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Abstract

We consider lossy data compression in capacity-constrained networks with correlated sources. We

derive, using dual decomposition, a distributed algorithm that maximizes an aggregate utility measure

defined in terms of the distortion levels of the sources. No coordination among sources is required; each

source adjusts its distortion level according to distortion prices fed back by the sinks. The algorithm is

developed for the case of squared error distortion and high resolution coding where the rate-distortion

region is known, and can be easily extended to consider achievable regions that can be expressed in a

related form. Our distributed optimization framework applies to unicast and multicast with and without

network coding. Numerical example shows relatively fast convergence, allowing the algorithm to be

used in time-varying networks.
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I. INTRODUCTION

In this paper, we consider a network that has multiple correlated sources with associated

distortion measures. In such a situation, we can integrate source coding and rate control by

adapting the distortion of the sources to network congestion. Specifically, we consider adaptive

lossy source coding for multicast with network coding [1], where each multicast session contains

a set of continuous and possibly correlated sources. We are interested in distributed algorithms,

which are more scalable than centralized algorithms and can adapt to unknown and dynamically

changing network topology.

For correlated sources, independent data compression is not an optimal strategy. Higher data

compression efficiency can be obtained by using distributed source coding techniques. Exist-

ing approaches for network optimization with distributed source coding of correlated sources,

e.g., [2], [3] for lossless coding and [4] for lossy coding, require coordination among the sources

and do not admit fully distributed implementation.

Motivated by the optimization decomposition and utility maximization framework developed

for TCP congestion control (see, e.g., [5], [6]), we consider the problem of maximizing an

aggregate utility measure defined in terms of the distortion levels of the sources, e.g., minimum

mean-square error (MMSE) distortion, and solve the problem to obtain a dual-based joint lossy

source coding and network coding algorithm. The receiver-driven source coding algorithm adjusts

distortion levels according to the distortion prices fed back from the sinks, and hence does not

require coordination among the sources. With random network coding [7], our algorithm can be

implemented in a fully distributed manner.

Our algorithm is developed for the case of squared error distortion and high resolution coding

where the rate distortion region is known [8], and is easily extended to consider achievable

regions that can be expressed in a related form. Our distributed optimization framework applies

to unicast and multicast with and without network coding. Numerical examples show relatively

fast convergence, allowing the algorithm to be used in time-varying networks.

II. RELATED WORK

Joint optimization of source coding and routing/network coding for networks with correlated

sources has been considered in a few recent works. In [2], joint optimization of lossless source

coding and routing is proposed, where rate is allocated across sources to minimize a flow cost
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function under the constraint that the rates of the sources must lie in the Slepian-Wolf region.

This approach is extended to lossy source coding in [4], where high-resolution source coding

is assumed. A minimum cost subgraph construction algorithm for lossless source coding and

network coding is proposed in [3], for the case of two sources.

Even though Slepian-Wolf coding is distributed, the optimization problems in [2]–[4] still

require the coordination of the sources to guarantee that the source rates lie in the Slepian-Wolf

region. Therefore, the algorithms in these works are not fully distributed.

In [9], [11], rate control for multicast with network coding has been studied for elastic traffic,

with an aggregate utility maximization objective. The utility of each source is a function of its

sending rate. In our work, the utility objective is defined in terms of distortion of each source.

The rate-distortion region imposes a new type of constraint on the optimization.

III. PRELIMINARIES

A. Network and Coding Model

Consider a network, denoted by a graph G = (N ,L), with a set N of nodes and a set L of

directed links. We denote a link either by a single index l or by the directed pair (i, j) of nodes it

connects. Each link l has a fixed finite capacity cl packets per second. A set of multicast sessions

M is transmitted over the network. Each session m ∈ M is associated with a set Sm ⊂ N of

sources and a set of Tm ⊂ N of sinks. For session m, each source s ∈ Sm multicasts xms bits

to all the sinks in Tm. By flow conservation, we have, for any i, m, s ∈ Sm and t ∈ Tm,

∑
j:(i,j)∈L

gmst
i,j −

∑
j:(j,i)∈L

gmst
j,i =


xms if i = s

−xms if i = t ,

0 otherwise

(1)

where gmst
i,j is the rate of packets over link (i, j) from source s ∈ Sm to sink t ∈ Tm for session

m. Note that the superscripts such as ms and mst are not polynomial power.

Network coding allows flows for different destinations of a multicast session to share network

capacity by being coded together: for each multicast session m, with coding the actual physical

flow on each link needs only be the maximum of the individual destinations’ flows [1]. These

constraints can be expressed as

gmst
i,j ≤ fm

i,j, (i, j) ∈ L, m ∈ M, (s, t) ∈ (Sm, Tm), (2)
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where physical flow fm
i,j is the rate at which coded packets from session m are transmitted over

link (i, j). For the case of multiple sessions sharing a network, achieving optimal throughput

requires coding across sessions. However, designing such codes is a complex and largely open

problem. Thus, we simply assume that coding is done only across packets of the same session,

i.e., intra-session coding. In this case, the set of feasible flow vectors is specified by combining

constraints (1)-(2) for each session m with the link capacity constraint:∑
m∈M

fm
i,j ≤ ci,j , ∀ (i, j) ∈ L. (3)

In practice, the network codes can be designed using random linear network coding, see, e.g.,

[7], where for each node the data on outgoing links are random linear combination of the data

on incoming links. If (1)-(2) holds, every sink can recover the transmitted packets with high

probability. See [7] for a detailed description and discussion of overhead in random network

coding and other practical implementation issues.

B. Lossy Source Coding

We consider multiterminal lossy source coding for continuous sources. Lossy source coding is

data compression with a distortion measure. One technique for distributed lossy source coding is

Wyner-Ziv coding [12], which is for a single source with uncoded side information at the sink.

The general distributed rate-distortion region for coding correlated sources in the general setting

is unknown even for Gaussian sources [13] (Recently, the rate-distortion region for quadratic

Gaussian two-terminal source-coding is found in [14]).

It is still an open problem whether or not in general the optimal solution can be separated

into a simple quantization for each source followed by Slepian-Wolf lossless coding, but such

separation exists in the high-resolution limit: the optimal rate-distortion performance can be

achieved by separately quantizing each source, e.g., by dithered lattice quantizers, and then

applying Slepian-Wolf lossless encoding to the quantizers’ outputs [8]. In the extreme of high

resolution, it is shown in [8] that for squared-error distortion, the asymptotically achievable

rate-distortion region for n correlated sources, X1, . . . , Xn, is given by∑
Xi∈S

Ri ≥ h(S|X\S)− log

(
(2πe)|S|

∏
Xi∈S

Di

)
, ∀S ⊆ X , (4)
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where X = {X1, . . . , Xn}, Ri and Di are respectively the rate and MMSE distortion of Xi,

and h(·) denotes differential entropy. A similar region is derived for more general difference

distortion measures satisfying certain conditions. In general, the high-resolution region is an

outer bound which becomes tighter as resolution increases. By using the results in [7], (4) can

be readily extended to general networks by quantizing each source separately and then using

random network coding.

For ease of exposition, we use the region defined in (4) in our subsequent development. Our

results extend easily to the case where we have any achievable convex rate-distortion region,

e.g., that in [13]. For instance,∑
Xi∈S

Ri ≥ h(S|X\S)− αS log
∏
Xi∈S

Di + βS , ∀S ⊆ X . (5)

where αS and βS are any constants. By appropriately choosing αS and βS , we can use (5) to

approximate arbitrary achievable rate-distortion region. Note that αS > 0, as the (minimum)

transmission rate should be a decreasing function of the distortion.

IV. DISTRIBUTED ALGORITHM

We assume for simplicity that each source transmits information over a single given multicast

tree connecting it to its corresponding sink nodes. Such a multicast tree can be obtained by using

protocols such as the distance vector multicast routing protocol [15]. These trees constitute an

un-capacitated coding subgraph for each multicast session. Our distributed algorithm can be

readily generalized to the case with multiple trees or without given trees (where the algorithm

constructs coding subgraphs via back pressure) as in, e.g., [11].

Let Tms denote the multicast tree for source s in session m. Each tree Tms contains a set

Lms ⊆ L of links, which defines an |L| × 1 vector ξms whose l-th entry is given by

ξms
l =

 1 if l ∈ Tms

0 otherwise.
(6)

Similar to (2) and (3), with intra-session network coding we have the following two constraints

ξms
l xms ≤ fm

l , ∀l ∈ L, m ∈ M, s ∈ Sm, (7)∑
m

fm
l ≤ cl, ∀l ∈ L. (8)
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With lossy source coding, the perceptual quality of an imperfect copy of a signal is determined

by the human sensory system (visual, auditory, etc). It is reasonable to assume that the perceptual

quality is determined by distortion. Thus, different from [5], we assume that each source s of

session m attains a utility UD
ms(D

ms) when it compresses data at a distortion level Dms, rather

than a rate-dependent utility. We assume that UD
ms(·) is continuously differentiable, decreasing,

and concave. This assumption is reasonable as the sources prefer smaller distortions. It also

enforces some kind of fairness among the sources, as the marginal utility is decreasing when

the distortion is further reduced. Examples of such utility functions are log(Dmax − Dms) and

−Dms, where Dmax is the maximum tolerable distortion.

We formulate the source coding and network resource allocation problem as a utility maxi-

mization problem with the rate constraints (7)-(8) and the rate-distortion constraint (4) as follows.

max
D,x,f

∑
m∈M,s∈Sm

UD
ms(D

ms)

s.t. ξms
l xms ≤ fm

l , ∀l ∈ L, m ∈ M, s ∈ Sm,∑
m∈M

fm
l ≤ cl, ∀l ∈ L,

∑
s∈S

xms ≥ h(S|Sm\S)− log

(
(2πe)|S|

∏
s∈S

Dms

)
, ∀S ⊆ Sm.

(9)

Note that (28) is a convex problem and can be solved in polynomial time if all the utility and

constraint information is given. However, a distributed algorithm is preferred in practice.

A. Algorithm

One way to derive a distributed solution is to consider its Lagrangian dual. However, in the

rate-distortion constraint in (28), the source rates and distortions are not coupled at a single entity

such as a node or link. We thus could not obtain a distributed algorithm by directly relaxing the

rate-distortion constraint, which would still require source coordination. For the same reason,

the algorithm in [4] is not fully distributed. In order to obtain a distributed solution, we consider
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the following equivalent problem

max
D,Z,x,y,f

∑
m,s

UD
ms(D

ms)

s.t. ξms
l xms ≤ fm

l ,
∑
m

fm
l ≤ cl, ∀l, s,

ymst ≤ xms, Zmst ≤ Dms, ∀l, m, s, t,∑
s∈S

ymst ≥ h(S|Sm\S)− log

(
(2πe)|S|

∏
s∈S

Zmst

)
, ∀S ⊆ Sm,

(10)

where by introducing auxiliary variables ymst and Zmst at each sink t ∈ Tm, we remove the

troublesome coupling among the sources in the rate-distortion constraint. We will see later that

these auxiliary variables admit physical interpretation and enable a distributed receiver-driven

source coding algorithm.

Consider the Lagrangian dual to problem (10)

min
p≥0,q≥0,λ≥0

ϕ(p, q, λ) (11)

with partial dual function

ϕ(p, q, λ) =max
∑
m,s

UD
ms(D

ms)−
∑
l,m,s

pms
l (ξms

l xms − fm
l )

−
∑
m,s,t

qms
t

(
ymst − xms

)
−
∑
m,s,t

λms
t

(
Zmst −Dms

)
s.t.

∑
m∈M

fm
l ≤ cl,

∑
s∈S

ymst ≥ h(S|Sm\S)− log

(
(2πe)|S|

∏
s∈S

Zmst

)
,

(12)

where we relax only the first and the third constraints in (10) by introducing Lagrange multiplier

pms
l at link l for source s in session m, and qms

t and λms
t at sink t for source s in session m.
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The dual function ϕ(p, q, λ) has a nice decomposition structure into four separate subproblems

ϕ1(q, λ) = min
y,Z

∑
m,s,t

qms
t ymst + λms

t Zmst, (13)

s.t.
∑
s∈S

ymst ≥ h(S|Sm\S)− log

(
(2πe)|S|

∏
s∈S

Zmst

)
,

ϕ2(λ) = max
D

∑
m,s

UD
ms(D

ms) +
∑
m,s

(∑
t

λms
t

)
Dms, (14)

ϕ3(p, q) = min
x

∑
m,s

xms

(∑
l

pms
l ξms

l −
∑
t

qms
t

)
, (15)

ϕ4(p) = max
f

∑
l,m,s

pms
l fm

l , s.t.
∑
m∈M

fm
l ≤ cl. (16)

The first subproblem is the minimum weighted rate and distortion problem for virtual lossy source

coding at each sink. The second subproblem is distortion control. The third one is rate allocation.

The fourth one is joint network coding and session scheduling. Thus, by dual decomposition,

the problem decomposes into separate “local” optimization problems of application, transport,

and network/link layers, respectively. The four problems interact through dual variables p, q, λ.

Lossy source coding: The virtual joint rate allocation and data compression problem (13) can

further decompose into separate optimization problems at each sink t ∈ |Tm|,

min
y,Z

∑
s

qms
t ymst + λms

t Zmst (17)

s.t.
∑
s∈S

ymst ≥ h(S|Sm\S)− log

(
(2πe)|S|

∏
s∈S

Zmst

)
.

For fixed Zmst, it can be readily verified that the polyhedron described by the constraint in

(17) is a contra-polymatroid [16].1 From Lemma 3.3 in [16], a greedy algorithm solves (17)

optimally. Let π∗ be any permutation of Sm such that q
mπ∗(1)
t ≤ q

mπ∗(2)
t ≤ · · · ≤ q

mπ∗(|Tm|)
t .

1Let E = {1, . . . , N} and f : 2E → R+ be a set function. The polyhedron P(f) ={
(x1, . . . , xN ) :

∑
i∈S xi ≥ f(S), ∀S ⊆ E

}
is a contra-polymatroid if f satisfies: 1) f(∅) = 0 (normalized); 2) f(S) ≤ f(T )

if S ⊂ T (nondecreasing); and 3) f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ) (supermodular).
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Then, by Lemma 3.3 in [16], the solution of (17) with given Z is given by

ymπ∗(1)t(q) =h (π∗(1))− log
(
2πeZmπ∗(1)t

)
,

ymπ∗(2)t(q) =h (π∗(2)|π∗(1))− log
(
2πeZmπ∗(2)t

)
,

· · ·

ymπ∗(|Tm|)t(q) =h (π∗(|Tm|)|π∗(|Tm| − 1), . . . , π∗(1))− log
(
2πeZmπ∗(|Tm|)t) .

(18)

Substituting (18) into (17) and minimizing (17) over Zmst, we get

Zmst(q, λ) =
qms
t

λms
t

. (19)

Substituting (19) into (18), we obtain the optimal ymst(q, λ).

Now, consider the distortion control problem (14). At source s, at each time slot τ , instead of

solving (14) directly for Dms, we update Dms using a primal subgradient algorithm according

to

Dms(τ + 1) =

[
Dms(τ) + ϵτ

(
UD
ms

′
(Dms(τ)) +

∑
t

λms
t

)]+
, (20)

where UD
ms

′ is the derivative of UD
ms, ϵτ is a positive scalar stepsize, and + denotes the projection

on the set of non-negative real numbers. We will see that λms
t can be interpreted as the price

resulting from the mismatch between the source distortion and virtual source distortion at the

sink. The source distortion is adjusted according to the aggregate distortion price
∑

t λ
ms
t due

to virtual source coding, which is fed back from the sinks of session m.

Rate allocation: To recover the source rate, instead of solving (15) directly, we update the

source rate using a primal subgradient algorithm. At time τ + 1, the source rate xms(τ + 1) is

updated according to

xms(τ + 1) =

[
xms(τ)− ϵτ

(∑
l

pms
l ξms

l −
∑
t

qms
t

)]+
. (21)

Each source then compresses data according to rate xms(τ+1) by using dithered lattice quantizers

[8] and randomized linear network coding. This source coding and rate allocation mechanism

has the desired price structure and is an end-to-end congestion control mechanism.

Session scheduling and network coding: For each link l, find the session m∗
l = argmaxm

∑
s p

ms
l .

A random linear combination of packets from all the sources in session m∗
l is sent at the rate
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of cl. This is equivalent to solving (16) by the following assignment

fm
l (p) =

 cl if m = m∗
l

0 otherwise.
(22)

Dual variable update: By using the first order Lagrangian method [17], at time τ + 1, the

dual variables are updated according to

pms
l (τ + 1) = [pms

l (τ) + γτ (ξ
ms
l xms(p(τ), q(τ))− fm

l (p(τ)))]+ , (23)

qms
t (τ + 1) =

[
qms
t (τ) + γτ

(
ymst(q(τ), λ(τ))− xms(p(τ), q(τ))

)]+
, (24)

λms
t (τ + 1) =

[
λms
t (τ) + γτ

(
Zmst(q(τ), λ(τ))−Dms(λ(τ))

)]+
, (25)

where γτ is a positive scalar stepsize. Note that (23)-(25) are distributed and can be implemented

by individual links and sinks using only local information. The algorithm (18)-(25) is a distributed

primal-dual subgradient algorithm for problem (10) and its dual. By using Lyapunov method

and extending the techniques for the dual subgradient method as in, e.g., [11], we can prove that

the algorithm (18)-(25) converges to within an arbitrarily small neighborhood of the optimal by

using suitable stepsizes ϵτ , γτ .

Note that pms
l results from the rate constraint and thus can be interpreted as a virtual congestion

price at the link. qms
t can be interpreted as the price resulting from the mismatch between

the physical source rate and virtual source rate at the sink, and λms
t as the price resulting

from the mismatch between the source distortion and virtual source distortion at the sink. Our

adaptive source coding is a receiver-driven scheme. Since the sink receives information from all

the sources, it can estimate the rate-distortion region of correlated sources, and solve a virtual

joint rate allocation and data compression problem. By adapting to the prices qms
t and λms

t , the

source tries to match the virtual rate and distortion. The source rate also adapts to pms
l to avoid

congestion.

Also note that in our algorithm the sink does not feedback any information about the source

distributions to the sources. To feedback this information may change the rate-distortion region.

When this happens, the whole system might be improved, and the current solution is then not

optimal.
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B. Performance Analysis

The above distributed source coding and rate allocation algorithm is a (partial) primal-dual

subgradient algorithm. By extending the standard results on the convergence of the subgradient

method [17], we can show that, for constant stepsize, the algorithm is guaranteed to converge

to within a small neighborhood of the optimum. For diminishing stepsizes, the algorithm is

guaranteed to converge to the optimum.

Before analyzing the performance of the above algorithm, let us first introduce some variables

that will be used. Let p̄(τ) = 1
τ

∑τ
i=1 p(i), λ̄(τ) = 1

τ

∑τ
i=1 λ(i) and q̄(τ) = 1

τ

∑τ
i=1 q(i) be

the average dual variables till time τ , D̄(τ) = 1
τ

∑τ
i=1 D(i) be the average source distortion

and x̄(τ) = 1
τ

∑τ
i=1 x(i) be the average data rate injected into the network till time τ . Denote

by p̄(∞), q̄(∞), λ̄(∞), D̄(∞) and x̄(∞) the corresponding averages at time τ = ∞. Denote

by P (D) =
∑

m∈M,s∈Sm
UD
ms(D

ms) the primal function and by L(D, x, Z, y, f, p, q, λ) the

Lagrangian function of problem (10). Define

L̃(D, x, p, q, λ) = L(D, x, Z(q, λ), y(q), f(p), p, q, λ).

Denote by ∇DL̃,∇xL̃,∇pL̃,∇qL̃ and ∇λL̃ the subgradients of L̃ with respect to D, x, p, q and λ,

respectively. In practice, it is reasonable to assume that the norm of the subgradient is uniformly

bounded, i.e., there exist constants G1 > 0 and G2 > 0 such that for the primal subgradient

∥∇DL̃∥2 + ∥∇xL̃∥2 ≤ G2
1 and for the dual subgradient ∥∇pL̃∥2 + ∥∇qL̃∥2 + ∥∇λL̃∥2 ≤ G2

2.

The following theorem, proved in Appendix for general primal-dual subgradient algorithms,

guarantees the convergence of the distributed source coding and rate allocation algorithm to the

optimum.

Theorem 1: Let p∗, λ∗, q∗ denote optimal values of the dual variables and D∗, x∗ denote the

optimal values of the primal variables. For constant stepsize ϵτ = ϵ and γτ = γ, we have

L̃(D∗, x∗, p(∞), q(∞), λ(∞)) ≥ L̃(D∗, x∗, p∗, q∗, λ∗)− ϵG2
1 + γG2

2

2
, (26)

and

P (D(∞)) ≤ P (D∗) +
ϵG2

1 + γG2
2

2
. (27)

Note that by optimality condition, L̃(D∗, x∗, p(∞), q(∞), λ(∞)) ≤ L̃(D∗, x∗, p∗, q∗, λ∗). Since

L̃ is a continuous function, inequality (26) implies that the average price p(∞), q(∞) and λ(∞)
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are bounded, and thus the average distortion D̄(∞) and data rate x̄(∞) is within the achievable

region defined by equation (4). So, P (D(∞)) ≥ P (D∗). Inequality (27) implies that the average

distortion and transmission rates approach the optimum when the stepsize ϵ and γ is small

enough.

In practice, the proposed distributed algorithm can be implemented as either an offline or an

online algorithm. If it is implemented as an offline algorithm, the algorithm will be run until

it converges; and sources then send data using the converged average Dms and xms. If it is

implemented as an online algorithm, decoding errors in the transient phase can be reduced if

the sources code at a distortion level slightly higher than the average Dms up to that point, and

if the coding block length spans a number of oscillations in the optimization algorithm. It is

difficult to entirely remove the possibility of decoding failure, since in the transient stage the

algorithm is probing and learning the network.

C. Choice of stepsize

The bound on the norm of the subgradient scales with the size of the system according to

G2
1 ∼ 2

∑
m |Sm| and G2

2 ∼ 2
∑

m |Sm||Tm|+
∑

m,s |Lms|. For a given performance gap δ (i.e., we

require P (D(∞)) ≤ P (D∗)+δ), we can choose any stepsize ϵ and λ such that ϵG2
1+γG2

2 ≤ 2δ.

One convenient choice is ϵ = δ/G2
1 ∼ 1

2
∑

m |Sm| and γ = δ/G2
2 ∼ 1

2
∑

m |Sm||Tm|+
∑

m,s |Lms| .

The choice of the stepsize also determines the convergence speed: the larger the stepsize the

faster the convergence, and the smaller the stepsize the slower the convergence. This can be

seen from the first term in the right hand side of inequalities (41) and (47) in the Appendix.

Inequalities (41) and (47) also give the tradeoff between optimality (dictated by the second term

in the right hand side of the inequalities) and the convergence speed (dictated by the first term

in the right hand side of the inequalities).

While the above analysis shows the approximate scaling of the step sizes based on system

parameters, in practice we can fine-tune the stepsize by observing the evolution of the source

rates. For instance, we can first choose large stepsizes to ensure fast convergence, and subse-

quently, the stepsizes can be reduced as the source rates start oscillating around some mean

value. On the other hand, in some distributed network scenarios, a constant stepsize may be

more convenient to implement. A numerical example comparing different stepsizes is given in

the following section.
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D. Numerical Example

In this subsection, we provide numerical examples to complement the analysis in previous

subsections. We consider a simple network as shown in Figure 1. For simplicity, we assume

that there is only one multicast session with two correlated sources s1 and s2, and two sinks

t1 and t2. The capacity of link (s1, 1) is 0.4 and the capacity of link (s2, 1) is 0.3. All the

other links have unit capacity. We assume that all the sources have the same utility function

UD(D) = log(1−D). We also assume that h(s1|s2) = h(s2|s1) = 0.2 and h(s1) = h(s2) = 0.5.

The multicast tree for source s1 is chosen as {(s1, 1), (1, 2), (2, t2), (s1, t1)}, and for source s2

is chosen as {(s2, 1), (1, 2), (2, t1), (s2, t2)}. Figure 2 shows the evolution of source distortions

versus the number of iterations for lossy source coding with stepsizes ϵ = 1 and γ = 0.01,

and Figure 3 shows the evolution of source rates versus the number of iterations. We see that

both source distortions and rates converge to a neighborhood of the corresponding optimum

and oscillate around them. Figure 4 shows the evolution of the congestion prices at two of the

links. Again, we see that the congestion prices converge to a neighborhood of the corresponding

optimum and oscillate around them.

In order to study the impact of different choices of the stepsize on the convergence of the

algorithms, we have run simulations with different stepsizes, see, as an illustrative example,

Figure 5 for the evolution of a source rate with 3 different stepsizes. We found that the smaller

the stepsize, the slower the convergence, and the larger the stepsize, the faster the convergence,

which is a general characteristic of any gradient based method. However, when the stepsize is

too large, the system may only approach to within a certain neighborhood of the equilibrium.

This can also be seen from the proof of Theorem 1, which gives the relation between the size

of this neighborhood and the stepsize. So, there is a tradeoff between convergence speed and

optimality.

V. EXTENSIONS AND PRACTICAL CONSIDERATIONS

1) Networks without given multicast trees: If there are no predefined multicast trees, we

can use the flow constraints (1)-(3) in place of (7)-(8) in the optimization problem (28). The

resulting problem can be solved in a similar way as the algorithm (18)-(25), except that the

session scheduling component becomes similar to the back-pressure scheduling in [18].
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2) Multicast without Network Coding: Network coding shows up in constraint (7). Many

current networks do not employ network coding. In routing based multicast, (7) is replaced by∑
s ξ

ms
l xms ≤ fm

l . The rest of the algorithm is essentially unchanged.

3) Practical Source Codes and Network Codes: As mentioned in Section III.B, our optimiza-

tion approach works for any achievable convex rate-distortion region. While separate source

coding and network coding is in general suboptimal compared to network-source coding, lower

complexity can generally be achieved, e.g. using separate random [7] or deterministic [19]

network codes with dithered lattice quantizers and the LDPC based Slepian-Wolf encoders [20].

4) Layered Source Coding: In heterogeneous networks, different sinks may demand different

distortion levels. A practical approach is to encode information hierarchically in layers i =

1, . . . , n and to have each sink subscribe to a subset 1, . . . , k ≤ n of the layers, starting from

the base layer [22].

Our optimization framework can be extended to this scenario as follows. We define a multicast

tree for each layer of each session, which connects to a subset of the sinks. Specifically, let nm

be the number of layers in session m, and let Tmsi denote the layer i multicast tree for source

s in session m. Let xmsi be the transmission rate over tree Tmsi. Let Dmsj be the distortion

achieved by subscribing to layers 1 to j, and let Umsj(D
msj) be the associated utility. The source

coding and network resource allocation problem becomes

max
D,x,f

∑
m∈M,s∈Sm,1≤j≤nm

Umsj(D
msj)

s.t. ξmsi
l xmsi ≤ fmi

l , ∀l ∈ L, m ∈ M, s ∈ Sm, 1 ≤ i ≤ nm,∑
m∈M,1≤i≤nm

fmi
l ≤ cl, ∀l ∈ L,

(xmsi, Dmsj : 1 ≤ i, j ≤ nm, s ∈ Sm) ∈ R, ∀m ∈ M

(28)

for some given convex achievable region R of a successively refinable rate-distortion code. The

same optimization technique applies, since we can introduce auxiliary variables to make the

convex achievable region a local rate-distortion constraint at each sink, as what has been done

in problem (10).

However, the capacity region of successively refinable rate-distortion coding is in general

unknown. As an alternative, distortion optimization can be realized by having sinks subscribe

adaptively to more or fewer layers based on the congestion prices. If a sink observes that the
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congestion price converges, it subscribes to an additional layer. If the congestion price does not

converge (i.e., congestion is built up unboundedly), the sink drops a layer. Slepian-Wolf coding

can be applied to sources in the same layer.

5) Entropy and Probability Density Estimation: State-of-the-art distributed source codes need

the knowledge of joint probability density function (pdf) of all the sources in each session for

both encoding and decoding. It is hard for all the sources to learn this information. Our proposed

framework relaxes this constraint by requiring that only sinks need it. A possible approach for

estimating the joint pdf at the sinks is for the sources to initially transmit quantized data without

Slepian-Wolf coding. On receiving this data, the sinks estimate the joint pdf by using well-

developed techniques in multivariate density estimation [23]. Later, the estimated pdf can be

refined by the decompressed data. Cyclic redundancy checks can be used to detect errors in

the decoded data, in which case the rate-distortion region is conservatively modified such that

the next data frame can be decoded correctly. However, as pdf estimation is complicated, it is

desirable to have universal distributed source codes.

VI. CONCLUSION

We have presented a fully distributed algorithm for adaptive lossy source coding for multicast

with network coding, where each session contains a set of correlated sources. Based on the

utility maximization framework and its decomposition, we proposed a distributed algorithm for

joint optimization of source coding and network coding. The resulting receiver-driven algorithm

adjusts distortion levels according to the distortion prices fed back from the sinks, and hence

does not require coordination among the sources. With random network coding, the algorithm

can be implemented in a fully distributed manner. In this work we have used the known rate-

distortion region for high resolution lossy source coding; our work easily extends to achievable

regions that can be expressed in a related form. It would be interesting to extend our work to

other achievable rate-distortion regions.
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APPENDIX: PROOF OF THEOREM 1

In this appendix, we consider the following general problem

min
x,y

f(x) + g(y)

subject to h(x) + l(y) ≤ 0

x ≥ 0, y ∈ Y ,

(29)

where f(·), g(·), h(·) and l(·) are convex functions, and Y is certain convex set. It can be readily

verified that problem (10) can be reformulated as (29). As in the paper, we do not relax all the

constraints and we obtain the partial Lagrangian function of (29) as

L(x, y, λ) = f(x) + g(y) + λT (h(x) + l(y)), subject to x ≥ 0, y ∈ Y , (30)

where λ is the dual variable. Define

L̃(x, λ) = f(x) + λTh(x) + min
y∈Y

(g(y) + λT l(y)), subject to x ≥ 0. (31)

The generic primal-dual subgradient algorithm is written as

x(τ + 1) =
[
x(τ)− ϵ∇xL̃ (x(τ), λ(τ))

]+
=
[
x(τ)− ϵ

(
f ′(x(τ)) + λT (τ)h′(x(τ))

)]+
,

(32)

y(τ) = argmin
y∈Y

L(x(τ), y, λ(τ))

= argmin
y∈Y

g(y) + λT l(y),
(33)

and

λ(τ + 1) =
[
λ(τ) + γ∇λL̃ (x(τ), λ(τ))

]+
= [λ(τ) + γ(h(x(τ)) + l(y(τ)))]+ ,

(34)

where ∇xL̃ and ∇λL̃ denote the gradients of L̃ with respect to x and λ, respectively. Let x∗, y∗, λ∗

denote the optimal values of x, y, λ, respectively. By duality, we have x∗ = argminx≥0(f(x) +

λ∗Th(x)), y∗ = argminy∈Y(g(y) + λ∗T l(y)), λ∗ = argmaxλ L̃(x
∗, λ) = argmaxλ L(x

∗, y∗, λ),

and L̃(x∗, λ∗) = L(x∗, y∗, λ∗).
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By equation (32), we have

1

ϵ
∥x(τ + 1)− x∗∥2 ≤1

ϵ

∥∥∥x(τ)− γ∇xL̃ (x(τ), λ(τ))− x∗
∥∥∥2

=
1

ϵ
∥x(τ)− x∗∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2

− 2(x(τ)− x∗)T∇xL̃ (x(τ), λ(τ))

≤1

ϵ
∥x(τ)− x∗∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2

− 2
(
L̃ (x(τ), λ(τ))− L̃ (x∗, λ(τ))

)
,

(35)

where the last inequality comes from the fact that L̃(x, λ) is a convex function in x for given

λ. Similarly, we can obtain

1

γ
∥λ(τ + 1)− λ∗∥2 ≤1

γ
∥λ(τ)− λ∗∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2

+ 2
(
L̃ (x(τ), λ(τ))− L̃ (x(τ), λ∗)

)
.

(36)

By adding equations (35) and (36) together, we get

1

ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ + 1)− λ∗∥2

≤1

ϵ
∥x(τ)− x∗∥2 + 1

γ
∥λ(τ)− λ∗∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2

− 2
(
L̃ (x(τ), λ∗)− L̃ (x∗, λ(τ))

)
≤1

ϵ
∥x(τ)− x∗∥2 + 1

γ
∥λ(τ)− λ∗∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2

− 2
(
L̃ (x∗, λ∗)− L̃ (x∗, λ(τ))

)
,

(37)

where the last inequality follows from the relation L̃ (x(τ), λ∗) ≥ L̃ (x∗, λ∗). Applying the above

inequality recursively, we get

1

ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ + 1)− λ∗∥2

≤1

ϵ
∥x(1)− x∗∥2 + 1

γ
∥λ(1)− λ∗∥2 +

τ∑
i=1

(
ϵ
∥∥∥∇xL̃ (x(i), λ(i))

∥∥∥2 + γ
∥∥∥∇λL̃ (x(i), λ(i))

∥∥∥2)

− 2
τ∑

i=1

(
L̃ (x∗, λ∗)− L̃ (x∗, λ(i))

)
.

(38)
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Since 1
ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ + 1)− λ∗∥2 ≥ 0, we have

2
τ∑

i=1

(
L̃ (x∗, λ∗)− L̃ (x∗, λ(i))

)
≤1

ϵ
∥x(1)− x∗∥2 + 1

γ
∥λ(1)− λ∗∥2 +

τ∑
i=1

(
ϵ
∥∥∥∇xL̃ (x(i), λ(i))

∥∥∥2 + γ
∥∥∥∇λL̃ (x(i), λ(i))

∥∥∥2 )
≤1

ϵ
∥x(1)− x∗∥22 +

1

γ
∥λ(1)− λ∗∥22 + τ(ϵG2

1 + γG2
2),

(39)

where
∥∥∥∇xL̃ (x(i), λ(i))

∥∥∥2 ≤ G2
1 and

∥∥∥∇λL̃ (x(i), λ(i))
∥∥∥2 ≤ G2

2 by assumption. From equation

(39), we obtain

1

τ

τ∑
i=1

(
L̃ (x∗, λ∗)− L̃ (x∗, λ(i))

)
≤ ∥x(1)− x∗∥2 /ϵ+ ∥λ(1)− λ∗∥2 /γ

2τ
+

ϵG2
1 + γG2

2

2
. (40)

Since L̃(x∗, λ) is a concave function in λ, by Jensen’s inequality, we have

L̃ (x∗, λ∗)− L̃
(
x∗, λ̄(τ)

)
≤ ∥x(1)− x∗∥2 /ϵ+ ∥λ(1)− λ∗∥2 /γ

2τ
+

ϵG2
1 + γG2

2

2
. (41)

where λ̄(τ) = 1
τ

∑τ
i=1 λ(i). So,

L̃(x∗, λ̄(∞)) ≥ L̃ (x∗, λ∗)− ϵG2
1 + γG2

2

2
. (42)

Now, consider
1

γ
∥λ(τ + 1)∥2 ≤1

γ
∥λ(τ)∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2 + 2λT (τ)∇λL̃ (x(τ), λ(τ))

=
1

γ
∥λ(τ)∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2 + 2

(
λT (τ)h(x(τ))− g(y(τ))

)
+ 2

(
g(y(τ)) + λT (τ)l(y(τ))

)
≤1

γ
∥λ(τ)∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2 + 2

(
λT (τ)h(x(τ))− g(y(τ))

)
+ 2

(
g(y∗) + λT (τ)l(y∗)

)
,

(43)

where the last inequality follows from the fact that y(τ) is the minimizer for the problem

miny(g(y) + λT (τ)l(y)). By adding (35) and (43) together, we get
1

ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ + 1)∥2

≤1

ϵ
∥x(τ)− x∗∥2 + 1

γ
∥λ(τ)∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2

− 2
(
f(x(τ)) + g(y(τ))− f(x∗)− g(y∗)− λT (τ) (h(x∗) + l(y∗))

)
.

(44)
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Note that, by the optimality condition, we have λ∗T (h(x∗) + l(y∗)) = 0; and furthermore, if

any constraint {h(x∗) + l(y∗)}j < 0, the corresponding dual optimum {λ}j = 0. It follows that

(λ(τ)− λ∗)T (h(x∗) + l(y∗)) ≤ 0, i.e., λT (τ) (h(x∗) + l(y∗)) ≤ 0. Thus,

1

ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ + 1)∥2

≤1

ϵ
∥x(τ)− x∗∥2 + 1

γ
∥λ(τ)∥2 + ϵ

∥∥∥∇xL̃ (x(τ), λ(τ))
∥∥∥2 + γ

∥∥∥∇λL̃ (x(τ), λ(τ))
∥∥∥2

− 2 (f(x(τ)) + g(y(τ))− f(x∗)− g(y∗)) .

(45)

Applying the above inequality recursively, we get

1

ϵ
∥x(τ + 1)− x∗∥2 + 1

γ
∥λ(τ)∥2

≤1

ϵ
∥x(1)− x∗∥2 + 1

γ
∥λ(1)∥2 +

τ∑
i=1

(
ϵ
∥∥∥∇xL̃ (x(i), λ(i))

∥∥∥2 + γ
∥∥∥∇λL̃ (x(i), λ(i))

∥∥∥2)

− 2
τ∑

i=1

(f(x(i)) + g(y(i))− f(x∗)− g(y∗)) .

(46)

Following similar procedure and using the Jensen’s inequality (for convex functions) as in the

derivation of inequality (42), we get

f(x̄(τ)) + g(ȳ(τ))− f(x∗)− g(y∗) ≤ ∥x(1)− x∗∥2 /ϵ+ ∥λ(1)∥2 /γ
2τ

+
ϵG2

1 + γG2
2

2
, (47)

where x̄(τ) = 1
τ

∑τ
i=1 x(i) and ȳ(τ) = 1

τ

∑τ
i=1 y(i). So,

f(x̄(∞)) + g(ȳ(∞)) ≤ f(x∗) + g(y∗) +
ϵG2

1 + γG2
2

2
. (48)

Remark: Inequalities (42) and (48) and their proof are very general. They apply to any

primal-dual subgradient algorithms for convex optimization, and provide a general result on the

performance of the primal-dual subgradient algorithm. They are a nice addition to the similar

result on the dual subgradient algorithm that is presented in, e.g., [10].
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Fig. 1. The butterfly network.
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Fig. 2. The evolution of source distortions Dm1, Dm2 and sink virtual distortions Zm11, Zm22 versus the number of iterations

with stepsizes ϵ = 1 and γ = 0.01 for the butterfly network in Fig. 1.
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Fig. 3. The evolution of source rates xm1, xm2 and sink virtual rates ym11, ym22 versus the number of iterations with stepsizes

ϵ = 1 and γ = 0.01 for the butterfly network in Fig. 1.
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Fig. 4. The evolution of congestion prices versus the number of iterations with stepsizes ϵ = 1 and γ = 0.01 for the butterfly

network in Figure 1. Congestion price pms1
(s1t1)

is for link (s1, 1), and congestion price pms2
(s2t2)

is for link (s2, 1) in Fig. 1.
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Fig. 5. The evolution of source s1 rate versus the number of iterations with different ϵ and γ for the butterfly network in Fig.

1.


