsection, we consider the network with fixed
ﬁnk capacity. For simplicity, we assume that link€', £),
E,C), (B, F) and(F, B) have one unit of capacity and all
other links have 2 units of capacity when active. We first
simulate Algorithm 1 with perfect scheduling. Fig.3 shows
the evolution of source rate and congestion price of each flow

) . o ;

D(E[p(c0)]) < D(p*) + % (34) W|t_h stepsizey = 0.1. We_ see that they converge quickly t_o a
g neighborhood of the optimal and oscillate around the optimal.

P(E[z(c0)]) > P(a*) — % @35) This oscillating behavior mathematically results from the non-

The above model of queueing network is very general aféfferentiability of the dual function and physically can be
has many applications in communication networks, includirigterpreted as due to the scheduling process. However, Fig.4
the model studied in last section. Other examples include jofitows that the average source rates and congestion prices are
congestion control and MAC [3] with time-varying channelSmooth and approach the optimum monotonically. We also
where each wireless link can be viewed as a server and fKde that the performance of the algorithm is much better than
routing is specified by a routing matrig (i.e., H(z) = Rz); the bound ofyG?/2 specified in Theorem 2 and 3.
fair scheduling in cellular network in the downlink [6] where
the servers correspond to the wireless links from the base
station to the users and the routing corresponds to an identity
function; and TCP [20] with time-varying capacity as in last-
hop wireless networks where each (wired or wireless) link
can be seen as a server and the routing is again specified by
a routing matrix. It can include power control as well [4] as
power does not change convexity of the feasible rate region.

Convex optimization has provided a powerful tool in recent
years to formulate and solve network resource allocation
problems with deterministic models. Here we have established , , _ ,
the stability and optimality of dual algorithms under channel-£'9- = )Source rates and congestion prices with Algorithm 1 (perfect
level stochastic for convex optimization where the constraint ¢
set has the following structure: a subset of the variables lie
in a polytope and other variables lie in a convex set that
vary according to an irreducible, finite-state Markov chain.

Our algorithms only require the knowledge of current network

state such as channel state and queue-lengths, while most other

solutions require the knowledge of the statistics of channel

state or keep a running average of network variables such

as mean source rates. Furthermore, numerical examples in

the next section also highliglbbustnessinder channel-level e E R e

stochastic: degradation of objective value due to suboptimal . . . .
. . ig. 4. The average source rates and congestion prices with algorithm 1

control over a subset of the variables can be mitigated rfect scheduling)

channel variations.

Table | shows the average link rates allocated to eact’flow
VIl. NUMERICAL EXAMPLES In this table (and similar tables in this section), the first column

. . . . is the sending nodes and the first row is the receiving nodes
In this section, we provide numerical examples to com),

lement the analvsis in the previous sections. We cons'derf each directed link. From this table, we can tell which paths
P ysis | previou ons. 10€E &kh flow has used. Note that lifk, C') is not used. This is
simple ad hoc network shown in Fig.2, and assume that th

are two network layer flowst — F and B — E with the e to the fact thatB, C) is near the sources and is the link

same utilityU,(x,) = log(xs). We have chosen such a small, , )
In this and other three tables, flows are slightly not conserved at some

simple topology to facilitate detailed discussion of the I’esunl%des. This is because we run numerical simulations for finite time and some
residual effect of the initial condition remains.



will not activate it.

DIFFERENT LINKS WITH ALGORITHM 1 (DISTRIBUTED SCHEDULING)

. . i . . TABLE Il
with most contention. So, an optimal routing and schedullngAVERAGE RATES OF FLOWSAF (UPPER) AND B (LOWER) THROUGH

TABLE | [Rates [A] B | C [ D | E [ F |
AVERAGE RATES OF FLOWSAF' (UPPER TABLE) AND BE (LOWER TABLE) A 0 | 0.310 0.290 0 0 0
THROUGH DIFFERENT LINKS WITHALGORITHM 1 (PERFECT SCHEDULING B 0 0 0 0 0 0.307
[Rates [A] B | C | ® [ E [ F | c 122 0 oo 1028 | s
A 0 [ 0.265 0.404 0 0 0 E 0 0 0 0 0 0.219
B 0 0 0 0 0 0.262 E 0 0 0 0 0 0
C 0 0 0 0.222 0.182 0
D 0 0 0 0 0 0.222 (Rates TA[ B [ C [ D [ E [ F |
E 0 0 0 0 0 0.182 A 0 [ 0.000 0 0 0 0
F 0 0 0 0 0 0 B 0 0 0.045 0.697 0 0.008
Rates [A] B | C | © | E [ F | < o9 g I 0
A 0 | 0.000 0.000 0 0 0 E 0 0 0 0 0 0
B 0 0 0 0.510 0 0.225 E 0 0 0 0 0.008 0
C 0 0 0 0 0 0
D 0 0 0 0 0.510 0
E 0 0 0 0 0 0
F 0 0 0 0 0.225 0

Algorithm 1 with distributed scheduling is small. Combined
with its low communication overhead, fast convergence, and

We next simulate Algorithm 1 with the distributed, approxigood performance with distributed scheduling, our cross-layer
mate scheduling (Algorithm 2). The results are shown in Figdesign scheme is promising for practical implementation.
and Fig.6. The evolutions of source rates, congestion prices
and their averages are similar to those with perfect scheduli
they converge quickly to a neighborhood of stable values.
expected, the source rates are less than those achieved wil¥e now consider the network with time-varying link ca-
perfect scheduling, since the feasible rate region is smalggcity. For simplicity, we assume that link&', ), (E, C),
under the approximate scheduling. Table Il summarizes thB, I") and (F, B)'s capacities are identically, uniformly dis-
tributed over 0.5, 1 and 1.5 units, while other links’ capacities
are identically, uniformly distributed over 1, 2 and 3 units.
Thus, the average capacity for each link when active is the
same as that in the examples of last subsection.

We first simulate Algorithm 3 with perfect scheduling. Fig.7
and Fig.8 show the evolution of source rates, congestion prices
and their averages with the same step size 0.1. The source
rates and congestion prices have much larger variations than
those with fixed channel, due to the channel variations. But
the average source rates and congestion prices are still smooth,
and converge quickly and monotonically to optimal values.
Fig. 5. _ Source rates and congestion prices with Algorithm 1 (distributqqote that, aIthough the average link capacity when active is
scheduling) . .

the same as that in fixed channel, each flow achieves larger
sending rates. This is due to the multi-user diversity that we
exploit when doing scheduling. Also note that the increase
in sending rate of flowBE is much more notable. This is
because nodé has four neighbors and thus a much larger
multi-user diversity.

Table Ill summarizes the average link rates allocated to
each flow. We see that the routing pattern has changed for
flow BE, while almost all the data for flowAF' are routed
along the same pathes as those for the network with fixed link
The average source rates and congestion prices with Algorithm(??paCItIes and perf(_act SCh.edUIIng' This Cha.‘nge Is due to the

time-varying capacities, which makes every link have a chance
to be a globally heavy link for some channel state and thus
average link rates allocated to each flow. We see that th#ects the paths each flow takes.
routing pattern has been changed, due to the distributed/NVe next simulate Algorithm 3 with distributed, approximate
scheduling. Also note that every link is used in routing, sinceheduling Algorithm 2. The results are shown in Fig.9 and
each link has a chance to be a locally heaviest link. Fig.10. Compared to the results in the last subsection with

Though its worst case performance bound /8, our simu- fixed capacities, the performance degradation of Algorithm 3

lation results show that the degradation of the performancewith distributed scheduling is very small, which means that

%SI: Time-varying Channel and Multi-rate Devices

o
o 20 40 60 8 100 120 140 160 180 200
jormalized Time

Fig. 6.
(distributed scheduling)



varying environment, at any timé we cannot say that a
perfect scheduling is necessarily better than an approximate
one. Thus, the optimality of scheduling (25) is relatively not
that important, and a reasonable approximation works well.
Also, Table IV summarizes the link rates allocated to each
flow. As expected, the routing is more complicated in this
situation, since local optimal scheduling combined with time-
varying capacities makes every link has a good chance to be
scheduled for transmission.

Fig. 7. Source rates and congestion price with Algorithm 3 (perfect
scheduling)
==
CTE W W e W w w Fig. 9. Source rates and congestion price with Algorithm 3 (distributed
) scheduling)
Fig. 8. The average source rates and congestion price with Algorithm 3 o

(perfect scheduling)

TABLE Il

AVERAGE RATES OFFLOWS AF' (UPPER TABLE) AND BE (LOWER TABLE)
THROUGH DIFFERENT LINKS WITHALGORITHM 3 (PERFECT SCHEDULING

03 1
o7 . . B B

05 1
05 1

04 — Flow Al
low

[Rates TA] B [ C | D | E [ F ] Bl ]
A [ 0]0328 | 0390 0 0 0 u
B 0 0 0 0.074 0 0.253 L -
c 0T o001 - oo o1a7 5 I e e
D 0 0 0 0 0.022 | 0.295
E 0 0 0 0 0 0.169 Fig. 10. The average source rates and congestion price with Algorithm 3
E 0 0 0 0 0 0 (distributed scheduling)
[Rates | A [B] C [ Db | E [ F |
A 0 0 | 0.104 0 0 0 TABLE IV
2 0'184 g 0'0032 gggg o 1024 0'2&1 AVERAGE RATES OF FLOWSAF' (UPPER AND BFE (LOWER) THROUGH
D 0 0 0 . 0 0:443 0072 DIFFERENT LINKS WITH ALGORITHM 3 (DISTRIBUTED SCHEDULING)
E 0 0 0 0 0 0 [Raes [A] B | C [ D [ E [ F ]
F o [O0] © 0 [0.283 0 A 0 | 0.330 | 0.361 0 0 0
B 0 0 0 0.095 0 0.239
C 0 | 0.006 0 0.232 | 0.123 0
D 0 0 0 0 0.004 | 0.323
channel variation improves the performance of the distribute E 8 8 8 8 8 0'1027
scheduling algorithm. To see how this happens, note that th — R 5 = 5 = =
scheduling defined by (25) is optimal only at timebut not L = I 5 | 0053 5 | 5 5
at other times dge to channel’s time-variation. _For example,—p 0053 0 (0128 | 0523 0 0142
assume at time link (B, A) is a globally heavy link but not C 0 0 0 0.010 | 0.169 0
a locally heaviest link, and linkB, C) is a locally heaviest D 0 0 0 0 0.498 | 0.035
link but not a globally heavy link. With perfect scheduling, E 8 g 8 g 01079 8

link (B, A) will be scheduled to transmit and3, C) will not.
With distributed scheduling, linkB,C) will be scheduled

to transmit and(A, C) will not. Now, suppose at later time Our simulation results have confirmed the conclusions from
slots link (A,C) has very low capacity while linkKC, E)
has a high capacity such that linfC, E) is scheduled to and congestion prices approach the optimum of an ideal
transmit. In this situation, with perfect scheduling at time system with the best feasible rate region at link layer, and
data will be stuck atA and thus the sending rate of flowthat Algorithm 3 can been seen as a distributed algorithm to
BE will decrease, but distributed, approximate scheduling stlve this ideal system problem. We also have seen that the
time ¢ will get more data to the destination. So, in a timedistributed scheduling algorithm works well with time-varying

Theorem 5 and 6, which say that the average source rates
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APPENDIX. PROOFS FORTHEOREMSZ2, 3, 5AND 6 2 ~lpli3 — 7 G
(Theorem 2)  Proof: By equation (18), we have From this inequality we obtain
t
Ip(t +1) = p"113 = lI[p(t) — v (p(®)] " —p"I13 23" Plar) - Pat) 2 W
< lp(t) —va(p(t) — 7113 = K
= Ip(6) = p*112 = 299 ()T (p(t) — p*) + V2 |lg(p(0))]12 Since P is a concave function, by Jensen’s inequality,
- 2,22
< lp(t) = p*[13 = 2v(D(p(t)) — D)) ++*[lg(p())I3 P(&(t)) — P(z*) > W
where the last inequality follows from the definition of sub- ,
gradient. Applying the inequalities recursively, we obtain  Thus,liminf, .. P(Z(t)) > P(z*) — 25~ [

. (Theorem 5) Proof: From the proof of Theorem 4, we
llp(t+1) =p*[13 < |lp(1) = p*[13 = 2v > (D(p(7)) — D(p*)) have

T=1
, ) EAVi(p)lp] = E[V(pt+1)—V(p®)|p(t)=p]
+v Tz::1 Ilg(p(T))HQ S 27(5(1)*) _5(1))) + ,Y2GZ
Since||p(t + 1) — p*||3 > 0, we have Taking expectation ovep, we get
! i E[AVi(p)] = E[V -V D(p*) — E[D g2
23 (DG ~DE) < b)) —p I 457 Y gy DSVIPIT BV R D) = VEO] S 200 = EDED
=t =1 Taking summation from = 0 to 7 = ¢, we obtain
< lp(1) = p*[13 + 9767
From this inequality we obtain EV(p(t+1))] < E[V(p(1))] - 2v Z(E D(p")) + t7*G?
Ly . llp(D) —p*|3 | 7G i >
- g (p(r)) — D(p*) < R + Since E[V (p(t + 1))] > 0, we have
t
Since D is a convex function, by Jensen’s inequality, %Z D(p(r))] — D(p*)) < W

D(p(t)) - D(p*) < lp(®) — p7113 + 162 i

s 2y 3 Note thatp(t) is ergodic in some steady state by Theorem 4,
. . and so isD(p(t)). Thus,
Thus,lim sup,_, .. D(B(t))—D(p*) < 25, i.e., the algorithm

t

isti i i 2 i : 1 ) Y 5a) NaY
converges statistically to withinGG*/2 of the optimal valu-e. tEI&E;(E[ ()] = D(p*)) = E[D(p(c0))] — D(p*)
(Theorem 3)  Proof: By equation (18), we have So,
llp(t + D3 < [lp(t) = va(p())]13 E[D(p(0))] — D(p*) < vG?/2.

= lp®)13 = 2v9(p(®)) " p(t) + 7 Ilg(p(1)]13 Since D(v) i . o .

5 Since D(p) is a convex function, by Jensen’s inequality,
= lp®I2 + 272(]8(“(”) - 27(2 Us@s () = ps(Mzs(t)) - B(E[p(c0)]) — D(p*) < vG2/2, i.e., the algorithm converges
statistically to withinyG?/2 of the optimal valueD(p*). =

— 2
Q’YZ;CP«L i ( 1) + 72 lg(p0))I13 (Theorem 6) Proof: z(t) is a stable Markov chain,
< 2, 5 Ua(@a(6)) — 2 Ua(@®) — pa()z” since it is a deterministic function of congestion prigé) and
< @z + VXS: (zs(t)) v(g (z3) — ps(t)x) p(t) is stable. The proof for the second part of the theorem is a
—2v ST pE@O(E () — £5(0) + 4219 (p(0)]13 straightforward extension of the proof of Theorem 3, following
ik ’ ’ similar procedure as in the proof of Theorem 5. We skip the
= |lp@®)I13 + 2’YP(93( )) — 2vP(z") + 7°|lg(p(1)13 details here. u
_Q'Ysz 7,j jz(t)_( ))
i,7,k

< lp@IF + 2vP(2(t) — 2vP (") + 42|l (p(t))]13

where the second inequality follows from the fact thét) is
the maximizer in the problem (10), and the third inequality
follows from the fact thatf(¢) is the maximizer in problem
(11)-(12). Applying the inequalities recursively, we obtain

t

lIp(t + D13 < [Ip(WI13 +27 Y (P(a(r) — P( +WQZHQ I3

=1



