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Preface

The purpose of this supplement is to give some additional topics not cov-
ered in the main text as well as to provide some additional details and
sometimes, alternative approaches. For example, §2.9 provides the proof of
the Cartan structure equations which were just stated in the text and the
supplement to §5.3 gives an alternative approach to the geometric founda-
tions of nonholonomic systems.

The supplement is organized using the same structure as the book itself,
namely material most relevant to a section in the book is given the same
section number in this supplement.

This supplement will be updated from time to time, so check back for
updates and please do let us know of any comments or corrections.
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2
Mathematical Preliminaries

2.1 Vector Fields, Flows, and Differential
Equations

Existence of Solutions for a Particle in a Potential Field. This
supplement gives some conditions based on energy estimates, which guar-
antee the existence of long time solutions to the dynamics of a particle in
a potential field.1

Consider a particle of mass m moving in Rn in a potential field V : Rn →
R. The equations are, from Newton’s second law,

q̈(t) = −(1/m)∇V (q(t)).

We shall prove that if there are constants a, b ∈ R, b ≥ 0 such that
1
m
V (q) ≥ a− b‖q‖2,

then every solution exists for all time. To show this, rewrite the second
order equations as a first order system q̇ = (1/m)p, ṗ = −∇V (q) and note
that the energy

E(q,p) =
1

2m
‖p‖2 + V (q)

is a first integral. Thus, for any solution (q(t),p(t)) we have

β = E(q(t),p(t)) = E(q(0),p(0)) ≥ V (q(0)).

1This exposition is adapted from Marsden and Weinstein [1970].
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We can assume β > V (q(0)), i.e., p(0) 6= 0, for if p(t) ≡ 0, then the
conclusion is trivially satisifed; thus there exists a t0 for which p(t0) 6= 0
and by time translation we can assume that t0 = 0. Thus we have

‖q(t)‖ ≤ ‖q(t)− q(0)‖+ ‖q(0)‖ ≤ ‖q(0)‖+
∫ t

0

‖q̇(s)‖ ds

= ‖q(0)‖+
∫ t

0

√
2
[
β − 1

m
V (q(s))

]
ds

≤ ‖q(0)‖+
∫ t

0

√
2(β − a+ b‖q(s)‖2) ds

or in differential form

d

dt
‖q(t)‖ ≤

√
2(β − a+ b‖q(t)‖2)

whence

t ≥
∫ ‖q(t)‖

‖q(0)‖

du√
2(β − a+ bu2)

. (2.1.3)

Now let r(t) be the solution of the differential equation

d2r(t)
dt2

= − d

dr
(a− br2)(t) = 2br(t),

which, as a second order equation with constant coefficients, has solutions
for all time for any initial conditions. Choose

r(0) = ‖q(0)‖, [ṙ(0)]2 = 2(β − a+ b‖q(0)‖2)

and let r(t) be the corresponding solution. Since

d

dt

(
1
2
ṙ(t)2 + a− br(t)2

)
= 0,

it follows that (1/2)ṙ(t)2 + a− br(t)2 = (1/2)ṙ(0)2 + a− br(0)2 = β, i.e.,

dr(t)
dt

=
√

2(β − a+ br(t)2)

whence

t =
∫ r(t)

‖q(0)‖

du√
2(β − a+ bu2

. (2.1.4)

Comparing these two expressions and taking into account that the inte-
grand is > 0, it follows that for any finite time interval for which q(t) is
defined, we have ‖q(t)‖ ≤ r(t), i.e., q(t) remains in a compact set for finite
t-intervals. But then q̇(t) also lies in a compact set since

‖q̇(t)‖ ≤ 2(β − a+ b‖q(s)‖2).
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Thus by Proposition 2.1.11 (a criterion for completeness) of the main book,
the solution curve (q(t),p(t)) is defined for any t ≥ 0. However, since
(q(−t),p(−t)) is the value at t of the integral curve with initial conditions
(−q(0),−p(0)), it follows that the solution also exists for all t ≤ 0.

The following counterexample shows that the condition V (q) ≥ a−b‖q‖2
cannot be relaxed much further. Take n = 1 and V (q) = −ε2q2+(4/ε)/8, ε >
0. Then the equation

q̈ = ε(ε+ 2)q1+(4/ε)/4

has the solution q(t) = 1/(t − 1)ε/2, which cannot be extended beyond
t = 1.

2.9 Fiber Bundles and connections

In this supplement we provide a number of additional topics and details on
principal connections.

The Cartan Structure Equations. We begin with the details of the
proof of the Cartan structure equations, which were just stated in the text.
We use the notation and set up given in the text.

2.9.13 Theorem (Cartan Structure Equations). For any vector fields
u, v on Q we have

B(u, v) = dA(u, v)− [A(u),A(v)]

where the bracket on the right hand side is the Lie bracket in g. We write
this equation for short as

B = dA− [A,A].

To prove this theorem we prepare a lemma.

Lemma. We have the identity dA(hor(u), ver(v)) = 0 for any two vector
fields u, v on Q .

Proof. Since this identity depends only on the point values of u and v,
we can assume that ver(v) = ξQ identically. Then, as in the preceding
proposition, we have

dA(hor(u), ver(v)) = (hor(u))[A(ξQ)]− ξQ[A(hor(u))]−A([hor(u), ξQ])
= hor(u)[ξ]− ξQ[0] +A[ξQ,hor(u)]
= A[ξQ,hor(u)]
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since ξ is constant. However, the flow of ξQ is Φexp(tξ) and the map hor is
equivariant and so

[ξQ,hor(u)] =
d

dt

∣∣∣∣
t=0

Φ∗exp(tξ) hor(u)

= hor
d

dt

∣∣∣∣
t=0

Φ∗exp(tξ)(u)

= hor[ξQ, u]

Thus, [ξQ,hor(u)] is horizontal and so it is annihilated by A and so the
lemma follows. �

Proof of the Cartan structure equations. Use of the lemma and writ-
ing u = hor(u) + ver(u) and similarly for v, shows that

dA(u, ver(v)) = dA(ver(u), ver(v))

and so we get

B(u, v) = dA(u, v)− dA(ver(u), ver(v)).

Again, the second term on the right hand side of this equation depends
only on the point values of u and v and so we can assume that ver(u) = ξQ
and that ver(v) = ηQ for ξ ∈ g and η ∈ g. Then

dA(ξQ, ηQ) = ξQ[A(ηQ)]− ηQ[A(ξQ)]−A([ξQ, ηQ])
= A([ξ, η]Q) = [ξ, η]
= [A(u),A(v)]. �

The following Corollary shows how the Cartan Structure Equations yield
a fundamental equivariance property of the curvature.

2.9.14 Corollary. For all g ∈ G we have Φ∗gB = Adg ◦B. If the G-action
on Q is on the right, equivariance means Φ∗gB = Adg−1 ◦B.

Proof. From the definition of [A,A], we get for any uq, vq ∈ TqQ and
g ∈ G (

Φ∗g[A,A]
)
(q)(uq, vq) = [A,A](g · q) (TqΦg(uq), TqΦg(vq))

= [A(q) (TqΦg(uq)) ,A(q) (TqΦg(vq))]

= [
(
Φ∗gA

)
(q)(uq),

(
Φ∗gA

)
(q)(vq)]

= [Φ∗gA,Φ∗gA](q)(uq, vq),
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that is, Φ∗g[A,A] = [Φ∗gA,Φ∗gA]. Thus equivariance of the connection gives

Φ∗g[A,A] = [Φ∗gA,Φ∗gA] = [Adg ◦A,Adg ◦A] = Adg ◦[A,A]

and hence

Φ∗gB = Φ∗g (dA− [A,A]) = d
(
Φ∗gA

)
−Adg ◦[A,A]

= d (Adg ◦A)−Adg ◦[A,A] = Adg ◦ (dA− [A,A]) = Adg ◦B

as required. The case of right actions is proved in a similar way. �

Curvature as a Two-Form on the Base. We now show how the cur-
vature two-form drops to a two-form on the base with values in a bundle
called the adjoint bundle.

The associated bundle to the given left principal bundle πQ,G : Q→ Q/G
via the adjoint action is called the adjoint bundle and is defined as follows.
Consider the free proper action

(g, (q, ξ)) ∈ G× (Q× g) 7→ (g · q,Adg ξ) ∈ Q× g

and form the quotient

g̃ := Q×G g := (Q× g)/G,

which is verified to be a vector bundle πg̃ : g̃ → Q/G, where πg̃(g, ξ) :=
πQ,G(q). This vector bundle has an additional structure: it is a Lie algebra
bundle; that is, a vector bundle whose fibers are Lie algebras. In this case
the bracket is defined pointwise:

[πg̃(g, ξ), πg̃(g, η)] := πg̃(g, [ξ, η])

for all g ∈ G and ξ, η ∈ g. It is easy to check that this defines a Lie bracket
on every fiber and that this operation is smooth as a function of πQ,G(q).

The curvature two-form B ∈ Ω2(Q; g) (the vector space of g-valued two-
forms on Q) naturally induces a two-form B on the base Q/G with values
in g̃ by

B(πQ,G(q)) (TqπQ,G(u), TqπQ,G(v)) := πg̃ (q,B(u, v)) (2.9.1)

for all q ∈ Q and u, v ∈ TqQ.
We need to check that B is well defined. If q′ = g · q and u′, v′ ∈ Tq′Q

are such that

Tq′πQ,G(u′) = Tq′πQ,G (TqΦg(u)) = TqπQ,G(u)

and
Tq′πQ,G(v′) = Tq′πQ,G (TqΦg(v)) = TqπQ,G(v),
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then u′−TqΦg(u), v′−TqΦg(v) ∈ Vq′ and hence by Corollary 2.9.14 we get

πg̃ (q′, B(u′, v′))
= πg̃ (g · q, B(TqΦg(u) + (u′ − TqΦg(u)), TqΦg(v) + (v′ − TqΦg(v)))
= πg̃ (g · q, B(TqΦg(u), TqΦg(v)))

= πg̃

(
g · q, (Φ∗gB)(u, v))

)
= πg̃

(
g · q, Adg

(
B(u, v)

))
= πg̃ (q, B(u, v))

which shows that the right hand side of (2.9.1) is independent of the choices
made to define B.

Since (2.9.1) can be equivalently written as π∗Q,GB = πg̃ ◦ (idQ×B) and
πQ,G is a surjective submersion, it follows that B is indeed a smooth two-
form on Q/G with values in g̃.

Associated One-Forms. Since A is a Lie algebra valued 1-form, for
each q ∈ Q, we get a linear map A(q) : TqQ → g and so we can form its
dual A(q)∗ : g∗ → T ∗qQ. Evaluating this on µ ∈ g∗ produces an ordinary
1-form:

αµ(q) = A(q)∗(µ). (2.9.2)

This 1-form satisfies two important properties given in the next Propo-
sition. (Here J is the cotangent momentum map that is discussed in §3.7
of the main text).

2.9.15 Proposition. For any connection A and µ ∈ g∗, the correspond-
ing 1-form αµ defined by (2.9.2) takes values in J−1(µ) and satisfies the
following G-equivariance property:

Φ∗gαµ = αAd∗gµ.

Proof. First of all, notice that from the definition of αµ and then using
first property of a connection,

〈J(αµ(q)), ξ〉 = 〈αµ(q), ξQ(q)〉
= 〈A(q)∗(µ), ξQ(q)〉
= 〈µ,A(q)(ξQ(q))〉
= 〈µ, ξ〉 .

Since ξ ∈ g is arbitrary, we conclude that J(αµ(q)) = µ and therefore,
indeed, αµ takes values in J−1(µ).

To establish invariance of the form αµ, we compute in the following way.
Let v ∈ TqQ and g ∈ G, and first use the definition of αµ and the definition
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of the adjoint to get

(Φ∗gαµ)(v) = αµ(g · q)(TqΦg(v))
= 〈A(g · q)∗(µ), TqΦg(v)〉
= 〈µ,A(g · q)(TqΦg(v))〉 .

Next, make use of equivariance of A and convert the preceding expression
back to one involving αµ to get:

(Φ∗gαµ)(v) = 〈µ,Adg(A(q)(v))〉
=
〈
Ad∗gµ,A(q)(v)

〉
= 〈A(q)∗Ad∗gµ, v〉
= αAd∗gµ(q)(v)

so that we get the required equivariance property. �

Notice in particular, if the group is Abelian or if µ is G-invariant, (for
example, if µ = 0), then αµ is an invariant 1-form.

Associated Two-Forms. Since B is a g-valued two-form, in analogy
with (2.9.2), for every µ ∈ g∗ we can define the µ-component of B, an
ordinary two-form Bµ ∈ Ω2(Q) on Q, by

Bµ(q)(uq, vq) := 〈µ,B(q)(uq, vq)〉 (2.9.3)

for all q ∈ Q and uq, vq ∈ TqQ.
The adjoint bundle valued curvature two-form B induces an ordinary two-

form on the base Q/G. To obtain it, we consider the dual g̃∗ of the adjoint
bundle. This is a vector bundle over Q/G which is the associated bundle
relative to the coadjoint action of the structure group G of the principal
(left) bundle πQ,G : Q → Q/G on g∗. This vector bundle has additional
structure: each of its fibers is a Lie-Poisson space and the associated Poisson
tensors on each fiber depend smoothly on the base, that is, πg̃∗ : g̃∗ → Q/G
is a Lie-Poisson bundle over Q/G.

Given µ ∈ g∗, define the ordinary two-form Bµ on Q/G by

Bµ (πQ,G(q)) (TqπQ,G(uq), TqπQ,G(vq))

:=
〈
πg̃∗(q, µ),B(πQ,G(q)) (TqπQ,G(uq), TqπQ,G(vq))

〉
= 〈µ,B(q)(uq, vq)〉 = Bµ(q)(uq, vq), (2.9.4)

where q ∈ Q, uq, vq ∈ TqQ, and in the second equality 〈 , 〉 : g̃∗ × g̃ → R is
the duality pairing between the coadjoint and adjoint bundles. Since B is
well defined and smooth, so is Bµ.

2.9.16 Proposition. Let A ∈ Ω1(Q; g) be a connection one-form on the
(left) principal bundle πQ,G : Q → Q/G and B ∈ Ω2(Q; g) its curvature
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two-form on Q. If µ ∈ g∗, the corresponding two-forms Bµ ∈ Ω2(Q) and
Bµ ∈ Ω2(Q/G) defined by (2.9.3) and (2.9.4), respectively, are related by
π∗Q,GBµ = Bµ. In addition, Bµ satisfies the following G-equivariance prop-
erty:

Φ∗gBµ = BAd∗g µ.

Thus, if G = Gµ then dαµ = Bµ = π∗Q,GBµ, where αµ(q) = A(q)∗(µ).

Proof. The identity π∗Q,GBµ = Bµ is a restatement of (2.9.4). To prove
the equivariance of Bµ, note that for g ∈ G, Corollary 2.9.14 yields

Φ∗gBµ =
〈
µ,Φ∗gB

〉
= 〈µ,Adg ◦B〉 =

〈
Ad∗g µ,B

〉
= BAd∗g µ

as required.
The last relation is a consequence of Proposition 2.9.15. Indeed, if G =

Gµ then Φ∗gαµ = αµ for any g ∈ G so taking the derivative of this relation
relative to g at the identity yields £ξQαµ = 0. However, we also know that
αµ takes values in J−1(µ) and hence

(iξQαµ)(q) = 〈αµ(q), ξQ(q)〉 = 〈J(αµ(q)), ξ〉 = 〈µ, ξ〉 ,

that is, iξQαµ is a constant function on Q. Therefore,

iξQdαµ = £ξQαµ − diξQαµ = 0.

Now let q ∈ Q, uq, vq ∈ TqQ. Then uq − [〈A(q), uq〉]Q(q) is the horizontal
component of uq and similarly for vq. Therefore,

Bµ(q)(uq, vq) = 〈µ, dA(q) (uq − [〈A(q), uq〉]Q(q), vq − [〈A(q), uq〉]Q(q))〉
= dA(q) (uq, vq) ,

since each of the remaining three terms in the expansion is of the form
iξQdαµ = 0, as was shown above. �
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3
Basic Concepts in geometric Mechanics

3.7 Momentum Maps.

Singularities and Symmetry. The following is a basic link between
symmetries and singularities.

3.7.8 Proposition. Let (P,Ω) be a symplectic manifold, let G act on P
by Poisson mappings, and let J : P → g∗ be a momentum map for this
action (J need not be equivariant). Let Gz denote the symmetry group of
z ∈ P defined by Gz = {g ∈ G | gz = z} and let gz be its Lie algebra, so
gz = {ζ ∈ g | ζP (z) = 0}. Then z is a regular value of J if and only if gz
is trivial; i.e., gz = {0}, or Gz is discrete.

Proof. The point z is regular when the range of the linear map DJ(z)
is all of g∗. However, ζ ∈ g is orthogonal to the range (in the sense of the
g, g∗ pairing) if and only if for all v ∈ TzP ,

〈ζ,DJ(z) · v〉 = 0

i.e.,
d〈J, ζ〉(z) · v = 0,

which is equivalent to
Ω(X〈J,ζ〉(z), v) = 0,

that is,
Ω(ζP (z), v) = 0.

As Ω is nondegenerate, ζ is orthogonal to the range iff ζP (z) = 0. �
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The above proposition is due to Smale [1970]. It is the starting point
of a large literature on singularities in the momentum map and singular
reduction. Arms, Marsden, and Moncrief [1981] show, under some reason-
able hypotheses, that the level sets J−1(0) have quadratic singularities. In
the finite dimensional case, this result can be deduced from the equivariant
Darboux theorem.1

The convexity theorem states that the image of the momentum map of
a torus action is a convex polyhedron in g∗; the boundary of the polyhedron
is the image of the singular (symmetric) points in P ; the more symmetric
the point, the more singular the boundary point. These results are due to
Atiyah [1982] and Guillemin and Sternberg [1984] based on earlier convexity
results of Kostant and the Shur-Horn theorem on eigenvalues of symmetric
matrices. The literature on these topics and its relation to other areas of
mathematics is vast. See, for example, Goldman and Millson [1990], Bloch,
Flaschka, and Ratiu [1990], Bloch, Brockett, and Ratiu [1992], Sjamaar and
Lerman [1991] and Lu and Ratiu [1991].

3.8 Symplectic and Poisson Reduction.

The text developed some of the basics of reduction theory. An important
ingredient that ties this theory to the theory of connections in §2.9 is that
of the mechanical connection which we develop in this supplement.

The Mechanical Connection. As an example of defining a connection
by the specification of a horizontal space, suppose that the configuration
manifold Q is a Riemannian manifold. Of course, the Riemannian struc-
ture will often be that defined by the kinetic energy of a given mechanical
system.

Thus, assume that Q is a Riemannian manifold, with metric denoted 〈〈 , 〉〉
and that G acts freely and properly on Q by isometries, so πQ,G : Q→ Q/G
is a principal G-bundle.

In this context we may define the horizontal space at a point simply
to be the metric orthogonal to the vertical space. This therefore defines a
connection called the mechanical connection.

Recall from the historical survey in the introduction that this connection
was first introduced by Kummer [1981] following motivation from Smale
[1970] and Abraham and Marsden [1978]. See also Guichardet [1984], who
applied these ideas in an interesting way to molecular dynamics. The num-

1In the infinite dimensional case, things are more subtle. In fact, the infinite dimen-

sional results were motivated by, and apply to, the singularities in the solution space
of relativistic field theories such as gravity and the Yang-Mills equations (see Fischer,

Marsden, and Moncrief [1980], Arms, Marsden, and Moncrief [1981, 1982] and Arms

[1981]).
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ber of references since then making use of the mechanical connection is too
large to survey here.

In Proposition 3.8.5 we develop an explicit formula for the associated
Lie algebra valued 1-form in terms of an inertia tensor and the momentum
map. As a prelude to this formula, we show the following basic link with
mechanics. In this context we write the momentum map on TQ simply as
J : TQ→ g∗.

3.8.4 Proposition. The horizontal space of the mechanical connection
at a point q ∈ Q consists of the set of vectors vq ∈ TqQ such that J(vq) = 0.

Proof. This follows directly from the formula for the momentum map
for a Lagrangian that is given by the kinetic energy of a given Riemannian
metric, namely (see equation (3.7.4) of the text),

〈J(vq), ξ〉 = 〈〈vq, ξQ(q)〉〉

and the fact that the vertical space at q ∈ Q is spanned by the set of
infinitesimal generators ξQ(q). �

For each q ∈ Q, define the locked inertia tensor I(q) to be the linear
map I(q) : g → g∗ defined by

〈I(q)η, ζ〉 = 〈〈ηQ(q), ζQ(q)〉〉 (3.8.6)

for any η, ζ ∈ g. Since the action is free, I(q) is nondegenerate, so (3.8.6)
defines an inner product. The terminology “locked inertia tensor” comes
from the fact that for coupled rigid or elastic systems, I(q) is the classical
moment of inertia tensor of the rigid body obtained by locking all the joints
of the system. In coordinates,

Iab = gijK
i
aK

j
b , (3.8.7)

where [ξQ(q)]i = Ki
a(q)ξ

a define the action functions Ki
a.

Define the map A : TQ → g which assigns to each vq ∈ TqQ the corre-
sponding angular velocity of the locked system:

A(q)(vq) = I(q)−1(J(FL(vq))), (3.8.8)

where L is the kinetic energy Lagrangian. In coordinates,

Aa = IabgijK
i
bv
j (3.8.9)

since Ja(q, p) = piK
i
a(q).

We defined the mechanical connection by declaring its horizontal space
to be the metric orthogonal to the vertical space. The next proposition
shows that A is the associated connection one-form.
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3.8.5 Proposition. The g-valued one-form defined by (3.8.8) is the me-
chanical connection on the principal G-bundle πQ,G : Q→ Q/G.

Proof. First notice that A is G-equivariant and satisfies A(ξQ(q)) =
ξ, both of which are readily verified. In checking equivariance, one uses
invariance of the metric and hence equivariance of FL : TQ→ T ∗Q, where
L is the kinetic energy of the metric, equivariance of J : T ∗Q → g∗, and
equivariance of I in the sense of a map I : Q× g → g∗; that is,

I(g · q)(Adg ξ) = Ad∗g−1 I(q)(ξ).

Thus, A is a connection.
The horizontal space of A is given by

Hq = {vq ∈ TqQ | J(FL(vq)) = 0}. (3.8.10)

Thus, by Proposition 3.8.4 and the fact that any two connections with the
same horizontal spaces are equal, we get the result. �

Given a general connection A and an element µ ∈ g∗, we can define the
µ-component of A to be the ordinary one-form αµ given by

αµ(q) = A(q)∗µ ∈ T ∗qQ; i.e., 〈αµ(q), vq〉 = 〈µ,A(q)(vq)〉

for all vq ∈ TqQ. Note that αµ is a Gµ-invariant one-form. It takes values
in J−1(µ) since for any ξ ∈ g, we have

〈J(αµ(q)), ξ〉 = 〈αµ(q), ξQ〉 = 〈µ,A(q)(ξQ(q))〉 = 〈µ, ξ〉 .

In the case of the mechanical connection, Smale [1970] constructed αµ
by a minimization process. Let α]q ∈ TqQ be the tangent vector that corre-
sponds to αq ∈ T ∗qQ via the metric 〈〈 , 〉〉 on Q.

3.8.6 Proposition. The 1-form αµ(q) = A(q)∗µ ∈ T ∗qQ associated with
the mechanical connection A given by (3.8.8) is characterized by

K(αµ(q)) = inf{K(βq) | βq ∈ J−1(µ) ∩ T ∗qQ}, (3.8.11)

where K(βq) = 1
2‖β

]
q‖2 is the kinetic energy function on T ∗Q. See Figure

3.8.3.

The proof is a direct verification. We do not give here it since this propo-
sition will not be used later in this book. The original approach of Smale
[1970] was to take (3.8.11) as the definition of αµ. To prove from here
that αµ is a smooth one-form is a nontrivial fact; see the proof in Smale
[1970] or of Proposition 4.4.5 in Abraham and Marsden [1978]. Thus, one
of the merits of the previous proposition is to show easily that this vari-
ational definition of αµ does indeed yield a smooth one-form on Q with
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Q 

T ∗

q
Q

J
−1(µ) ∩ T ∗

q
Q

αµ(q)

q

Figure 3.8.3. The extremal characterization of the mechanical connection.

the desired properties. Note also that αµ(q) lies in the orthogonal space
to T ∗qQ ∩ J−1(µ) in the fiber T ∗qQ relative to the bundle metric on T ∗Q
defined by the Riemannian metric on Q. It also follows that αµ(q) is the
unique critical point of the kinetic energy of the bundle metric on T ∗Q
restricted to the fiber T ∗qQ ∩ J−1(µ).

3.13 Coupled Planar Rigid Bodies

In §3.13 of the text we studied some of the basic properties of the system
of coupled rigid bodies. Here we give some additional information on this
system and its extension to multibody problems.2

Equilibria and Stability by the Energy-Casimir Method. We now
use Arnold’s energy-Casimir method, to determine the equilibrium points
and their stability for the system of two coupled rigid bodies. An equiva-
lent alternative to this method is to look for critical points of H given by
(3.13.42) in the text, which is an expression in (θ, ν)-space and then to test
δ2H for definiteness at these equilibria.

To search for equilibria, we can look directly at Hamilton’s equations on
P . The conditions µ̇1 = µ̇2 = 0 give

∂H

∂θ
= 0; (3.13.45)

that is,

− 1
2
(µ1, µ2)J−1 ∂J

∂θ
J−1

(
µ1

µ2

)
= 0. (3.13.46)

Clearly,
dJ
dθ

=
(

0 ελ′

ελ′ 0

)
, (3.13.47)

2This section is based on Sreenath, Oh, Krishnaprasad, and Marsden [1988] and on

Oh, Sreenath, Krishnaprasad, and Marsden [1989].
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so we get

− 1
2
(ω1, ω2)

(
0 ελ′

ελ′ 0

)(
µ1

µ2

)
= 0; (3.13.48)

that is,
− ελ′ω1ω2 = 0. (3.13.49)

The equilibrium condition θ̇ = 0 becomes Ĩ1µ1 − ελµ2 = Ĩ2µ2 − ελµ1 or,
equivalently, ω1 = ω2. Thus, the equilibria are given by

(i) ω1 = ω2 = 0, or

(ii) ω1 = ω2 6= 0, λ′ = 0.

For simplicity, choose the reference configuration so that d12 and d21 are
parallel. Then

λ′(θ) = d12 · d21 sin θ

so the equilibria in case (ii) occur when

(ii′) either (a) d12 = 0 or d21 = 0, or (b) θ = 0 or π. The case in
which θ = π corresponds to the case of folded bodies, while θ = 0
corresponds to extended (stretched out) bodies.

The first step in the energy-Casimir method is to realize the equilibria
as critical points of H + C. We calculate that

∂H

∂θ
= ελ′ω1ω2

∂H

∂µ1
= ω1;

∂H

∂µ2
− ω2,

(3.13.50)

where (
ω1

ω2

)
= J−1

(
µ1

µ2

)
=

1
∆

 Ĩ2µ1 − ελµ2

Ĩ1µ2 − ελµ1

 .

The first variation is

d(H + C) =
∂H

∂θ
dθ +

(
∂H

∂µ1
+ Φ′

)
dµ1 +

(
∂H

∂µ2
+ Φ′

)
dµ2, (3.13.51)

from which we see that critical points of H + C correspond to equilibria
provided

Φ′(µe) = −
(
∂H

∂µ1

)
e

= −
(
∂H

∂µ1

)
e

, (3.13.52)

where the subscript e means evaluation at the equilibrium. Here, Φ′′(µe) is
arbitrary.
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The matrix of the second variation of H + C at equilibrium is

δ2(H + C) =



∂2H

∂θ2
∂2H

∂θ∂µ1

∂2H

∂θ∂µ2

∂2H

∂θ∂µ1

∂2H

∂µ2
1

+ Φ′′
∂2H

∂µ1∂µ2
+ Φ′′

∂2H

∂θ∂µ2

∂2H

∂µ1∂µ2
+ Φ′′

∂2H

∂µ2
2

+ Φ′′


, (3.13.53)

where 
∂2H

∂µ2
1

∂2H

∂µ1∂µ2

∂2H

∂µ1∂µ2

∂2H

∂µ2
2

 = J−1 =
1
∆

(
Ĩ2 −ελ
−ελ Ĩ1

)
,

∂2H

∂θ∂µ1
= −ελ

′

∆2
(Ĩ2ω2 − ελω1),

∂2H

∂θ∂µ2
= −ελ

′

∆2
(−ελω2 + Ĩ1ω1),

and

∂2H

∂θ2
=

∂

∂θ

[
−ελ′ ∂H

∂µ1

∂H

∂µ2

]
= −ελ′′ω1ω2 − ελ′

∂2H

∂θ∂µ1
ω2 − ελ′ω1

∂2H

∂θ∂µ2
.

At equilibrium, λ = ±d1d2 (+ if θ = 0,− if θ = π) and so

J−1 1
(Ĩ1Ĩ2 − ε2d2

1d
2
2)

[
Ĩ2 ∓εd1d2

∓εd1d2 Ĩ1

]
,

∂2H

∂θ∂µ1
= 0 =

∂2

∂θ∂µ2
, and

∂2H

∂θ2
= −ελ′′ω2

e = ±εd1d2ω
2
e ,

where ωe = ω1 = ω2 6= 0 at equilibrium. Thus we get

δ2(H + C) =

 ±ελd1d2ω
2
e 0

0 J−1 + Φ′′
(

1 1
1 1

)  . (3.13.54)

This matrix is clearly positive definite if d1 6= 0, d2 6= 0 if θ = 0 (+ sign)
and Φ′′(µe) ≥ 0 and is indefinite for any choice of Φ′′(µe) if θ = π.

Another way to do the stability analysis is to use the reduced Hamilto-
nian on T ∗S1. After completing squares, H will have the form of kinetic
plus potential energy with effective potential given by

V (θ) =
1

2∆

[
1
4
µ2(Ĩ1 + Ĩ2 − 2ελ) +

(Ĩ1 + Ĩ2)2µ2

4(Ĩ1 + Ĩ2 + 2ελ)

]
. (3.13.55)

Minima of V are then the stable equilibria while maxima are unstable. The
following theorem summarizes the situation.
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3.13.2 Theorem. The dynamics of the 2-body problem is completely in-
tegrable and contains one stable relative equilibrium solution (θ = 0—the
stretched-out case) and one unstable relative equilibrium solution (θ = π—
the folded-over case). The reduced dynamics contains a homoclinic orbit
joining the unstable equilibrium to itself.

For three or more bodies, this method of looking for minima of the poten-
tial will not work in a naive way because the symplectic structures on the
symplectic leaves will have magnetic terms. The general theory for dealing
with this situation is given in Simo, Lewis, and Marsden [1991]. See the
internet supplement for further details on the case of multibody problems.

Multibody Problems. The Hamiltonian formulation of that section
extends to systems of N planar rigid bodies connected to form a tree
structure . Since the general statement of this result requires significant
additional notation we limit ourselves to the special case of a chain of N
bodies.

3.13.3 Theorem. The total kinetic energy (Hamiltonian) for an open
chain of N planar rigid bodies connected together by hinge joints has the
form

H = µT · J−1 · µ (3.13.56)

where µ = (µ1, µ2, . . . , µN )T is the momentum vector and J is the corre-
sponding N × N inertia matrix which is a function of the set of relative
(or joint) angles between adjacent bodies. The reduced dynamics takes the
form

µ̇1 =
∂H

∂θ2,1

µ̇2 =
∂H

∂θ3,2
− ∂H

∂θ2,1

µ̇i =
∂H

∂θi+1,i
− ∂H

∂θi,i−1

µ̇N = − ∂H

∂θN,N−1

θ̇i+1,i =
∂H

∂θi+1
− ∂H

∂µi
for i = 1, . . . , N − 1) (3.13.57)

where θi+1,i is the joint angle between body i+1 and body i. The associated
Poisson structure is given by

{f, g} =
N−1∑
i=0

(
∂f

∂µi
− ∂f

∂µi+1

)
∂g

∂θi+1,i
− ∂f

∂θi+1,i

(
∂g

∂µi
− ∂g

∂µi+1

)
.

(3.13.58)
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This is proven in a way similar to the two-body case. The structure of
equilibria and the associated stability analysis become quite complex and
interesting as the number of interconnected bodies increases. A mixture
of topological and geometric methods may be necessary to extract useful
information on the phase portraits.

In the remainder of this section, we illustrate some of the complexities
of multibody problems by discussing of the equilibria and stability for a
system of three planar rigid bodies connected by hinge joints (see figure
3.13.1).

body 1

body 2

body 3

R(θ3)d32

θ3,2

R(θ2)d23
θ2,1

R(θ1)d21

R(θ1)d12

Figure 3.13.1. Planar three-body system.

The Hamiltonian of the planar three-body problem is given by equation
(3.13.56) with the momentum vector µ and the coefficient of inertia matrix
J being defined as follows:

µ = (µ1, µ2, µ3)T ,

J =


Ĩ1 λ̃12(θ2,1) λ̃31(θ2,1 + θ3,2)

λ̃12(θ2,1) Ĩ1 λ̃23(θ3,2)

λ̃31(θ2,1 + θ3,2) λ̃23(θ3,2) Ĩ3

 . (3.13.59)
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Here θ2,1 and θ3,2 are the relative angles between bodies 2 and 1, and bodies
3 and 2, respectively. The coefficients of inertia Ĩi and λ̃ij are given by

Ĩ1 = [I1 + (ε12ε31) 〈d12,d12〉],
Ĩ2 = [I2 + ε12 〈d21,d21〉+ ε23 〈d23 − d23〉

+ ε31 〈(d23 − d21), (d23 − d21)〉]
Ĩ3 = [I3 + (ε23 + ε31) 〈d32,d32〉]

λ̃12(θ2,1) = [ε12λ(−d21,d12)(θ2,1) + ε31λ(d23,−d21,d12))(θ2,1)]

λ̃23(θ3,2) = [ε23λ(−d32,d23)(θ3,2) + ε31λ(−d32,d23,d21))(θ3,2)]

λ̃31(θ2,1) + θ3,2) = ε31λ(d32,d12)(θ2,1 + θ3,2)

εij =
mimj

m1 +m2 +m3
, i 6= j and i, j = 1, 2, 3

λ(x,y)(α) = x · y cosα+ [x× y] sinα,

where the mi and Ii are the mass and inertia respectively of the body i,
and the dij are defined as in the figure.

The dynamics of a three-body system of planar, rigid bodies in the Hamil-
tonian setting is given by:

µ̇1 =
∂H

∂θ2,1

µ̇2 = − ∂H

∂θ2,1
+

∂H

∂θ3,2

µ̇3 = − ∂H

∂θ3,2
(3.13.60)

θ̇2,1 =
∂H

∂µ2
− ∂H

∂µ1

θ̇3,2 =
∂H

∂µ3
− ∂H

∂µ2

Using Equation 3.13.60 note that the sum µ1 + µ2 + µ3 of momentum
variables is constant in time.

In Sreenath, Oh, Krishnaprasad, and Marsden [1988] and Oh [1987], it
is shown that for three coupled rigid bodies there are either 4 or 6 relative
equilibria and the bifurcations between these are determined as a function
of the system parameters. It is also shown that near the stable stretched
out relative equilibrium, there are relative periodic orbits distinguished
by symmetry type. This is done using the Montaldi, Roberts, and Stewart
[1988] symmetric version of the Moser-Weinstein theorem (Weinstein [1973,
1978a] and Moser [1976]). Also, it is shown that the dynamics is, in general,
not integrable by using the Poincaré–Melnikov method.
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4
Introduction to Aspects of Geometric
Control Theory

4.7 An Alternative View of Hamiltonian
and Lagrangian Control Systems

This supplement presents an alternative point of view from that discussed
in Section 4.6 of the text for defining Hamiltonian (or Lagrangian) systems
with external forces, such as controls. More precisely, the section discusses
briefly how one might characterize Hamiltonian control systems among a
suitable class of general nonlinear control systems with inputs and outputs.
This is an approach which is developed in detail in the book of Crouch and
van der Schaft [1987]. This generalizes the work of Brockett and Rahimi
[1972] which characterizes linear Hamiltonian systems among the set of
linear input-output maps. The approach here is variational.

One generalizes the definition of a Hamiltonian vector field as a param-
eterization of a Lagrangian submanifold, as discussed in section 3.3. If in
system

ẋ = f(x, u), (4.7.1)
y = h(x, u),

N = P = Rk, set

ωe =
k∑
i=1

dui ∧ dyi

as a symplectic form on R2k, parameterized by coordinates (u1, . . . , uk, y1,
. . . , yk). Assume that M is symplectic with symplectic form ω, then TM ⊕
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R2k is a symplectic manifold with symplectic form ω̇ + ωe. (The notation
ω̇ was defined in §3.7).

If H(x, u) is a function on M ⊕ Rk ⊂ TM ⊕ R2k, we may consider the
following system generated by H

ẋ = XH(x,u)(x) (4.7.2)

y =
∂H

∂u
(x, u)

where XH is the Hamiltonian vector field on M (with symplectic form
ω). System (4.7.2) defines a Lagrangian submanifold N of TM ⊕R2k with
symplectic form ω̇ + ωe, N = {(x, u), (XH , (∂H/∂u))}. (Lagrangian sub-
manifolds were defined in Section 3.3). It follows that one may define a
Hamiltonian control system (4.6.4), with N = P = Rk, as globally pa-
rameterized Lagrangian submanifolds of TM ⊕ R2k with symplectic form
ω̇ + ωe. See van der Schaft [1982, 1983] for a detailed discussion.

If H is affine in the coordinates ui, the vector field XH is also affine in
ui, and so one can directly compare XH with XL (and LF∗XL = XH) in
(3.6.0), where M = TQ and F (t) has the form

F (t) =
k∑
i=1

ηiui(t), ηi ∈ Γ(T ∗Q). (4.7.3)

Unfortunately, the restrictions imposed by the structure (4.7.2) do not
make for direct comparisons, except in some special cases. However, the
model (4.7.2) has some added attractions when studying the input-output
properties of systems (4.7.1).

In the work of Brockett and Rahimi [1972] , it was shown that one could
characterize initialized, linear, time invariant, Hamiltonian systems (4.7.2)
with input-output maps

y(t) =
∫ t

0

W (t− σ)u(σ)dσ (4.7.4)

by the additional symmetry property of the impulse response

W (t) = −W (−t)T . (4.7.5)

This result was generalized to nonlinear systems (4.7.2) by Crouch and
van der Schaft [1987] , using a variational property. Specifically, if (u, y) is
the input response of a system (4.7.1), with N = V = Rk, P = V ∗ = Rk,
and defined on the infinite interval (−∞,∞), then we define an admissible
variation of (u, y) to be a mapping

(t, ε) 7→ (u(t, ε), y(t, ε)), (t, ε) ∈ (−∞,∞)× (−δ, δ)

satisfying
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(i) (u(t, 0), y(t, 0)) = (u(t), y(t))

(ii) (u(t, ε), y(t, ε)) is an input-output response of a given system (4.7.1)
for each ε ∈ (−δ, δ)

(iii) (δu(t), δy(t)) = (∂/∂ε)|ε=0(u(t, ε), y(t, ε)) has compact support along
(u, y).

We define a manifold MV of maps consisting of all input-output behav-
iors (u, y) of systems (1), corresponding to the same input-output space
N = V = Rk, P = V ∗ = Rk∗ . The set of all admissible variations of
(u, y) ∈ MV defines a set of variational fields (δu, δy) along (u, y), which
may be interpreted as the tangent space to MV at (u, y). There is a skew
form on this tangent space defined by

ω(u,y)((δ1u, δ1y), (δ2u, δ2y)) =
∫ ∞

−∞
(δ2y(δ1u)− δ1y(δ2u))dt. (4.7.6)

The notion of isotropic, co-isotropic and Lagrangian submanifolds can be
defined as it is for finite dimensional manifolds. It is shown in Crouch and
van der Schaft [1987] that the set of input-output behaviors for Hamiltonian
systems (4.7.2) form a Lagrangian submanifold of the manifold MV .

It is interesting to note that this variational characterization of Hamil-
tonian systems is related to the classical inverse problem in mechanics,
(see, for example Anderson and Duchamp [1980], Santilli [1978], and refer-
ences therein.) In its most basic version, this problem considers an implicit
system of second order equations

Ri(q, q̇, q̈) = 0, 1 ≤ i ≤ n, q ∈ Rn,

where [∂2Rk/∂q̈i∂q̈j ]1≤i,j≤n is an invertible matrix for all values of (q, q̇, q̈),
and asks: “when this system is equivalent to a system of Lagrangian equa-
tions for some choice of Lagrangian function L?” This problem is in fact
a special case of the problem of determining when there exists a function
H(x, u) such that system (4.7.1) coincides with the Hamiltonian system
(4.7.2). This problem is answered in detail in Crouch and van der Schaft
[1987]. Clearly the conditions that are developed in this work ensure that
the symplectic form (4.7.6) vanishes and, for linear systems, they are equiv-
alent to the condition (4.7.5) of Brockett and Rahimi [1972]

We shall return to systems of this type. Good discussions are given in
Krishnaprasad [1985] and Sanchez [1989].



22 4. Introduction to Aspects of Geometric Control Theory



Page 23

5
Nonholonomic Mechanics

5.2 The Lagrange–d’Alembert Principle

The Equations of Motion in terms of the Constrained Lagrangian.
Here we give some of the calculations necessary to derive the equations of
motion for a nonholonomic system in terms of the constrained Lagrangian
that were stated in §5.2 of the text, namely as

d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L

∂ṡb
Bbαβ ṙ

β , (5.2.17)

where

Bbαβ =

(
∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)
. (5.2.18)

The derivation of these equations of motion proceeds as follows: using
the relationships

∂Lc
∂ṙα

=
∂L

∂ṙα
−Abα

∂L

∂ṡb

∂Lc
∂rα

=
∂L

∂rα
− ∂L

∂ṡb

(
∂Abβ
∂rα

ṙβ

)
∂Lc
∂sa

=
∂L

∂sa
− ∂L

∂ṡb

(
∂Abβ
∂sa

ṙβ

)
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and substituting Lc into the nonholonomic Lagrange equations yields

d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

=
(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
−Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
− ∂L

∂ṡb
d

dt
Abα +

∂L

∂ṡb
∂Abβ
∂rα

ṙβ −Aaα
∂L

∂ṡb
∂Abβ
∂sa

ṙβ

=
(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
−Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
+
∂L

∂ṡb

(
∂Abβ
∂rα

− ∂Abα
∂rβ

+Aaβ
∂Abα
∂sa

−Aaα
∂Abβ
∂sa

)
ṙβ .

Hence the equations of motion can be written as claimed.
Note that Lc is a degenerate Lagrangian in the sense that it does not

depend on ṡ. Also note that thinking of s as a cyclic variable does not lead
to conservation laws in the usual way because of the constraints.

To see how the right hand side of the constrained Lagrange d’Alembert
equation is related to the curvature of the Ehresmann connection of A =
ωa(∂/∂sa), let dωb be the exterior derivative of ωb:

dωb = d(dsb +Abαdr
α)

=
∂Abα
∂rβ

drβ ∧ drα − ∂Abα
∂sa

Aaβdr
β ∧ drα. (5.2.19)

Contracting dωb with q̇ yields

dωb(q̇, ·) =
∂Abα
∂rβ

ṙβdrα − ∂Abα
∂sa

Aaβ ṙ
βdrα − ∂Abα

∂rβ
ṙαdrβ +

∂Abα
∂sa

Aaβ ṙ
αdrβ

=

(
∂Abα
∂rβ

+
∂Abβ
∂sa

Aaα −
∂Abβ
∂rα

− ∂Abα
∂sa

Aaβ

)
ṙβdrα

= Bbαβ ṙ
αdrβ . (5.2.20)

Combining all of these calculations, we can write the equations of motion
for the constrained system as

d

dt

∂Lc
∂ṙα

− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L

∂ṡa
dωa

(
q̇,

∂

∂rα

)
. (5.2.21)

The left-hand side of (5.2.21) may be checked to be the variational deriva-
tive of the constrained Lagrangian. The right-hand side consists of the
forces that maintain the constraints. In the special case that the constraints
are holonomic, dωa = 0 since dωa represents the curvature and the cur-
vature measures the lack of integrability of the constraints; when they are
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integrable, we have, by definition, the holonomic case. In this case, equa-
tion (5.2.21) reduces to the usual form of Lagrange’s equations. This verifies
that for holonomic systems it is appropriate to “plug in the constraints”
before applying Lagrange’s equations.

5.3 An Invariant Approach to
Nonholonomic Mechanics

In this section we consider an invariant approach to Lagrangian mechanics
in general and nonholonomic mechanics in particular. We follow here the
approach of Vershik [1984] (see also Wang and Krishnaprasad [1992]). A
general invariant approach to Lagrangian mechanics is also discussed for
example in Marsden and Ratiu [1999].

Lagrangian Mechanics. We consider firstly a general invariant formu-
lation of Lagrangian mechanics without constraints.

Let TQ be the tangent bundle of Q, an n-dimensional manifold, with its
canonical projection and let it be locally co-ordinitized by (q, q̇) ∼ (q, v).
Here q, v represent n-vectors. We consider here notions of verticality and
horizontality with respect to the trivial connection on TQ, i.e., combina-
tions of vectors ∂

∂qi are horizontal and combinations of vectors ∂
∂vi are

vertical. (It is important to bear this in mind when discussing constraints
below, so as not to confuse this discussion with the connection given by the
constraints discussed elsewhere.)

Since Lagrangian equations are second order we also need the second
tangent bundle T (TQ) with projection TτQ : T (TQ) → TQ locally co-
ordinitized by (q, v, v, v̇). (A useful refererence in this regard is Marsden,
Patrick, and Shkoller [1998].) In fact we want vector fields of the type

q̈ = f(q, q̇) (5.3.1)

or

q̇ = v

v̇ = f(q, v). (5.3.2)

Written as a vector field a second order equation takes the form

Xq,v = Xs = v
∂

∂q
+ f

∂

∂v
, (5.3.3)

(with the obvious summation notation).
Invariantly we may write this as TτQXs = v—its projection onto the

tangent space to Q is just v. We call such a vector field Xs a “special”
vector field.
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Now one can formulate Lagrangian mechanics in an invariant fashion by
defining fields on TQ as follows: Let TqQ and Tq,vTQ define the tangent
space to Q at q and TQ at (q, v) respectively. We set up a canonical map
from TqQ to Tq,vTQ which takes the fiber over q (locally vectors of the form
a ∂
∂q ) into the fiber over Tq,vTQ (vectors of the form a ∂

∂q + b ∂∂v ). Locally
this map is defined by

γq,v

(
a
∂

∂q

)
= a

∂

∂v
. (5.3.4)

Define a tensor field on TQ, called the principal tensor field, by

Pq,v = γq,v Tτq,v . (5.3.5)

So locally we have

Pq,v

(
a
∂

∂q
+ b

∂

∂v

)
= γq,v Tτq,v

(
a
∂

∂q
+ b

∂

∂v

)
= γq,v

(
a
∂

∂q

)
= a

∂

∂v
. (5.3.6)

The dual tensor field P ∗ acts locally on forms as follows

P ∗(adq + bdv) = bdq. (5.3.7)

This can be easily checked: we have〈
P ∗(adq + bdv), c

∂

∂q
+ d

∂

∂v

〉
=
〈
adq + bdv, P

(
c
∂

∂q
+ d

∂

∂v

)〉
=
〈
adq + bdv, c

∂

∂v

〉
= bc. (5.3.8)

Hence
P ∗(adq + bdv) = bdq. (5.3.9)

Now we define another key concept—the fundamental vector field on TQ:
this is a field with coordinates

Φq,v = γq,vv
∂

∂q
= vi

∂

∂vi
.

Clearly a vector field X is special if and only if PX = Φ, since in local
coordinates a special vector field is of the form

Xq,v = vi
∂

∂qi
+ · · · . (5.3.10)
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Now let L be the Lagrangian—as usual a smooth function on TQ. We note
that locally

P ∗(dL) = P ∗
(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i
)

=
∂L

∂q̇i
dqi (5.3.11)

—clearly a horizontal 1-form since it annihilates vertical vector fields a ∂
∂v

(Vershik calls this form the impulse field of the Lagrangian.) One can iden-
tify horizontal 1-forms in Lagrangian mechanics as forces—see later).

We define the Lagrangian 2-form to be

ΩL = −d(P ∗dL)

= −d
(
∂L

∂q̇i
dqi
)

= − ∂2L

∂qj∂vi
dqj ∧ dqi +

∂2L

∂vj∂vi
dqj ∧ dvi. (5.3.12)

Recalling the Legendre transformation pi = ∂L
∂qi we see that the image of

ΩL under the Legendre transformation is the canonical symplectic form on
the cotangent bundle. Similarly the Hamiltonian (energy) is

HL = dL(Φ)− L. (5.3.13)

Note that in local coordinates

dL(Φ) = dL

(
vi

∂

∂vi

)
=
∂L

∂vi
vi = piv

i , (5.3.14)

(with the summation convention).
Now we can formulate the Lagrange d’Alembert principle as follows:

5.3.1 Definition (The Lagrange D’Alembert Principle). The vector field
Y describing the mechanical trajectories of motion is given by

ΩL(X,Y ) = dHL(Y ) + ω(Y ) (5.3.15)

where ω is the 1-form describing the exterior forces and X is a special
vector field.

In the absence of exterior forces we recover the Lagrange equations as
follows. Let

X = v
∂

∂q
+ v̇

∂

∂v
, Y = a

∂

∂q
+ b

∂

∂v
. (5.3.16)
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Then

ΩL(X,Y ) = − ∂2L

∂qj∂vi
(vjai − ajvi) +

∂2L

∂vj∂vi
(vjbi − aj v̇i) , (5.3.17)

dHL(Y ) = d

(
∂L

∂vi
vi − L

)
(Y ) (5.3.18)

=
( ∂L
∂vi

dvi +
∂2L

∂qj∂vi
vidqj +

∂2L

∂vi∂vj
vidvj

− ∂L

∂qi
dqi − ∂L

∂vi
dvi
)
(Y )

=
∂L

∂vi
bi +

∂2L

∂qj∂vi
viaj +

∂2L

∂vj∂vi
vibj − ∂L

∂qi
ai − ∂L

∂vi
bi .

Equating coefficients of ai and bi which are arbitrary we get:

− ∂2L

∂qj∂vi
vj +

∂2L

∂qi∂vj
vj − ∂2L

∂vj∂vi
v̇j = − ∂L

∂qi
+

∂2L

∂qi∂vj
vj

∂2L

∂vi∂vj
vj =

∂L

∂vi
+

∂2L

∂vi∂vj
vj − ∂L

∂vi

The second equation is an identity while the first equation is just

d

dt

(
∂L

∂vi

)
=
∂L

∂qi
. (5.3.19)

as required.

Constrained Dynamics. We now consider the invariant formulation of
dynamics with constraints.

As in Vershik [1984], we assume a slightly more general form of the
constraints—we assume that they define a distribution on TQ, i.e., they
define at each point a subspace of TTQ(q, q̇). This fits naturally with the
definition of 2nd order systems, although it is more general than needed.
Hence we can define the constraints to be 1-forms on TQ (a codistribution
of TQ) and they thus take the form

θi = Σnk=1aik(q)dq
k + Σnk=1bik(q)dv

k, i = 1 · · ·m. (5.3.20)

A constrained dynamical system is then a special (2nd order) vector field
compatible with these constraints. The case of interest to us is when the θi
are differentials of functions on TQ i.e., of the form df(q, v) – in particular
the case f(q, v) =

∑
k aik(q)v

k so

θi =
∑
k

aikdv
k +

∑
k,j

∂aik
∂qj

vkdqj . (5.3.21)

We now want to define reaction forces—the forces that keep the system on
the constraint manifold and to show that in the “ideal” case such forces do
no work.
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5.3.2 Definition. Given constraints θi as in (5.3.20) we define P ∗θi(=∑
bikdq

k) to be the reaction forces.

Note that in the case (5.3.21) this is just

P ∗θi =
∑
k

aikdq
k. (5.3.22)

5.3.3 Definition. A set of constraints is said to be admissible if

Dim span P ∗θi = Dim span θi.

(This is equivalent to saying that the codistribution given by the θi has
no horizontal covectors at any point, since the kernel of P ∗ is horizontal
1-forms. Another way to think of this: since horizontal vectors are linear
combinations of vectors ∂

∂qi , the vectors ai = (ai1, · · · , ain) must be linear
combination of the vectors bi = (bi1, · · · , bin) so that if one has some vectors
in the span of the ∂

∂qi there is also a component in the span of the ∂
∂vi .)

5.3.4 Definition. A constraint is said to be ideal if it annihilates the
fundamental vector field

Φ( =
∑
i

vi
∂

∂vi
locally).

Then we have

5.3.5 Theorem. If a set of constraints is admissible there exist special
vector fields satisfying the constraints.

Proof. Recall that the special vector fields are those satisfying τX = Φ.
Therefore we need to ask if the system

PX = Φ θi(X) = 0, i = 1, · · · ,m (5.3.23)

is solvable.
Let

X =
∑
i

vi
∂

∂qi
+ f i

∂

∂vi
.

Since the constraints are admissible, by the argument above the vectors ai

are in the span of the vectors bi. Now we require

θi(X) =
∑
k

bikf
k +

∑
k

aikv
k = 0. (5.3.24)
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Thus we wish to know whether the system of linear equations∑
k

bikf
k = −

∑
k

aikv
k

in the f i can be solved. But this is clear by the admissibility argument.
In fact, since there are m conditions on the f i there are at least n − m
independent special vector fields. �

A force is said to do no work if
∫
F · dq = 0 along any curve in the

configuration space.

5.3.6 Theorem. If a constraint is ideal the corresponding constraint
forces do no work (i.e., they are virtual forces.)

Proof. Let ξ be a closed curve in Q, i.e., a map from S1 to Q and let ξ̃
be its lift to TQ.

Then ∫
ξ̃

τ∗θi =
∫
S1

〈
τ∗θi,

˙̃
ξ
〉

=
∫
S1

〈
θi, τ

˙̃
ξ
〉

where <,> is the natural pairing between forms and their duals.
But if ξ = q(t) and ξ̃ = (q(t), q̇(t)) then

˙̃
ξ = q̇

∂

∂q
+ q̈

∂

∂v
. (5.3.25)

Hence

τ( ˙̃
ξ) = q̇

∂

∂v
= v

∂

∂v
= Φ.

Thus we get ∫
S1

〈θi,Φ〉 = 0 (5.3.26)

by ideality.
The usual arguments imply this integral is zero along any curve. �

Now we can show

5.3.7 Theorem. Let θi, i = 1 . . .m define a constraint distribution on
TQ and let L be a nondegenerate Lagrangian with positive definite Hessian
∂2L

∂vi∂vj . Then there exists a special vector field X satisfying the Lagrange
d’Alembert principle

iXΩL = dHL + ω ; (5.3.27)

that is,
ΩL(X,Y ) = (dHL + ω)(Y ) ∀ vector field Y,
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where ω is the constraint force that ensures θi(X) = 0, i = 1, . . . ,m. Locally
the equations of motion are

d

dt

(
∂L

∂qi

)
− ∂L

∂qi
=
∑

λiθi. (5.3.28)

Proof. Since ΩL is nondegenerate there is a map from 1-forms to vector
fields πL such that

ΩL (πL(ρ), Y ) = ρ(Y ) (5.3.29)

for Y an arbitrary tangent vector and ρ an arbitrary 1-form. Then

X = πL(dHL + ω) (5.3.30)

and we require〈
θi, πL(dHL) + πL(ω)

〉
= 0 i = 1, . . . ,m. (5.3.31)

Now ω, by definition of the constraint force, needs to be a linear combina-
tion of τ∗θi, i.e., of the form

∑
i λiaikdqk.That is, we have〈

θi , πL(dHL)
〉

= −
〈
θi ,
∑
i

λiπLτ
∗θi

〉
i = 1, . . . ,m. (5.3.32)

Since the constraints are admissible, τ∗ preserves the dimension of the span
of θi, but since πL is positive definite the restriction of πL to the span of
the τ∗θi is also positive definite and thus nondegenerate. Since the operator
πLτ

∗ is thus of full rank, we can solve the system for λi.
The local form of the equations follows from the general Lagrange theory

above and of course agree with the coordinate form derived elsewhere. �

5.5 The Momentum Equation.

The Nonholonomic Connection and Reconstruction

Here we discuss the application of the momentum equation to the problem
of reconstructing paths on configuration space Q given a path in the base
space Q/G. Many of the things already given in Chapter 5 will be given
here from a slightly different point of view and with some additional details
given.

In many systems the base space Q/G corresponds to the set of variables
which are directly controlled by the application of control forces, and hence
we can follow any path in Q/G by application of appropriate forces. It is
therefore natural to focus on how these paths lift, as described by the
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constraints, the generalized momenta, and the momentum equation, to the
full configuration space. The main tool tool to be discussed here is that
of the nonholonomic connection, a synthesis of the mechanical and the
kinematic connections.

The Unconstrained Case. We will begin by recalling the reconstruc-
tion procedure for unconstrained mechanical systems. As we discussed ear-
lier for unconstrained mechanical systems with symmetries, the equations
of motion are naturally described in using the principal bundle Q→ Q/G.
In essence, the dynamical equations split into two pieces by using Hamil-
ton’s principle δL = 0 and dividing the variations into vertical variations
and a set of complementary variations. The vertical variations lead to a set
of conservation laws of the form

d

dt
〈FL, ηQ〉 = 0,

for all η ∈ g. These equations are equivalent to the Euler-Poincaré equations
when the Euler-Lagrange equations are written in a local trivialization. As
we mentioned above, the mechanical connection is related to the momentum
map and the locked inertia tensor by

A(q) · vq = I−1(q)J(vq).

Given a path in the base space Q/G, we can now use the connection to
reconstruct the motion of the system in the full space Q. The conservation
law can be written as

A(q) · q̇ = I−1(q)J(q̇) = I−1(q)µ

where µ ∈ g∗ is a (constant) momentum. If we choose a local trivializa-
tion of the bundle with coordinates q = (r, g) ∈ (Q/G) × G (locally), the
conservation law becomes

A(q) · q̇ = Adg(g−1ġ +Aloc(r)ṙ) = (AdgI−1
loc(r)Ad∗g) · µ

where Iloc is the local expression for the locked inertia tensor written as
a function over Q/G. Rearranging this equation, we see that the group
variables evolve according to

ġ = g (−Aloc(r)ṙ + Ω) (5.5.16)

where Ω = I−1
loc(r)p is the body angular velocity and where p = Ad∗g ·µ is the

body angular momentum. Note that the variables p (or Ω if one is doing
the Lagrangian point of view) are to be included amongst the variables in
the reduced phase space. Thus, given a path r(t) in the base variables, a
motion in the body angular momentum (p) space or velocity (Ω) space, and
an initial condition for the group variables, we can reconstruct the motion
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in the group and hence on the entire space, as in Marsden, Montgomery,
and Ratiu [1990]. Finally, we reiterate a basic fact from this discussion:
the body angular velocity Ω = ξ + Aloc(r)ṙ (where ξ = g−1ġ) is the local
representative of the vertical part of the velocity vector q̇.

If nonholonomic constraints are present, it is still possible to reconstruct
the path in the group variables given the path in the base. This is use-
ful in control applications since it allows us to study the motion of the
system without considering the full equations of motion. We break the fol-
lowing discussion into three cases: purely kinematic constraints, horizontal
symmetries, and the general case. The purely kinematic case occurs when
the constraint distribution complements the symmetry group orbit. In this
case, it is clear that we do not get any nontrivial components to the momen-
tum equation and that the constraint distribution itself defines a principal
connection.

The Principal or Purely Kinematic Case. Recall that a set of non-
holonomic constraints is said to be purely kinematic if the constraints define
a connection on a principal bundle and that this situation occurs when the
constraint distribution is G-invariant and the tangent space to the group
orbit forms a complement to the constraint distribution; that is, the sub-
bundle with the fibers Sq = Dq∩Tq(Orb(q)) = {0} for all q ∈ Q. What this
really means is that there are no momentum equations in this case and that
correspondingly there is no analogue of the body angular momentum or ve-
locity, as there was in the preceding discussion of unconstrained systems.
In particular, relative to a local trivialization q = (r, g) the constraints can
be written as

A(q)q̇ =
[
Adg(g−1ġ +Aloc(r)ṙ)

]
Q

= 0.

The motion in the fibers is thus given by

ġ = −gAloc(r)ṙ

and we can reconstruct the group motion given the trajectory in Q/G.
In this case, as we saw previously, the equations reduce to second order
equations for r; that is, to second order equations on Q/G. The motion on
the full space is then determined by the solution to these reduced equations
followed by first order equations for the group variables.

This can be said a slightly different way: in the case of purely kinematic
constraints, the kinematic connection replaces the mechanical connection
to determine the motion in the fibers. This situation occurs only when the
constraint distribution D and the vertical subspace Tq(Orb(q)) are such
that TqQ = Tq(Orb(q)) ⊕ Dq, so that Dq can be taken as the horizontal
space for a connection. Thus the conservation law which would govern the
motion in the group variables if no constraints were present is replaced
by the motion dictated by the constraints. See Koiller [1992] for a further
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discussion of the purely kinematic case, including a description of reduction
in that context. This reduction result can be obtained as a special case of
the results of Cendra, Marsden, and Ratiu [2001b], where it is shown how
to reduce the horizontal part of the variational principal relative to any
connection.

The Case of Horizontal Symmetries. A second case in which it is
possible to lift the motion from the base Q/G to the fibers using a connec-
tion is when there are enough horizontal symmetries such that they and the
constraints interact in a complementary fashion. This situation occurs, for
example, when there is a subgroup of G whose action on the configuration
space satisfies the constraints. We call a symmetry of this type a horizontal
symmetry (relative to the kinematic constraints). When horizontal symme-
tries are present, the motion in the group variables can be reconstructed
by combining the kinematic constraints with the conservation laws corre-
sponding to the horizontal symmetries. This is the case for the ball on the
rotating plate.

We begin by restricting ourselves to the case when Dq + Tq(Orb(q)) =
TqQ for all q ∈ Q and we assume that there exists a a subgroup H ⊂ G
such that ξQ ∈ D for all ξ ∈ h and Dq ∩ Tq(OrbG(q)) = Tq(OrbH(q)). We
call H the group of horizontal symmetries and define the momentum map
JH : TQ→ h∗ ⊂ g∗ as

〈JH(vq), ξ〉 = 〈FL(vq), ξQ〉 ξ ∈ h.

For a Lagrangian of the form kinetic energy minus potential energy we can
write the generalized momenta as linear functions of the velocity and these
generalized momenta are constant along solution curves since ξq = ξ ∈ h is
constant. Thus we have

〈JH(q) · q̇, ξ〉 = 〈µ, ξ〉 ξ ∈ h

where µ ∈ h∗ is a constant and we see that the generalized momentum has
the form of an affine constraint

JH(q) · q̇ = µ. (5.5.17)

To reconstruct the motion in the fibers, we build a connection on Q →
Q/G by augmenting the kinematic constraints with the conservation law.
Let I(q) : h → h∗ be the locked inertia tensor relative to h, defined by

〈I(q)ξ, η〉 = 〈〈ξQ, ηQ〉〉 ξ, η ∈ h.

We define a map Asym : TQ→ S as

Asym(vq) =
(
I−1(q)JH(vq)

)
Q

(5.5.18)
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and the conservation law (5.5.17) can be rewritten as an affine constraint

Asym(q̇) =
(
I−1(q)µ

)
Q
. (5.5.19)

The one-form Asym takes values in Sq = Tq(OrbH(q)) and is equivariant
with respect to the full group action since the kinetic energy metric is
invariant and the momentum map is equivariant. It also follows from the
definition of the momentum map that Asym is a projection onto S and
hence it maps vectors on Sq to themselves.

By assumption, the constraint distributionD is invariant and if we choose
a subspace Uq ⊂ Tq(Orb(q)) such that Tq(Orb(q)) = Uq ⊕ Sq then we can
represent the constraints using a U valued one-form Akin : TQ→ Uq where
Akin satisfies the following conditions:

Akin(vq) = 0 if and only if vq ∈ Dq
Akin(vq) = vq for all vq ∈ Uq

Φg∗Akin = AkinΦg∗.

 (5.5.20)

We now combine the two mappings to form a new mapping A : TQ →
T Orb, where T Orb denotes the union of the tangent spaces to the group
orbits, that is, to the vertical bundle for the projection Q → Q/G, as
follows:

A = Akin +Asym. (5.5.21)

The mapping A : TQ→ T Orb is an equivariant Ehresmann connection
on the bundle Q→ Q/G and hence we can write

A(vq) = (A(vq))Q,

where A : TQ → g is a principal connection. To see that A is an Ehres-
mann connection it suffices to show that it is a projection on Uq and Sq.
This follows immediately from the fact that Asym and Akin are equivariant
projections onto S and U respectively and Tq(Orb(q)) = Sq⊕Uq. Equivari-
ance follows directly from the equivariance of Uq and Sq and the existence
of A follows from general properties of equivariant Ehresmann connections.

5.5.9 Definition. We call the map A : TQ → Tq(Orb(q)) defined by
equations (5.5.19)–(5.5.21) the nonholonomic connection (in the case
of horizontal symmetries).

Notice that the nonholonomic connection in the case of horizontal sym-
metries reduces to the kinematic connection in the purely kinematic case
and the mechanical connection in the unconstrained case. See Figure 5.5.1

The overall motion of the system satisfies

A(q) · q̇ = (I−1(q)µ)Q (5.5.22)
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.

Figure 5.5.1. The decomposition of q̇ into vertical and horizontal pieces relative to the

nonholonomic connection.

which has the form of an affine constraint. The locked inertia tensor relative
to h satisfies

I(g · q) = Ad∗g−1I(q)Adg−1

and hence in general the affine part of the constraint (5.5.22) is not equiv-
ariant since

I−1(g · q)µ = AdgI−1(q)Ad∗gµ 6= Adg(I−1(q)µ).

This lack of invariance of the affine portion, as in the unconstrained case,
would cause problems in the construction of a principal connection if one
tried to make full use of the conservation laws by holding µ fixed. On the
other hand, the actual reduced variables correspond to the body angular
velocity or momentum, and in these variables, equivariance is restored. Let
us be more specific: Equation (5.5.22) describes how to lift paths from the
base space Q/G to the full space Q. This is most easily seen relative to a
local trivialization q = (r, g), where the constraints can be written as

A(q) · q̇ = Adg(g−1ġ +Aloc(r)ṙ) = AdgI−1
loc(r)Ad∗gµ

where AdgI−1
loc(r)Ad∗gµ is the gD-valued function associated with the con-

stant momentum µ ∈ h∗. This equation can be rewritten as

ġ = g(−Aloc(r)ṙ + I−1
loc(r)Ad∗gµ)

which shows how the path r(t) ∈ Q/G lifts to the fibers.
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Noting that Ad∗gµ = p is the body angular momentum and I−1
loc(r)p = Ω

is the corresponding body angular velocity, which may be regarded as a
dynamical variable in its own right, then the reconstruction equation takes
the form

ġ = g(−Aloc(r)ṙ + Ω). (5.5.23)

This equation again has the form ġ = gξ and where ξ = −Aloc(r)ṙ+Ω has
been determined by equations of motion that themselves are independent of
the group variable. This form, rather than the form in which the momentum
has been set equal to a constant shows the decoupling from the group
variables most clearly. As we saw before, and will do more generally below,
it is the variable ξ rather than the body angular velocity variable that
evolves by means of a component of the Euler-Poincaré equation. On the
other hand, it is Ω that is the vertical variable relative to the nonholonomic
connection

verq q̇ = Ω = Aloc(r)ṙ + g−1ġ,

which is an instance of the general coordinate expression for the vertical
part of a principal connection. As we shall see in a moment, this point of
view generalizes to the case of nonhorizontal symmetries.

The preceding equations only hold when Dq+Tq(Orb(q)) = TqQ andDq∩
Tq(OrbG(q)) = Tq(OrbH(q)). If we drop the second restriction, then the
reconstruction procedure must be modified to account for the interaction
between the constraints and the symmetries. The developments below will
include this more general situation.

Finally we end with a notational remark. In the general nonholonomic
case, as we have seen, the momentum map need not be conserved. In any
case, even if it is, the momentum in body representation, p is not constant.

The Nonholonomic Connection

We now consider the most general case, where the symmetries are not
necessarily horizontal. Although it is not needed for everything that we
will be doing, the examples and the theory are somewhat simplified if we
make the following assumption:

Dimension Assumption. The constraints and the orbit directions span
the entire tangent space to the configuration space:

Dq + Tq(Orb(q)) = TqQ (5.5.24)

If this condition holds, we shall say that we are in the principal case .

In this case, the momentum equation can be used to augment the con-
straints and provide a connection on Q → Q/G. Let Jnhc : TQ → (gD)∗
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be the nonholonomic momentum map,

〈Jnhc(q) · q̇, ξq〉 = 〈FL, ξqQ〉

and define, as before, a map Asym
q : TqQ→ Sq = Dq ∩ Tq(Orb(q)) given by

Asym
q (vq) = (I−1Jnhc(vq))Q (5.5.25)

This map is equivariant and a projection onto Sq. Here I : gD → (gD)∗ is
the locked inertia tensor relative to gD; it is defined in the same way as
before.

If we now choose Uq ⊂ Tq(Orb(q)) such that Tq(Orb(q)) = Sq ⊕ Uq then
we can synthesize a connection which encodes both the constraints and
the momenta, as before. Let Akin

q : TqQ → Uq be a Uq valued form that
projects Uq onto itself and maps Dq to zero; for example, it can be given
by orthogonal projection relative to the kinetic energy metric (this will be
our default choice). The constraints plus momentum equation can thus be
written as

Akin(q) · q̇ = 0 (constraints)

Asym(q) · q̇ = (I−1(q)p)Q (momenta),

where p ∈ (gD)∗ is the time dependent momentum defined by

p =
〈
Jnhc(q) · q̇, ξq

〉
.

5.5.10 Definition. Under the dimension assumption in equation (5.5.24),
and the assumption that the Lagrangian is of the form kinetic minus po-
tential energies, the nonholonomic connection A is the connection on
the principal bundle Q → Q/G whose horizontal space at the point q ∈ Q
is given by the orthogonal complement to the space Sq within the space Dq.

Under the assumption that the distribution is invariant (condition (S1)),
and from the fact that the group action preserves orthogonality, it follows
that the distribution S and the horizontal spaces transform to themselves
under the group action. Thus, we get:

5.5.11 Proposition. Under the assumptions in the previous definition
and the condition (S1), the nonholonomic connection is a principal con-
nection.

Using the preceding expressions, an expression for the nonholonomic con-
nection as an Ehresmann connection (and hence also as a principal con-
nection) is given by our earlier calculations. In fact, one can readily check
that the following proposition holds:
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5.5.12 Proposition. The nonholonomic connection regarded as an Ehres-
mann connection is given by

A = Akin +Asym. (5.5.26)

When the connection is regarded as a principal connection (i.e., takes values
in the Lie algebra rather than the vertical space) we will use the symbol A.

The nonholonomic connection defined here agrees with the definition in
the horizontal case. (In making this comparison, note that in the general
definition of the connection, we do not fix the value of µ but rather let it
be determined by the point vq at which the connection is evaluated.)

The affine constraint A(q) · q̇ = (I−1(q) ·p)Q describes the lifting of paths
from the base. The formula for the nonholonomic connection is given in
terms of Akin, which depends on the choice of complement Uq to Sq within
the tangent space to the orbit. However, it is easily seen that A : TQ →
T Orb is independent of this choice, as it must be since the definition of
the nonholonomic connection was manifestly independent of this choice.

Special Cases. Various special cases can be conveniently classified by
the generic and extreme ways the subspaces in the preceding figure in-
tersect. For example, the purely kinematic case is when the space Sq is
zero dimensional. The extreme case in which the tangent space to the or-
bit is a subset of the space of constraints is itself an extreme case of that
of horizontal symmetries, etc. These different cases we have discussed are
summarized in Table 5.5.1.

Case Conditions Connection
Unconstrained Dq = TqQ Asym(q̇) = I−1J(q̇)
Purely kinematic Dq ∩ Tq(Orb(q)) = {0} Akin(q̇) = 0

Horizontal Dq ∩ Tq(OrbG(q)) Asym(q̇) +Akin(q̇)
symmetries = Tq(OrbH(q)) = I−1JH(q̇)

General principal Dq + Tq(Orb(q)) = TqQ Asym(q̇) +Akin(q̇)
bundle case = I−1Jnhc(q̇)

TABLE 5.5.1. Special cases of the nonholonomic connection (principal case).

In addition to these possibilities, one can also consider the case where
Dq + Tq(Orb(q)) 6= TqQ. When this happens the base space for the Ehres-
mann connection can no longer be chosen as Q/G and hence a bigger base
space must be chosen. However, the basic constructions still hold with the
momentum augmenting the constraints to give a synthesized connection.

Within this overall framework, reduction is also possible in certain cases.
For example, in the purely kinematic case, Koiller [1992] showed that the
dynamics of the system drop to the base space Q/G. Similarly, in the
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case of horizontal symmetries, we have discussed the situation above. The
general case will be discussed below and the reduced equations computed.
In the general case, the reduced equations will define a dynamical system
on the space D/G, and the reconstruction problem, which we have largely
discussed already, will be the problem of lifting the dynamics from D/G
back to the space D ⊂ TQ.

5.8 Computation of the Reduced Lagrange
d’Alembert Equations

Here we compute explicitly the nonholonomic equations on the reduced
space D/G. The strategy is to explore the equations of motion, split accord-
ing to the nonholonomic connection that was constructed above. Through-
out this section we make the dimension assumption of §5.7 of the main text,
so that the nonholonomic connection is a principal connection. Without this
assumption, one would have to assume an additional bundle structure. We
avoid this for simplicity and because the dimension assumption holds in all
our examples and other related ones we know about (such as the bicycle,
the rolling ellipsoid, etc.).

The Momentum Equation in an Orthogonal Body Frame. We
shall first compute the reduced form of the momentum equation that will
be one of the sets of equations comprising the reduced Lagrange d’Alembert
equations. This splitting of the equations is associated with breaking up the
variations that go into the Lagrange d’Alembert principle into vertical and
horizontal parts relative to the nonholonomic connection. To do this, we
make the assumption, that the initial Lagrangian is of the form of kinetic
minus potential energy; in particular, the metric structure defined by the
kinetic energy will be used. Using the kinetic energy metric, we choose our
moving basis ec(q) to be orthogonal; that is, the corresponding generators
[ec(q)]Q are orthogonal in the given kinetic energy metric. (Actually, all
that is needed is that the vectors in the set of basis vectors corresponding
to the subspace Sq be orthogonal to the remaining basis vectors.) The
metric tensor will be denoted by gij .

We begin by recalling the decompositions defined by the nonholonomic
connection described earlier. Given a velocity vector q̇ that satisfies the
constraints, we orthogonally decompose it into a piece in Sq and an or-
thogonal piece denoted ṙh. We regard ṙh as the horizontal lift of a velocity
vector ṙ on shape space; recall that in a local trivialization, the horizontal
lift to the point (r, g) is given by

ṙh = (ṙ,−Alocṙ) = (ṙα,−Aaαṙα)

where Aaα are the components of the nonholonomic connection (recall that
it is a principal connection) in a local trivialization.
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We will denote the decomposition of q̇ by

q̇ = ΩQ(q) + ṙh,

so that for each point q, ω is an element of the Lie algebra and represents the
spatial angular velocity of the locked system. Note that in this expression,
the constraints are implicitly included. In a local trivialization, we can
write, at a point (r, g)

Ω = Adg(Ωloc)

so that Ωloc represents the body angular velocity. Thus,

Ωloc = Alocṙ + ξ

and, at each point q, the constraints are that Ω belongs to gq, i.e.,

Ω ∈ span{e1(r), e2(r), . . . , em(r)}.

As noted above, the vector ṙh need not be orthogonal to the whole orbit,
just to the piece Sq. Even if q̇ does not satisfy the constraints we can
decompose it into three parts according to the figure and write

q̇ = ΩQ(q) + ṙh = Ωnh
Q (q) + Ω⊥Q(q) + ṙh,

where Ωnh
Q lies in the space Sq, that is, it satisfies the constraints, and is

perpendicular within Tq Orb to Ω⊥Q. The relation Ωloc = Alocṙ + ξ is valid
even if the constraints do not hold; also note that this decomposition of
Ω corresponds to the decomposition of the nonholonomic connection given
by A = Akin +Asym.

We begin with the momentum equation in body representation, which
we recall here for convenience:

d

dt
pb =

〈
∂l

∂ξ
, [ξ, eb] +

∂eb
∂rα

ṙα
〉
. (5.8.1)

This equation is one of the reduced equations since it manifestly decouples
from the group variables. We shall now work out this equation in coordi-
nates.

As above we make the following index and summation conventions

1. The first batch of indices range from 1 to m corresponding to the
symmetry directions along constraint space. These indices will be
denoted a, b, c, d, ... and a summation from 1 to m will be understood.

2. The second batch of indices range from m+ 1 to k corresponding to
the symmetry directions not aligned with the constraints. Indices for
this range or for the whole range 1 to k will be denoted by a′, b′, c′, ...
and the summations will be given explicitly.



42 5. Nonholonomic Mechanics

3. The indices α, β, ... on the shape variables r range from 1 to σ. Thus,
σ is the dimension of the shape space Q/G and so σ = n − k. The
summation convention for these indices will be understood.

We shall need the following calculation:

5.8.6 Proposition. In a local trivialization we have〈
∂l

∂ξ
, η

〉
= Iac(r)Ωaηc +

k∑
a′=m+1

λa′αη
a′ ṙα = pcη

c +
k∑

a′=m+1

λa′αη
a′ ṙα.

(5.8.2)
In this equation, the partial derivatives of l are evaluated at a point (r, ṙ, ξ)
satisfying the constraints (that is, the corresponding Ωloc = ξ + Alocṙ lies
in gq) and η is an arbitrary element of g. Also,

pb = Iab(r)Ωa,

where Iab(r) are the coefficients of the locked inertia tensor Iloc(r) in a local
trivialization (recall from the last section that the locked inertia tensor has
indices that range only over the first batch), and where

λa′α = la′α −
k∑

b′=1

la′b′Ab
′

α :=
∂l

∂ξa′∂ṙα
−

k∑
b′=1

∂l

∂ξa′∂ξb′
Ab

′

α , (5.8.3)

for a′ = m+ 1, . . . k.

Proof. We denote the kinetic energy metric on TqQ by 〈〈 , 〉〉q. The corre-
sponding metric on g restricted to the subspace gq gives the locked inertia
tensor as we saw before.

The kinetic energy is given as follows, without the assumption that q̇
satisfies the constraints:

K(q, q̇) =
1
2
〈〈
Ωnh
Q + Ω⊥Q + ṙh,Ωnh

Q + Ω⊥Q + ṙh
〉〉
q

=
1
2
〈〈
Ωnh
Q ,Ω

nh
Q

〉〉
q
+
〈〈
Ω⊥Q, ṙ

h
〉〉
q

+
1
2
〈〈
Ω⊥Q,Ω

⊥
Q

〉〉
q
+

1
2
〈〈
ṙh, ṙh

〉〉
q
, (5.8.4)

where we have suppressed the q dependence of ΩQ(q) for simplicity.
Now we pass to a local trivialization and remove the explicit g depen-

dence. We change variables to (r, ṙ,Ω) by the transformation Ω = ξ+Alocṙ,
which is valid even if the constraints are not satisfied. The partial deriva-
tives with respect to Ω equal those with respect to ξ (evaluated at the
corresponding points).
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To form the reduced Lagrangian, we substitute ṙh = (ṙα,−Aaαṙα) into
the second term and arrive at

1
2
IacΩaΩc +

k∑
a′=m+1

la′,αΩa
′
ṙα −

k∑
a′,c′=m+1

la′c′Ωa
′
Ac

′

α ṙ
α + χ

where Ωa and Ωa
′

are the components of Ωnh and Ω⊥ respectively, where
the subscripts on the l denote the corresponding partial derivatives, as
above, and where χ corresponds to the last two terms in (5.8.4), which will
vanish when the partials are taken with respect to Ω at Ω⊥ = 0. It should
now be clear that the derivatives of this expression evaluated at Ω⊥ = 0
are as stated in the proposition. �

The coefficients λa′α measure the failure of the horizontal space for the
nonholonomic connection to be orthogonal to the tangent space to the
orbit.

Next, for each b such that 1 ≤ b ≤ m, we write out the components of
the remaining expression in (5.8.1):

[ξ, eb] +
∂eb
∂rα

ṙα = [Ω−Alocṙ, eb] +
∂eb
∂rα

ṙα

=
k∑

c′=1

Cc
′

abΩ
aec′ −

k∑
a′,c′=1

Cc
′

a′bAa
′

α ṙ
αec′

+
k∑

c′=1

γc
′

bαṙ
αec′ (5.8.5)

where the symbols such as Cc
′

a′b are the corresponding components of the
structure constants in the given basis and where we have written

∂eb
∂rα

=
k∑

c′=1

γc
′

bαec′ (5.8.6)

and

Alocṙ =
k∑

a′=1

Aa
′

α ṙ
αea′ . (5.8.7)

Substituting (5.8.2), (5.8.5), (5.8.6) and (5.8.7) into (5.8.1), we arrive at
the following.

5.8.7 Proposition. The momentum equation in an orthogonal body frame
is given as follows:

d

dt
pb = CcabI

adpcpd +Dcbαṙαpc +Dαβbṙαṙβ , (5.8.8)
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where

Dcbα =
k∑

a′=1

−Cca′bAa
′

α + γcbα +
k∑

a′=m+1

λa′αC
a′

abI
ac, (5.8.9)

Dαβb =
k∑

a′=m+1

λa′α

(
−Ca

′

abAaβ + γa
′

bβ

)
. (5.8.10)

In the case of the snakeboard, the subspace gq is one dimensional as we
shall see, and the following corollary applies.

5.8.8 Corollary. If the subspace gq is either one dimensional or abelian,
then the first term on the right hand side of (5.8.8), which is quadratic in
p, is zero.

Another notable special case is the following, which will be used in the
example of a constrained particle in R3 to produce a nontrivial parallel
transport equation.

5.8.9 Corollary. If g is abelian, and if the horizontal space is (kinetic
energy metric) orthogonal to the group orbit, then the momentum equation
is in the form of a parallel transport equation over the curve r(t) in shape
space:

d

dt
pb = γcbαṙ

αpc.

We observe that the parallel transport form of the equations is charac-
terized by the vanishing of the terms in the momentum equation that are
purely quadratic in ṙ and in p. This situation is important in understanding
the complete integrability of some systems, such as Routh’s problem of the
rolling ball in a surface of revolution; cf Zenkov [1995].

The Reduced Equations. We now are in a position to put several parts
of the preceding discussions together. As we saw above, the momentum
equation in body representation decouples from the group variables them-
selves, which is important for the reconstruction strategy. On the other
hand, this is a local representation for the intrinsic equations on the space
D/G. As we mentioned before, it is convenient to write them in local rep-
resentation in terms of the variables Ω and ṙ for several reasons:

1. This split of the equations corresponds to a global intrinsic split of
the Lagrange–d’Alembert principle according to the nonholonomic
connection (we emphasize that there is some freedom here; other
connections can be used in its place).

2. This split enables us to use the (locked) body angular velocity Ω
as a basic variable instead of ξ since it has better diagonalization
properties for the kinetic energy and will ultimately be more useful
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for purposes of stability analyses; these two variables are related by
the velocity shift given by the nonholonomic connection:

Ωloc = Alocṙ + ξ.

We will show that the equations of motion can be written (using a local
trivialization) as three systems of equations, namely

• The constraint equations

• The reduced Euler-Lagrange equations using the nonholonomic con-
nection for the variable ṙ

• The momentum equation (of Euler-Poincaré type) in body represen-
tation.

We formulate the reduced Lagrange–d’Alembert equations under the as-
sumptions of Proposition 5.5.11. In this context, the Lagrange–d’Alem-
bert principle may be broken up into two principles by breaking the vari-
ations δq into two parts, namely parts that are horizontal with respect
to the nonholonomic connection and parts that are vertical (but still in
D). We will use as variables, (rα, ṙα,Ωa) where (r, ṙ) are variables in
the base and where Ω is the vertical part (the locked body angular ve-
locity). Let lc(r, ṙ,Ω) denote the reduced Lagrangian written in terms
of these variables as before; the subscript c is used to indicate the fact
that Ω is confined to the constraint subspace gq. Use the orthogonal ba-
sis e1(r), e2(r), . . . , em(r), em+1(r), . . . ek(r) introduced for the momentum
equation in body representation (recall that this means that the first m
elements are orthogonal as are the second k−m elements but that the two
sets need not be orthogonal to each other). Let

pb(r, ṙ,Ω) =
〈
∂lc
∂Ω

, eb(r)
〉
, b = 1, . . . ,m.

(We repeat here the earlier statement of this result.)

5.8.10 Theorem. The following reduced nonholonomic Lagrange-
d’Alembert equations or Lagrange-d’Alembert-Poincaré equations
hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

− ∂lc
∂rα

= −∂I
cd

∂rα
pcpd −DcbαIbdpcpd − Bcαβpcṙβ

−DβαbIbcpcṙβ −Kαβγ ṙβ ṙγ ,
d

dt
pb = CcabI

adpcpd +Dcbαpcṙα +Dαβbṙαṙβ .

Here lc(rα, ṙα, pa) is the constrained Lagrangian; rα, 1 ≤ α ≤ σ, are coordi-
nates in the shape space; pa, 1 ≤ a ≤ m, are components of the momentum
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map in the body representation, pa = 〈∂lc/∂Ωloc, ea(r)〉; Iad are the com-
ponents of the inverse locked inertia tensor; Baαβ are the local coordinates
of the curvature B of the nonholonomic connection A; and the coefficients
Dcbα, Dαβb, Kαβγ are given by the formulae

Dcbα =
k∑

a′=1

−Cca′bAa
′

α + γcbα +
k∑

a′=m+1

λa′αC
a′

abI
ac,

Dαβb =
k∑

a′=m+1

λa′α

(
γa
′

bβ −
k∑

b′=1

Ca
′

b′bAb
′

β

)
,

Kαβγ =
k∑

a′=1

λa′γBa
′

αβ ,

where

λa′α = la′α −
k∑

b′=1

la′b′Ab
′

α :=
∂l

∂ξa′∂ṙα
−

k∑
b′=1

∂l

∂ξa′∂ξb′
Ab

′

α

for a′ = m+ 1, . . . , k. Here Cb
′

a′c′ are the structure constants of the Lie al-
gebra defined by [ea′ , ec′ ] = Cb

′

a′c′eb′ , a
′, b′, c′ = 1, . . . , k; and the coefficients

γc
′

bα are defined by

∂eb
∂rα

=
k∑

c′=1

γc
′

bαec′ .

Proof. The second set of equations, which are the momentum equations,
were derived in the preceding proposition. To get the first set of equations,
one can proceed in three ways. First, one can invoke the calculations for
the motion relative to a general Ehresmann connection, restricting oneself
to the variations that are horizontal; this is a straightforward, although
somewhat tedious calculation. Alternatively, one can make use of the hor-
izontal part of the calculations in Marsden and Scheurle [1993b], which as
we remarked, are valid for any choice of connection. In particular, one can
use the nonholonomic connection. A third method is to write the equations
in a “vector” form similar to those for the momentum equation in body
representation that we derived earlier by using the local form of the equa-
tions regarding the momentum terms as affine constraints (see equation
(5.2.9) of the text):

−δlc =−
〈
∂l

∂ξ
, dAloc(ṙ, δr)− [Aloc(ṙ),Aloc(δr)]

〉
−
〈
∂l

∂ξ
, (DI−1

locp)(δr)
〉
. (5.8.11)
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When these equations are converted to coordinate form and the basic dy-
namical variables are taken to be (r, ṙ,Ω = I−1

locp), one recovers the coordi-
nate form above. �

The above equations become the reduced Euler-Lagrange equations, also
called the Lagrange-Poincaré equations in case there are no constraints. No-
tice also that the reduced equations are decoupled from the group variables,
which is important for the reconstruction process. We summarize what we
have already established on reconstruction as follows:

5.8.11 Proposition. The group variables are reconstructed by means of
the equation

ġ = g · ξ

where ξ = Ω−Alocṙ.

Of course we could also write this equation in terms of the nonholonomic
momentum pb. As before, let A : TQ → g be the Lie algebra valued one-
form corresponding to Aq : TqQ → Tq(Orb(q)). Since the nonholonomic
momentum map is equivariant, we can write it in a local trivialization, as
before:

Jnhc(g, r, ġ, ṙ) = Ad∗g−1(Jnhc
loc (r, ṙ, ξ)).

This is a form similar to that for the local expression for a connection and
its curvature. Then the reconstruction equation becomes

ġ = g(−Aloc(r)ṙ + I−1
loc(r)p)

where Aloc : T (Q/G) → g is the local version of A and I−1
loc is the local

version of the locked inertia tensor, as was defined before.
Note that ġ depends linearly on ṙ and also linearly on p. In the case of

horizontal symmetries, the term −Alocṙ defines the geometric phase and
the term Ωloc = I−1

loc(r)p := Γ(r)p determines the dynamic phase. We adopt
the same terminology in the general case. If the dynamic phase term is
zero then the motion in the group variables is determined solely by the
path in the base space, not its time parametrization. On the other hand,
the dynamic phase determines the motion of the system when ṙ = 0 and
hence corresponds to unforced motions of the system. For a system with
horizontal symmetries, p is a constant.

As we have shown, it is possible to choose a basis of sections for Sq = Dq∩
TqOrb such that the momentum map and the locked inertia tensor is group
invariant (independent of g). This was also shown by Ostrowski, Burdick,
Lewis, and Murray [1995] , who write the momentum and reconstruction
equations in the form

ġ = g(−Aloc(r)ṙ + I(r)−1p)
ṗ = σ(r, ṙ, p)
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To reiterate, the reconstruction process now decouples as follows: given
an initial condition and a path in the base space, we first integrate the
momentum equation to determine p(t) for all time. We then use r(t) and
p(t) to determine the motion in the fiber. This decoupling is only possible
when ṗ is independent of g, since otherwise the equations for p and g are
coupled. Of course, this whole process can be read in many different ways
depending on the dynamics and control objectives.

The intrinsic geometry of the Lagrange-d’Alembert-Poincare equations
is studied in detail in Cendra, Marsden, and Ratiu [2001b]

5.9 The Lagrangian and Hamiltonian
Comparison.1

This section compares the Hamiltonian approach to systems with non-
holonomic constraints (see Weber [1986], Arnold, Kozlov, and Neishtadt
[1988], and Bates and Sniatycki [1993], van der Schaft and Maschke [1994]
and references therein) with the Lagrangian approach (see Koiller [1992],
Ostrowski [1995] and Bloch, Krishnaprasad, Marsden, and Ratiu [1996]).
There are many differences in the approaches and each has its own ad-
vantages; some structures have been discovered on one side and their ana-
logues on the other side are interesting to clarify. For example, the mo-
mentum equation and the reconstruction equation were first found on the
Lagrangian side and are useful for the control theory of these systems, while
the failure of the reduced two form to be closed (i.e., the failure of the Pois-
son bracket to satisfy the Jacobi identity) was first noticed on the Hamil-
tonian side. Clarifying the relation between these approaches is important
for the future development of the control theory and stability and bifur-
cation theory for such systems. In addition to this work, we treat, in this
unified framework, a simplified model of the bicycle (see Getz and Marsden
[1995]), which is an important underactuated (nonminimum phase) control
system.

Review of the Hamiltonian Formulation. Bates and Sniatycki [1993],
hereafter denoted [BS], developed the Hamiltonian side, while Bloch, Kr-
ishnaprasad, Marsden, and Murray [1996], hereafter denoted [BKMM], ex-
plored the Lagrangian side and that approach has been reviewed in the
preceding sections. It was not obvious how these two approaches were equiv-
alent because, for example, [BKMM] developed the momentum equation
and the reduced Lagrange-d’Alembert equations and it is not obvious how
these correspond to the developments in [BS]. Our aim is to establish links
between these two sides and use the ideas and results of each to shed light

1This section is based on Koon and Marsden [1997b]
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on the other, with the goal of deepening our understanding of both points
of view.

We illustrate the basic theory with the snakeboard, the well known ex-
ample treated in [BKMM].

The approach of [BS] starts on the Lagrangian side with a configuration
space Q and a Lagrangian L of the form kinetic energy minus potential
energy, i.e.,

L(q, q̇) =
1
2
〈〈q̇, q̇〉〉 − V (q),

where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a po-
tential energy function. We do not restrict ourselves to Lagrangians of this
form.

As above, our nonholonomic constraints are given by a distribution D ⊂
TQ. We also let Do ⊂ T ∗Q denote the annihilator of this distribution.

As above, the basic equations are given by the Lagrange-d’Alembert
principle.

The Legendre transformation FL : TQ → T ∗Q, assuming that it is a
diffeomorphism, is used to define the Hamiltonian H : T ∗Q → R in the
standard fashion (ignoring the constraints for the moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of vari-
ables, the equations of motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
.

ṗi = −∂H
∂qi

+ λaω
a
i ,

where i = 1, . . . , n, together with the constraint equations.
The preceding Hamiltonian equations can be rewritten as

iXΩ = dH + λaπ
∗
Qω

a, (5.9.1)

where X is the vector field on T ∗Q governing the dynamics, Ω is the canon-
ical symplectic form on T ∗Q, and πQ : T ∗Q → Q is the cotangent bundle
projection. We may write X in coordinates as X = q̇i∂qi + ṗi∂pi .

On Lagrangian side, we saw that one can get rid of the Lagrangian mul-
tipliers. On the Hamiltonian side, it is also desirable to model the Hamil-
tonian equations without the Lagrange multipliers by a vector field on a
submanifold of T ∗Q. We do this in what follows.

First of all, we define the set M = FL(D) ⊂ T ∗Q, so that the constraints
on the Hamiltonian side are given by p ∈ M. Besides M, another basic
object we deal with is defined as

F = (TπQ)−1(D) ⊂ TT ∗Q.
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Using a basis ωa of the annihilator Do, we can write these spaces as

M = {p ∈ T ∗Q | ωa((FL)−1(p)) = 0}, (5.9.2)

and
F = {u ∈ TT ∗Q |

〈
π∗Qω

a, u
〉

= 0}. (5.9.3)

Finally, we define
H = F ∩ TM.

Using natural coordinates (qi, pi, q̇i, ṗi) on TT ∗Q, we see that the dis-
tribution F naturally lifts the constraint on q̇ from TQ to TT ∗Q. On the
other hand, the space M puts the associated constraints on the variable p
and therefore the intersection H puts the constraints on both variables.

To eliminate the Lagrange multipliers, we regard the Hamiltonian equa-
tions as a vector field on the constraint submanifold M⊂ T ∗Q which takes
values in the constraint distribution H. Next we recall from [BS] how to
construct these equations intrinsically using the ideas of symplectic geom-
etry.

A result of [BS] is that ΩH, the restriction of the canonical two-form Ω
of T ∗Q fiberwise to the distribution H of the constraint submanifold M,
is nondegenerate. Note that ΩH is not a true two form on a manifold, so
it does not make sense to speak about it being closed. We speak of it as
a fiber-restricted two form to avoid any confusion. Of course it still makes
sense to talk about it being nondegenerate; it just means nondegenerate
as a bilinear form on each fiber of H. The dynamics is then given by the
vector field XH on M which takes values in the constraint distribution H
and is determined by the condition

iXHΩH = dHH (5.9.4)

where dHH is the restriction of dHM to H. We will be exploring the coor-
dinate meaning of this condition and its comparison with the Lagrangian
formulation in the subsequent sections.

Lagrangian Side. We now construct the geometric structures on the
tangent bundle TQ corresponding to those on the Hamiltonian side from
the preceding subsection and formulate a similar procedure for obtaining
the equations of motion. By doing this, it will be easier to made comparison
with the geometric constructions and analytic formulations in [BKMM].

First of all, we can define the energy function E simply as E = H ◦ FL
and pull back to TQ the canonical two-form on T ∗Q and denote it by ΩL.

We define the distribution C = (TτQ)−1(D) ⊂ TTQ, where τQ : TQ →
Q. In coordinates, the distribution C consists of vectors annihilated by the
form τ∗Qω

a:
C = {u ∈ TTQ |

〈
τ∗Qω

a, u
〉

= 0}. (5.9.5)
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When C is restricted to the constraint submanifold D ⊂ TQ, we obtain the
constraint distribution K:

K = C ∩ TD. (5.9.6)

Clearly M = FL(D) and H = TFL(K).
The dynamics is given by a vector field XK on the manifold D which

takes values in K and satisfies the equation

iXKΩK = dEK, (5.9.7)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the
distribution K and where ED and ΩD are the restrictions of E and ΩL to
D.

The Equivalence of the Hamiltonian and the Lagrange-d’Alembert
Formulations. The Lagrangian procedure on TQ formulated in the pre-
ceding subsection acts as a bridge between [BS] and [BKMM]. We can show
the correctness of the Lagrangian procedure given above by (carefully) in-
voking the results of [BS] (generalized to arbitrary Lagrangians and with
some gaps filled in), or by checking the methods against the results of
[BKMM]. We choose the latter method.

5.9.1 Theorem. Consider a configuration space Q, a hyperregular La-
grangian L and a distribution D that describes the kinematic nonholonomic
constraints. The K-valued vector field XK on D given by the equation

iXKΩK = dEK (5.9.8)

defines dynamics that are equivalent to the Lagrange-d’Alembert equations
together with the constraints.

Proof. Consider the following form of the equations: iXHΩM = dHM on
H; that is,

〈iXHΩM, u〉 = 〈dHM, u〉 ,

for all u ∈ H. If we rewrite this in the form 〈dHM − iXHΩM, u〉 = 0, then
on the Lagrangian side, this is nothing but

〈dED − iXK(ΩL)D, v〉 = 0,

where v ∈ K. With appropriate interpretations, this is equivalent to Lagrange-
d’Alembert principle: (

d

dt

∂L

∂q̇i
− ∂L

∂qi

)
(δqi) = 0

ωa(q̇) = 0

where ω(δq) = 0. �
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Example: The Snakeboard. As in §5.8, the snakeboard is a modified
version of a skateboard in which the front and back pairs of wheels are
independently actuated. The extra degree of freedom enables the rider to
generate forward motion by twisting their body back and forth, while si-
multaneously moving the wheels with the proper phase relationship. For
details, see [BKMM] and the references listed there. Here we shall include
some of the computations shown in that paper both for completeness as
well as to make concrete the nonholonomic theory.

The snakeboard is modeled as a rigid body (the board) with two sets
of independently actuated wheels, one on each end of the board. The hu-
man rider is modeled as a momentum wheel which sits in the middle of
the board and is allowed to spin about the vertical axis. Spinning the mo-
mentum wheel causes a counter-torque to be exerted on the board. The
configuration of the board is given by the position and orientation of the
board in the plane, the angle of the momentum wheel, and the angles of the
back and front wheels. Let (x, y, θ) represent the position and orientation
of the center of the board, ψ the angle of the momentum wheel relative
to the board, and φ1 and φ2 the angles of the back and front wheels, also
relative to the board. Take the distance between the center of the board
and the wheels to be r. See figure 5.9.1.

Figure 5.9.1. The geometry of the snakeboard.

In [BKMM], a simplification is made which we shall also assume here
namely φ1 = −φ2, J1 = J2. The parameters are also chosen such that
J + J0 + J1 + J2 = mr2, where m is the total mass of the board, J is the
inertia of the board, J0 is the inertia of the rotor and J1, J2 are the inertia
of the wheels. This simplification eliminates some terms in the derivation
but does not affect the essential geometry of the problem. Setting φ = φ1 =
−φ2, then the configuration space becomes Q = SE(2)× S1 × S1 and the
Lagrangian L : TQ → R is the total kinetic energy of the system and is
given by

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2.

The Constraints. The rolling of the front and rear wheels of the snake-
board is modeled using nonholonomic constraints which allow the wheels
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to spin about the vertical axis and roll in the direction that they are point-
ing. The wheels are not allowed to slide in the sideways direction. The
constraints are defined by

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇ = 0 (5.9.9)

− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇ = 0 (5.9.10)

and can be simplified to

ẋ = −r cotφ cos θθ̇
ẏ = −r cotφ sin θθ̇.

Since the constrained Legendre transform FL|D on the constraint sub-
manifold D and its inverse are given by

px = −mr cotφ cos θθ̇
py = −mr cotφ sin θθ̇

pθ = mr2θ̇ + J0ψ̇

pψ = J0ψ̇ + J0θ̇

pφ = 2J1φ̇

ẋ = − r

mr2 − J0
cotφ cos θ(pθ − pψ)

ẏ = − r

mr2 − J0
cotφ sin θ(pθ − pψ)

θ̇ =
pθ − pψ
mr2 − J0

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

φ̇ =
pφ
2J1

,

the constraint submanifold M is defined by

M = {(x, y, θ, ψ, φ, px, py, pθ, pψ, pφ) |

px = − mr

mr2 − J0
cotφ cos θ(pθ − pψ), py

= − mr

mr2 − J0
cotφ sin θ(pθ − pψ).}

Notice that M may be thought of as a graph in T ∗Q and we can use the
induced coordinates (x, y, θ, ψ, φ, pθ, pψ, pφ) as its local coordinates. Hence
the distribution H of M is

H = ker{dx+ r cotφ cos θdθ, dy + r cotφ sin θdθ}
= span{−r cotφ cos θ∂x − r cotφ sin θ∂y + ∂θ, ∂ψ, ∂φ, ∂pθ , ∂pψ , ∂pφ}.
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The Hamiltonian. The corresponding Hamiltonian is given via the Leg-
endre transform by

H =
1

2m
(p2
x + p2

y) +
1

2J0
p2
ψ +

1
2(mr2 − J0)

(pθ − pψ)2 +
1

4J1
p2
φ.

Now if we restrict the Hamiltonian H to the submanifold M, we get

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ − pψ)2 +

1
2J0

p2
ψ

+
1

2(mr2 − J0)
(pθ − pψ)2 +

1
4J1

p2
φ.

After computing its differential dHM and restricting it to H, we have

dHH = − mr2

(mr2 − J0)2
cotφ csc2 φ(pθ − pψ)2dφ

+
mr2

(mr2 − J0)2
cot2 φ(pθ − pψ)(dpθ − dpψ)

+
1
J0
pψdpψ +

1
(mr2 − J0)

(pθ − pψ)(dpθ − dpψ) +
1

2J1
pφdpφ.

The Two Form. After pulling back the canonical two-form of T ∗Q to
M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ
= kdx ∧ [csc2 φ cos θ(pθ − pψ)dφ+ cotφ sin θ(pθ − pψ)dθ
− cotφ cos θ(dpθ − dpψ)]
+kdy ∧ [csc2 φ sin θ(pθ − pψ)dφ− cotφ cos θ(pθ − pψ)dθ
− cotφ sin θ(dpθ − dpψ)]
+dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ,

where k = mr/(mr2− J0). If we restrict ΩM to the distribution H, we get

ΩH = −kr cotφ cos θdθ ∧ [csc2 φ cos θ(pθ − pψ)dφ
+cotφ sin θ(pθ − pψ)dθ − cotφ cos θ(dpθ − dpψ)]

−kr cotφ sin θdθ ∧ [csc2 φ sin θ(pθ − pψ)dφ
− cotφ cos θ(pθ − pψ)dθ − cotφ sin θ(dpθ − dpψ)]

+dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ
= dθ ∧ [−kr cotφ csc2 φ(pθ − pψ)dφ

+kr cot2 φ(dpθ − dpψ) + dpθ] + dψ ∧ dpψ + dφ ∧ dpφ.
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Equations of Motion. Notice that any vector field XM is of the form

XM = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ .

But XH also lies in H = ker{dx + r cotφ cos θdθ, dy + r cotφ sin θdθ} and
hence must be of the form

XH = θ̇(−r cotφ cos θ∂x − r cotφ sin θ∂y + ∂θ)

+ ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ ,

which gives us the first set of relationships

ẋ = −r cotφ cos θ θ̇
ẏ = −r cotφ sin θ θ̇.

Moreover,

iXHΩH = − kr cotφ csc2 φ(pθ − pψ)θ̇ dφ+ kr cot2 φθ̇(dpθ − dpψ) + θ̇ dpθ

+ ψ̇ dpψ + kr cotφ csc2 φ(pθ − pψ)φ̇ dθ + φ̇ dpφ − kr cot2 φṗθ dθ
−ṗθ dθ + kr cot2 φṗψ dθ − ṗψ dψ − ṗφ dφ,

and if equated with dHH and after simplification, we have

ṗθ =
cotφ

2J1(1− J0
mr2 sin2 φ)

pφ(pθ − pψ) (5.9.11)

ṗψ = 0 (5.9.12)
ṗφ = 0 (5.9.13)

θ̇ =
pθ − pψ
mr2 − J0

(5.9.14)

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

(5.9.15)

φ̇ =
pφ
2J1

. (5.9.16)

Notice that the last 3 equations are nothing but the inverse of the con-
strained Legendre transformation FL|D written in local coordinates. The
first equation is equivalent to the momentum equation (discussed below and
in [BKMM]) written in Hamiltonian form and the 2nd and 3rd equations
are the reduced equations on the shape space, again in their Hamiltonian
forms.

Moreover, the corresponding Lagrangian procedure gives the equations
of the motion on the Lagrangian side as

θ̈ − cotφφ̇θ̇ +
J0

mr2
sin2 φψ̈ = 0 (5.9.17)

J0ψ̈ + J0θ̈ = 0 (5.9.18)
2J1φ̈ = 0 (5.9.19)
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and it can be shown that both systems of equations are equivalent via the
Legendre transform FL|D.

Nonholonomic Mechanical Systems with Symmetry Now we add
the hypothesis of symmetry to the preceding development. We have already
studied this situation from the Lagrangian side. Recall that the momen-
tum equation extends the Noether Theorem to nonholonomic systems by
deriving an equation for the momentum map that replace the usual con-
servation law. Recall that if the Lagrangian L is invariant under the group
action and that ξq is a section of the bundle gD, then any solution q(t) of
the Lagrange-d’Alembert equations must satisfy, in addition to the given
kinematic constraints, the momentum equation:

d

dt

(
Jnh(ξq(t))

)
=
∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

. (5.9.20)

When the momentum map is paired with a section in this way, we will just
refer to it as the momentum. As we have seen earlier the nonholonomic mo-
mentum map may or may not be conserved. Recall also that this equation
can be conveniently written in body representation.

Recall that with the help of the nonholonomic mechanical connection,
the Lagrange-d’Alembert principle may be broken up into two principles by
breaking the variations δq into two parts, namely parts that are horizontal
with respect to the nonholonomic connection and parts that are vertical
(but still in D), and the reduced equations break up into two sets: a set
of reduced Lagrange-d’Alembert equations (which have curvature terms
appearing as ’forcing’), and a momentum equation, which have a form gen-
eralizing the components of the Euler-Poincaré equations along the sym-
metry directions consistent with the constraints. When one supplements
these equations with the reconstruction equations, one recovers the full set
of equations of motion for the system.

Hamiltonian Reduction. In working out the nonholonomic Hamilto-
nian reduction, [BS] also starts out with a simple nonholonomic mechanical
system. Recall that the Legendre transformation FL : TQ → T ∗Q is used
to define the constraint submanifold M⊂ T ∗Q where

M = FL(D). (5.9.21)

On this manifold, there is a distribution H

H = F ∩ TM, (5.9.22)

where
F = (Tπ)−1(D), (5.9.23)

and π : T ∗Q → Q. Also recall that ΩH, the restriction of the canonical
two-form Ω of T ∗Q to the distribution H of the constraint submanifold M,
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is nondegenerate and that the dynamics is given by a vector field XH on
M taking values in H and satisfies the equation

iXHΩH = dHH (5.9.24)

where dHH is the (fiberwise) restriction of dHM to H.
Now let G be the symmetry group of this system and assume that the

quotient space M = M/G of the G-orbit in M is a quotient manifold with
projection map ρ : M→M. Since G is a symmetry group, all intrinsically
defined vector fields and distributions push down to M. In particular, the
vector field XM on M pushes down to a vector field XM = ρ∗XM, and
the distribution H pushes down to a distribution ρ∗H on M.

However, ΩH need not push down to a two-form defined on ρ∗H, despite
the fact that ΩH is G-invariant. This is because there may be infinitesimal
symmetry ξM that lies in H such that iξMΩH 6= 0, To eliminate this
difficulty, [BS] restricts ΩH to a subdistribution U of H defined by

U = {u ∈ H | ΩH(u, v) = 0 for all v ∈ V∩H} = H∩(V∩H)⊥, (5.9.25)

where V is the distribution on M tangent to the orbits of G in M and is
spanned by the infinitesimal symmetries and (V∩H)⊥ is the ΩH-orthogonal
complement of (V∩H). Clearly, U and V are both G-invariant, project down
to M and ρ∗V = 0. Define H by

H = ρ∗U . (5.9.26)

It is proven in [BS] that

1. The vector field XH which satisfies the above Hamiltonian equation
of motion (5.9.24) lies in the distribution U .

2. The restriction ΩU of Ω to the distribution U pushes down to a non-
degenerate 2-form ΩH = ρ∗ΩU on H, which is modeled by the sym-
plectic space (V ∩H)⊥/(V ∩H) ∩ (V ∩H)⊥.

3. Furthermore,
iXH

ΩH = dhH, (5.9.27)

where hM = ρ∗HM is the pushdown of the restriction to M of the
Hamiltonian H and dhH is the restriction of dhM to H. This is be-
cause the equation iXHΩH = dHH, restricted to U ⊂ H, vanishes on
vectors in V, and is G-invariant. Hence both sides push down to H.

Note that the original equations of motion are

iXHΩH = dHH (5.9.28)

where H is a distribution in the constraint manifold M. After the reduction
of symmetry we obtain equations of the same type

iXH
ΩH = dhH, (5.9.29)

where H is a distribution in the reduced space M = M/G.
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Lagrangian Side. By using the Legendre transformation FL, we can
construct dual geometric structures on the tangent bundle TQ and for-
mulate a similar Lagrangian reduction procedure. This allows us to better
compare with the geometric constructions and analytic formulations on the
manifold Q in [BKMM], and in the course of doing this, we realize that
the requirement that the vector field XH lies in the subdistribution U is
equivalent to the extended Noether Theorem; that is, that any solution of
the Lagrange-d’Alembert equations must satisfy the momentum equation.

We consider D as a constraint submanifold of TQ and then construct
the distribution

K = C ∩ TD, (5.9.30)

on TTQ, where
C = (TτQ)−1(D), (5.9.31)

and τQ : TQ→ Q. Clearly D = (FL)−1(M),K = (TFL)−1(H). The motion
is then given by a vector field XK on the manifold D which takes values in
K and satisfies the equation

iXKΩK = dEK, (5.9.32)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the
distribution K.

Now let G be the symmetry group of this system and assume that the
quotient space D = D/G of the G-orbit in D is a smooth quotient manifold
with projection map λ : D → D. Since G is a symmetry group, all intrinsi-
cally defined vector fields and distributions push down to D. In particular,
the vector field XD on D pushes down to a vector field XD = λ∗XD, and
the distribution K pushes down to a distribution λ∗K on D. Here we use
the push forward symbol λ∗ to mean that the vector fields are λ-related.

For the same reason as the Hamiltonian side, ΩK need not push down
to a two-form defined on λ∗K, despite the fact that ΩK is G-invariant. We
can restrict ΩK to the subdistribution W of K defined by

W = {w ∈ K | ΩK(w, v) = 0 for all v ∈ T ∩ K} = K ∩ (T ∩ D)⊥, (5.9.33)

where T is the distribution on D tangent to the orbits of G in D and
is spanned by the infinitesimal symmetries. Clearly, W and T are both
G-invariant, W projects down to D and λ∗T = 0. Define K by

K = λ∗W. (5.9.34)

Since the above constructions are dual to those in the Hamiltonian side,
we also have

1. The vector field XK which satisfies the above equation (5.9.32) takes
values in the distribution W.
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2. The restriction ΩW of ΩL to the distribution W, pushes down to a
nondegenerate 2-form ΩK = λ∗ΩW on K, which is modeled by the
symplectic space (T ∩ K)⊥/(T ∩ K) ∩ (T ∩ K)⊥.

3. The reduced equations of motion are given by

iXK
ΩK = dEK, (5.9.35)

where ED = λ∗ED is the pushdown of the restriction to D of the
energy function E. This is because the equation iXKΩK = dEK, re-
stricted to W ⊂ K, vanishes on vectors in T , and is G-invariant.
Hence both sides push down to K. All these will become clearer in
the subsequent computations.

The Equivalence of Hamiltonian and Lagrangian Reductions

5.9.2 Theorem. Consider a simple nonholonomic mechanical system
with symmetry and assume that it is in the principal case. Then the reduc-
tion procedure on TQ gives the constrained reduced nonholonomic equations
of motion (as in [BKMM]).

Proof The first difficulty is how to represent the constraint submanifold
D ⊂ TQ in a way that is both intrinsic and ready for reduction. The
comparison with the geometric constructions in [BKMM] and the desire
to have the dynamics break up in a way that is ready for reconstruction
give hints that we should use the tools like nonholonomic momentum p
and the nonholonomic connection A in [BKMM] to describe the constraint
submanifold D

Recall that in [BKMM], the nonholonomic constraints together with the
basic identity of the nonholonomic momentum map are used to synthesis
a nonholonomic connection A and the nonholonomic constraints are then
written in the form

g−1ġ = −A(r)ṙ + Γ(r)p, (5.9.36)

where p is G-invariant. Hence, the constraint manifold is nothing but

D = {(g, r, ġ, ṙ) | ġ = g(−A(r)ṙ + Γ(r))p)}. (5.9.37)

It is a submanifold in TQ and we can use (g, r, ṙ, p) as its induced local
coordinates. Then, clearly, the corresponding coordinates for D = D/G are
(r, ṙ, p). From now on, we will use A(r) to abbreviate Anh

loc(r).
The next difficulty is to find the corresponding representations for the

distribution K, the subdistribution T ∩ K and its annihilator distribution
W where

W = K ∩ (T ∩ K)⊥. (5.9.38)

Recall that in [BKMM], a body fixed basis eb(g, r) = Adg · eb(r) has been
constructed such that the infinitesimal generators (ei(g, r))Q of its first m
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elements at a point q span Sq = Dq ∩ Tq(Orb(q)). Assume that G is a
matrix group and edi is the component of ei(r) with respect to a fixed basis
{ba} of the Lie algebra g where (ba)Q = ∂ga , then

(ei(g, r))Q = gade
d
i ∂ga .

Since K = (Tτ)−1(D) where Dq is the direct sum of Sq and the horizontal
space of the nonholonomic connection Anh, it can be represented in the
induced coordinates by

K = span{gadedi ∂ga ,−gabAbα∂ga + ∂rα , ∂ṙ, ∂p}. (5.9.39)

Also, we have
T ∩ K = span{gadedi ∂ga}. (5.9.40)

To find the distribution W, we have to compute igadedi ∂gaΩD, for all i =
1, . . . ,m. Since L is G-invariant, we have

ΩD = dga ∧ d
(
∂L

∂ġa

)
+ drα ∧ d

(
∂L

∂ṙα

)
= dga ∧ d

(
(g−1)ba

∂l

∂ξb

)
+ drα ∧ d

(
∂l

∂ṙα

)
=
∂(g−1)ba
∂gc

∂l

∂ξb
dga ∧ dgc + (g−1)badg

a ∧ d
(
∂l

∂ξb

)
+ drα ∧ d

(
∂l

∂ṙα

)
.

Hence

i(gaf e
f
i ∂ga )ΩD = gafe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dgc − gcfe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dga + ebid

(
∂l

∂ξb

)
= efi

((
gcf
∂(g−1)bc
∂ga

− ∂(g−1)ba
∂gc

gcf

)
∂l

∂ξb
dga + d

(
∂l

∂ξf

))
= efi

(
(g−1)bσ

(
−
∂gσf
∂gτ

gτa +
∂gσa
∂gτ

gτf

)
∂l

∂ξb
(g−1)aedg

e + d

(
∂l

∂ξf

))
= efi

(
−Cbaf

∂l

∂ξb
(g−1)aedg

e + d

(
∂l

∂ξf

))
= dpi −

∂l

∂ξf
d(efi )− Cbaf

∂l

∂ξb
efi (g

−1)aedg
e.

Here, Cbaf is the structural constants for the Lie algebra g and

pi =
∂l

∂ξf
efi .

Therefore, the subdistribution W ⊂ K is

W = ker
{
dpi −

∂l

∂ξf
d(efi )− Cbaf

∂l

∂ξb
efi (g

−1)aedg
e

}
. (5.9.41)
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Since the constraint manifoldD has the induced local coordinates (g, r, ṙ, p),
any vector field XD on the manifold D is of the form

XD = ġa∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi .

If XD lies in the distribution K, then we have ġ = g(−Aṙ+ Γp). Moreover,
if XD lies in the distribution W, then for each j, we have

ṗj −
∂l

∂ξd
∂edj
∂rα

ṙα − Cbad
∂l

∂ξb
ξaedj = 0, i.e., ṗj =

〈
∂l

∂ξ
, [ξ, ej ] + ėj

〉
,

(5.9.42)
which gives the momentum equation. Therefore, any vector fieldXW taking
values in W must be of the form

XW = gab ξ
b∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi , (5.9.43)

where

ξ = −Aṙ + Γp ṗj =
〈
∂l

∂ξ
, [ξ, ej ] + ėj

〉
. (5.9.44)

Now we are ready to do the reduction. But before that, we need to
compute all the ingredients of the equation

iXKΩK = dEK. (5.9.45)

Notice first that since E is G-invariant, we have

E =
∂L

∂q̇i
q̇i − L =

∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L

=
∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l.

After restricting it to the submanifold D, we have

ED =
∂l

∂ξa
(−Aaαṙα + Γaipi) +

(
∂lc
∂ṙα

+Aaα
∂l

∂ξa

)
ṙα − lc

=
∂l

∂ξa
Γaipi +

∂lc
∂ṙα

ṙα − lc.

Therefore,

dED =
∂l

∂ξa

(
∂Γai

∂rα
pidr

α + Γaidpi

)
+ Γaipi

(
∂2l

∂rα∂ξa
drα +

∂2l

∂ṙα∂ξa
dṙα +

∂2l

∂pj∂ξa
dpj

)
+ ṙα

(
∂2lc

∂rβ∂ṙα
drβ +

∂2lc
∂ṙβ∂ṙα

dṙβ
∂2lc

∂pi∂ṙα
dpi

)
− ∂lc
∂rα

drα − ∂lc
∂pi

dpi.
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Furthermore,

iXKΩD

= gafξ
f ∂(g−1)ba

∂gc
∂l

∂ξb
dgc − gcfξ

f ∂(g−1)ba
∂gc

∂l

∂ξb
dga

+ gafξ
f (g−1)bad

(
∂l

∂ξb

)
−
(

∂

∂rα

(
∂l

∂ξb

)
ṙα +

∂

∂ṙα

(
∂l

∂ξb

)
r̈α +

∂

∂pi

(
∂l

∂ξb

)
ṗi

)
(g−1)badg

a

+ i(ṙα∂rα+r̈α∂ṙα+ṗi∂pi)

(
drα ∧ d

(
∂l

∂ṙα

))
= ξfd

(
∂l

∂ξf

)
+
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
(g−1)aedg

e

+ i(ṙα∂rα+r̈α∂ṙα+ṗi∂pi)

(
drα ∧ d

(
∂l

∂ṙα

))
. (5.9.46)

Clearly, both sides of the equation

iXKΩK = dEK (5.9.47)

are G-invariant, and when restricted to the subdistribution W ⊂ K, they
vanish on the distribution T ∩ K. This can be shown to be true either by
invoking how W has been constructed or by direct calculation, noticing
that when (

Cbfa
∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
(g−1)aedg

e (5.9.48)

is paired with gfc e
c
i in T ∩ K, it is equal to zero on W. Hence both sides

push down to K where

XK = ṙα∂rα + r̈α∂ṙα + ṗi∂pi , (5.9.49)

with

ṗi =
〈
∂l

∂ξ
, [ξ, ei] + ėi

〉
. (5.9.50)

To find the remaining reduced equations, notice that the restriction of
(5.9.48) to the subdistribution spanned by {−gabAbα∂ga + ∂rα , ∂ṙα , ∂pi} is
equivalent to

−
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
Aaαdr

α. (5.9.51)

If we compute

−
(
Cbfa

∂l

∂ξb
ξf − d

dt

(
∂l

∂ξa

))
Aaαdr

α + ξad

(
∂l

∂ξa

)
+ i(ṙα∂rα+r̈α∂ṙα+ṗi∂pi)

(
drα ∧ d

(
∂l

∂ṙα

))



5.9 The Lagrangian and Hamiltonian Comparison.9 63

and equate its terms with the corresponding terms of dEK which is the
same as dEK, we have the following equations after some computations

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= −Cbda
∂l

∂ξb
ξdAaα −

∂l

∂ξa

(
Ȧaα −

∂Aaβ
∂rα

ṙβ +
∂Γaipi
∂rα

)
.

After plugging in the constraint ξ = −Aṙ + Γp and simplify, we get the
desired reduced equations

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bbαβ ṙ

β + F bipi), (5.9.52)

where

Bbαβ =
∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α (5.9.53)

F biα =
∂Γbi

∂rα
− CbadA

a
αΓdi. (5.9.54)

In an orthogonal body frame where we choose our moving basis eb(g, r)
to be orthogonal, that is, the corresponding generators [eb(g, r)]Q are or-
thogonal in the given kinetic energy metric (actually, all that is needed is
that the vectors in the set of basis vectors corresponding to the subspace
Sq be orthogonal to the remaining basis vectors), the momentum equation
(5.9.42) can be written as (see [BKMM])

d

dt
pi = CjhiI

hlpjpl +Djiαṙ
αpj +Dαβiṙαṙβ , (5.9.55)

where

Djiα = −CjaiA
a
α + γjiα + λa′αC

a′

li I
lj (5.9.56)

Dαβi = λa′α(−Ca
′

aiA
a
β + γa

′

iβ). (5.9.57)

Here γcbα and λa′α are defined by

∂eb
∂rα

= γcbαec (5.9.58)

λa′α =
∂l

∂ξa′∂ṙα
− ∂l

∂ξa′∂ξb
Abα. (5.9.59)

Notice that while the summation range of a, b, c, d... are over all Lie algebra
element (1 to k). those over i, j, l, ... are the restricted (constrained) range
(1 to m) and those over a′, b′, ... run from m+ 1 to k (which correspond to
the symmetry directions not aligned with the constraints).

Similarly we can rewrite the above reduced Lagrange-d’Alembert equa-
tions as in Theorem 5.7.3 of the text.
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Remarks

1. A careful reading of the proof of Theorem 5.9.2 shows that the Hamil-
tonian reduction procedure still works as long as the constrained Leg-
endre transform FL|D is invertible. This is important because in some
examples like the bicycle the Legendre transform FL is singular, but
its restriction to the constraint submanifold D is invertible and the
Hamiltonian reduction procedure is also applicable.

2. In many examples like the snakeboard and the bicycle, the constraints
satisfy a special condition, namely, they involve only the velocities of
the group variables ġ and are independent of the velocities of the
shape variables ṙ (see equations (5.9.9) and (5.9.10)). Under this spe-
cial condition, the distribution K in equation (5.9.39) can be repre-
sented by

K = span{gadedi ∂ga , ∂r, ∂ṙ, ∂p}. (5.9.60)

This representation simplifies the computation for finding the reduced
equations because the restriction of the one-form (5.9.48) to the sub-
distribution K spanned by {∂r, ∂ṙ, ∂p} will equal to zero. Hence in
pushing down iXKΩD in (5.9.46) to K, we can simply omit the one-
form (5.9.48). Below we will use this simplified procedure for the
examples of the snakeboard and the bicycle.

3. Since the momentum equation is central to the theory of nonholo-
nomic mechanical systems with symmetry, we make a few additional
remarks about it. Before that, we state the following proposition:

5.9.3 Proposition. For a nonholonomic mechanical system with sym-
metry, we have(

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

)
(ξqQ)i =

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

(5.9.61)

where ξq ∈ gq .

Proof: Choose a section of gD and apply the chain rule to give

d

dt

(
∂L

∂q̇i
(ξqQ)i

)
=

d

dt

(
∂L

∂q̇i

)
(ξqQ)i +

∂L

∂q̇i

(
(TξqQ · q̇)

i +
(
d

dt
ξq
)i
Q

)
.

Invariance of the Lagrangian implies that

L(exp(sξq) · q, exp(sξq) · q̇) = L(q, q̇).

Differentiating this expression and evaluating it at s = 0, we get

∂L

∂q̇i
(ξqQ)i +

∂L

∂q̇i
(TξqQ · q̇)

i = 0.
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After eliminating the term
∂L

∂q̇i
(TξqQ · q̇)

i from the above two equations, we

arrive at the desired result. �
The above equation can be rewritten as〈
(dE − iXΩL)|D, (ξqQ)′

〉
=

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

, (5.9.62)

where (ξqQ)′ ∈ T ∩K and TτQ((ξqQ)′) = ξqQ. Since both the energy function
E and the submanifold D are G-invariant, the left hand side of the above
equation reduces to ΩD(XD, (ξ

q
Q)′) and hence any vector field XD which

takes values in W = K ∩ (T ∩ K)⊥ will make the left hand side zero and
hence must satisfy the momentum equation (5.9.20)

d

dt

((
∂L

∂q̇i

)
(ξqQ)i

)
− ∂L

∂q̇i

(
d

dt
ξq
)i
Q

= 0, (5.9.63)

as we have already seen in the proof of Theorem 5.9.2.
In showing that the vector field XH, which satisfies the equation

iXHΩH = dHH,

must lie in the subdistribution U , one might think that any vector field Y ∈
V ∩H can be expressed as a linear combination of infinitesimal generators
(generated by fixed Lie algebra elements). But this is not the case, as we
have pointed out earlier in the Lagrangian side, in general (ξqQ)′ is the
(vertical) lift of a section of the bundle S (generated by a section of the
bundle gD). This is also true on the Hamiltonian side.

Example: The Snakeboard Revisited Now we return to the snake-
board and discuss the role of the symmetry group G = SE(2). Recall from
our earlier discussion that the Lagrangian is

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 + +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2
1, (5.9.64)

which is independent of the configuration of the board and hence it is
invariant to all possible group actions.

The Constraint Submanifold. The condition of rolling without slip-
ping gives rise to the constraint one-forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cosφdθ
ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cosφdθ,

which are invariant under the SE(2) action. The constraints determine the
kinematic distribution Dq:

Dq = span{∂ψ, ∂φ, a∂x + b∂y + c∂θ},
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where a = −2r cos2 φ cos θ, b = −2r cos2 φ sin θ, c = sin 2φ. The tangent
space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ}.

The intersection between the tangent space to the group orbits and the
constraint distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂x + b∂y + c∂θ}.

The momentum can be constructed by choosing a section of S = D ∩
TOrb regarded as a bundle over Q. Since Dq∩TqOrb(q) is one-dimensional,
the section can be chosen to be

ξqQ = a∂x + b∂y + c∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic
momentum is thus given by

p =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ +mr2cθ̇ + J0cψ̇.

The kinematic constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇
0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇
p = −2mr cos2 φ cos θẋ− 2mr cos2 φ sin θẏ

+mr2 sin 2φθ̇ + J0 sin 2φψ̇.

Adding, subtracting, and scaling these equations, we can write (away from
the point φ = π/2),

 cos θẋ+ sin θẏ
− sin θẋ+ cos θẏ

θ̇

+


− J0

2mr
sin 2φψ̇

0
J0

mr2
sin2 φψ̇

 =


−1
2mr

p

0
tanφ
2mr2

p

 . (5.9.65)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p

where

A(r) = − J0

2mr
sin 2φex dψ +

J0

mr2
sin2 φeθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tanφ eθ.
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These are precisely the terms which appear in the nonholonomic connection
relative to the (global) trivialization (r, g).

After applying the constrained Legendre transformation and its inverse
to the constraint equations (5.9.65), we have

 cos θpx + sin θpy
− sin θpx + cos θpy

pθ

+


− mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ

0

− mr2 cos2 φ
(mr2 − J0 sin2 φ)

pψ



=


−mr

2(mr2 − J0 sin2 φ)
p

0
(mr2 − J0) tanφ

2(mr2 − J0 sin2 φ)
p

 , (5.9.66)

where

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

and is SE(2)-invariant.
Therefore, the constraint submanifold M⊂ T ∗Q is defined by

px =
mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ cos θ − mr

2(mr2 − J0 sin2 φ)
p cos θ

py =
mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ sin θ − mr

2(mr2 − J0 sin2 φ)
p sin θ

pθ =
mr2 cos2 φ

(mr2 − J0 sin2 φ)
pψ +

(mr2 − J0) tanφ
2(mr2 − J0 sin2 φ)

p .

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ, pφ, p) as its
induced local coordinates.

The Distributions H,V ∩H and U . With the induced coordinates, the
distribution H on M is

H = span{−2r cos2 φ cos θ∂x−2r cos2 φ sin θ∂y+sin 2φ∂θ, ∂ψ, ∂φ, ∂pψ , ∂pφ , ∂p}
(5.9.67)

and the subdistribution V ∩H is

V ∩H = span{−2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ}. (5.9.68)
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As for the subdistribution U , we first calculate the two form ΩM. After
pulling back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= (cos θdx+ sin θdy) ∧
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ

− mr

2(mr2 − J0 sin2 φ)
dp

)
+(cos θdx+ sin θdy) ∧

(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ

− mrJ0 sin 2φ
2(mr2 − J0 sin2 φ)2

pdφ

)
+dθ ∧

(
mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tanφ
2(mr2 − J0 sin2 φ)

dp

)
+dθ ∧

(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)
+(− sin θdx+ cos θdy) ∧

(
mr sin 2φ

2(mr2 − J0 sin2 φ)
pψ

− mr

2(mr2 − J0 sin2 φ)
p

)
dθ

+dψ ∧ dpψ + dφ ∧ dpφ .

Since U = (V ∩ H)⊥ = ker{i(V∩H)ΩH}, we need to calculate i(V∩H)ΩM,
and restrict it to H:

i(V∩H)ΩH =

− 2r cos2 φ
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ −
mr

2(mr2 − J0 sin2 φ)
dp

)
− 2r cos2 φ

(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ
2(mr2 − J0 sin2 φ)2

pdφ

)
+ sin 2φ

(
mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tanφ
2(mr2 − J0 sin2 φ)

dp

)
+ sin 2φ

(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)
= dp− 2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tanφ
mr2 − J0 sin2 φ

pdφ .
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Hence,

U = ker
{
dp− 2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tanφ
mr2 − J0 sin2 φ

pdφ

}
.

(5.9.69)

The Reconstruction and Momentum Equations A vector field XU
taking values in U must be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p (5.9.70)

where

ẋ =
J0

2mr
sin 2φψ̇ cos θ − 1

2mr
p cos θ

ẏ =
J0

2mr
sin 2φψ̇ sin θ − 1

2mr
p sin θ

θ̇ = − J0

mr2
sin2 φψ̇ +

tanφ
2mr2

p

and

ṗ =
2mr2 cos2 φ

mr2 − J0 sin2 φ
pψφ̇−

(mr2 + J0 cos 2φ) tanφ
mr2 − J0 sin2 φ

pφ̇ . (5.9.71)

The equations for ẋ, ẏ and θ̇ are the same reconstruction equations as
equations (5.9.65) and the last one for ṗ is the momentum elution on the
Hamiltonian side. As noted in [BKMM], the momentum p is the angular
momentum of the system about the point P shown in figure 5.9.2.

P

Figure 5.9.2. The momentum p is the angular momentum of the snakeboard system

about the point P .

It can be checked that the momentum equation (5.9.71) is equivalent to
the equation (5.9.11) via a change of variables with

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

=
2(mr2 − J0 sin2 φ) cotφ

mr2 − J0
pθ −

2mr2 cos2 φ cotφ
mr2 − J0

pψ
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as the key link. Similarly the two full sets of equations of motion in both
section 5.9 and this section are also related in the same way.

The Reduced Hamilton Equations. To find the remaining reduced
equations, we need to compute

iXHΩM = dHM, (5.9.72)

restrict it to the subdistribution U and then push it down to the reduced
constraint submanifold M. Let us first compute iXHΩM

iXHΩM =

(ẋ cos θ + ẏ sin θ)
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ −
mr

2(mr2 − J0 sin2 φ)
dp

)
+(ẋ cos θ + ẏ sin θ)

(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ

− mrJ0 sin 2φ
2(mr2 − J0 sin2 φ)2

pdφ

)
+θ̇
(

mr2 cos2 φ
(mr2 − J0 sin2 φ)

dpψ +
(mr2 − J0) tanφ

2(mr2 − J0 sin2 φ)
dp

)
+θ̇
(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)
+ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−θ̇
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

pψ −
mr

2(mr2 − J0 sin2 φ)
p

)
(− sin θdx+ cos θdy)

−mr
(
mr2 cos 2φ+ J0 sin2 φ

(mr2 − J0 sin2 φ)2
pψφ̇

− J0 sin 2φ
2(mr2 − J0 sin2 φ)2

pφ̇

)
(cos θdx+ sin θdy)

−
(
mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψφ̇

+
(mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pφ̇

)
dθ

− mr sin 2φ
2(mr2 − J0 sin2 φ)

ṗψ(cos θdx+ sin θdy)− mr2 cos2 φ
(mr2 − J0 sin2 φ)

ṗψdθ

+
mr

2(mr2 − J0 sin2 φ)
(cos θdx+ sin θdy)− (mr2 − J0) tanφ

2(mr2 − J0 sin2 φ)
ṗdθ.
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As for dHH, recall that the constrained Hamiltonian HM is

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ−pψ)2+

1
2J0

p2
ψ+

1
2(mr2 − J0)

(pθ−pψ)2+
1

4J1
p2
φ.

Notice that HM is SE(2)-invariant and hence HM = hM where

hM =
mr2

2

(
1

2(mr2 − J0 sin2 φ)
p− sin2 φ

2(mr2 − J0 sin2 φ)
pψ

)2

+
1

2J0
p2
ψ

+
mr2 − J0

2

(
tanφ

2(mr2 − J0 sin2 φ)
p− sin2 φ

mr2 − J0 sin2 φ
pψ

)2

+
1

4J1
p2
φ.

Computing dHM = dhM, we get

dhM =
mr2(p− sin 2φpψ)
2(mr2 − J0 sin2 φ)

×
(

1
2(mr2 − J0 sin2 φ)

dp− sin 2φ
2(mr2 − J0 sin2 φ)

dpψ

)
+
mr2(p− sin 2φpψ)
2(mr2 − J0 sin2 φ)

×
(
pd

(
1

2(mr2 − J0 sin2 φ)

)
− pψd

(
sin 2φ

2(mr2 − J0 sin2 φ)

))
+

(mr2 − J0)(tanφp− 2 sin2 φpψ)
2(mr2 − J0 sin2 φ)

×
(

tanφ
2(mr2 − J0 sin2 φ)

dp− sin2 φ

(mr2 − J0 sin2 φ)
dpψ

)
+

(mr2 − J0)(tanφp− 2 sin2 φpψ)
2(mr2 − J0 sin2 φ)

×
(
pd

(
tanφ

2(mr2 − J0 sin2 φ)

)
− pψd

(
sin2 φ

(mr2 − J0 sin2 φ)

))
+

1
J0
pψdpψ + +

1
2J1

pφdpφ.

It is easy to check that iXHΩM = dHM is SE(2)-invariant, and vanishes on
V ∩ H when restricted to U . Hence both sides push down to H. The push
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down of iXHΩM is given by

iXHΩH =
(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
×
(

mr sin 2φ
2(mr2 − J0 sin2 φ)

dpψ −
mr

2(mr2 − J0 sin2 φ)
dp

)
+
(
J0

2mr
sin(2φ)ψ̇ − 1

2mr
p

)
×
(
mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ
2(mr2 − J0 sin2 φ)2

pdφ

)
+
(
−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)
×
(

mr2 cos2 φ
(mr2 − J0 sin2 φ)

dpψ +
(mr2 − J0) tanφ

2(mr2 − J0 sin2 φ)
dp

)
+
(
−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)
× mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+
(
−J0

mr2
sin2(φ)ψ̇ +

tanφ
2mr2

p

)
× (mr2 − J0)(mr2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

+ ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ.

Equating the terms of dhH = dhM with those of the push down of
iXHΩM gives the remaining reduced Hamilton equations:

ψ̇ = − tanφ
2(mr2 − J0 sin2 φ)

p+
mr2

J0(mr2 − J0 sin2 φ)
pψ (5.9.73)

φ̇ =
pφ
2J1

(5.9.74)

ṗψ = 0 (5.9.75)
ṗφ = 0. (5.9.76)

Notice that both the momentum equation (5.9.71) and the above set of
reduced equations are independent of the group elements of the symmetry
group SE(2). If we add in the set of reconstruction equations (5.9.65), we
recover the full dynamics of the system, and in a form that is suitable for
control theoretical purposes.

Finding the Reduced Equations on the Lagrangian Side We can
derive the reduced Lagrange-d’Alembert equations as follows: Here we will
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use the equations (5.9.52).

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bbαβ ṙ

β + F bipi), (5.9.77)

where

Bbαβ =
∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α and F biα =

∂Γbi

∂rα
− CbadA

a
αΓdi.

From the Lagrangian L, we find the reduced Lagrangian

l(r, ṙ, ξ) =
1
2
m((ξ1)2 + (ξ2)2) +

1
2
mr2(ξ3)2 +

1
2
J0ψ̇

2 + +J0ψ̇(ξ3) + J1φ̇
2,

(5.9.78)
where ξ = g−1ġ. After plugging in the constraints (5.9.65), we have the
constrained reduced Lagrangian

lc(r, ṙ, p) = − J2
0

2mr2
sin2 φψ̇2 +

1
8mr2

sec2 φp2 +
1
2
J0ψ̇

2 + +J1φ̇
2. (5.9.79)

Let us find all the ingredients of the above equations:

∂l

∂ξ1
= mξ1 = m

(
J0

2mr
sin 2φψ̇ − 1

2mr
p

)
∂l

∂ξ2
= mξ2 = 0

∂l

∂ξ3
= mr2

(
− J0

mr2
sin2 φψ̇ +

tanφ
2mr2

p

)
+ J0ψ̇;

since ∂l
∂ξ2 = 0, we do not need to compute B2

αβ and F 2
α (notice that i = 1).

Also it is straightforward to find

B1
12 =

∂

∂φ

(
− J0

2mr
sin 2φ

)
= − J0

mr
cos 2φ

B3
12 =

∂

∂φ

(
J0

mr
sin2 φ

)
=

J0

mr
sin 2φ

F 3
2 =

∂

∂φ

(
tanφ
2mr2

)
=

sec2 φ

2mr2
,

and F 1
1 = F 3

1 = F 1
2 = 0. Substituting into (5.9.77), we get the reduced

equations after some computations(
1− J0

mr2
sin2 φ

)
ψ̈ =

J0

2mr2
sin 2φψ̇φ̇− J0

2mr2
φ̇p (5.9.80)

J1φ̈ = 0 . (5.9.81)

It is easy to check that these two equations are equivalent to the set of
reduced equations (5.9.73)-(5.9.76) on the Hamiltonian side through the
constrained Legendre transformation FL|D.
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Example: The Bicycle. Control of the bicycle is a rich problem offering
a number of considerable challenges of current research interest in the area
of mechanical and robotic control. The bicycle is an underactuated system,
subject to nonholonomic contact constraints associated with the rolling
constraints on the front and rear wheels. It is unstable (except under certain
combinations of fork geometry and speed) when not controlled. It is also,
when considered to traverse flat ground, a system subject to symmetries;
its Lagrangian and constraints are invariant with respect to translations
and rotations in the ground plane.

Here a simplified bicycle model will be considered. The wheels of the
bicycle are considered to have negligible inertia moments, mass, radii, and
width, and roll without side or longitudinal slip. The vehicle is assumed to
have a fixed steering axis that is perpendicular to the flat ground when the
bicycle is upright. For simplicity we concern ourselves with a point mass
bicycle. The rigid frame of the bicycle will be assumed to be symmetric
about a plane containing the rear wheel.

Consider a ground fixed inertial reference frame with x and y axis in the
ground plane and z-axis perpendicular to the ground plane in the direction
opposite to gravity. The intersection of the vehicle’s plane of symmetry with
the ground plane forms a contact line. The contact line is rotated about
the z-direction by a yaw angle θ. The contact line is considered directed,
with its positive direction from the rear to the front of the vehicle. The yaw
angle θ is zero when the contact line is in the x-direction. The angle that
the bicycle’s plane of symmetry makes with the vertical direction is the
roll angle ψ ∈ (−π

2 ,
π
2 ). Front and rear wheel contacts are constrained to

have velocities parallel to the lines of intersection of their respective wheel
planes and the ground plane, but free to turn about an axis through the
wheel/ground contact and parallel to the z-axis. Let σ ∈ (−π

2 ,
π
2 ) be the

steering angle between the front wheel plane/ground plane intersection and
the contact line. With σ we associate a moment of inertia J which depends
both on ψ and σ. We will parameterize the steering angle by φ := tanσ/b.
For more details, see Getz and Marsden [1995]. See figure 5.9.3.

The configuration space is Q = SE(2) × S1 × S1 and the Lagrangian
L : TQ → R is the total kinetic energy minus potential energy of the
system and is given by

L = −mga cosψ +
1
2
J(ψ, φ)φ̇2

+
m

2

(
(cos θẋ+ sin θẏ + a sinψθ̇)2

+ (− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)2 + (−a sinψψ̇)2
)

where m is the mass of the bicycle, considered for simplicity to be a point
mass, and J(ψ, φ) is the moment of inertia associated with the steering
action. The nonholonomic constraints associated with the front and rear
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Figure 5.9.3. Notation for the bike.

wheels, assumed to roll without slipping, are expressed by

θ̇ − φ(cos θẋ+ sin θẏ) = 0
− sin θẋ+ cos θẏ = 0.

Clearly both the Lagrangian and the constraints are invariant under the
SE(2) action.

Notice that the Legendre transform FL is singular but by remark 1 fol-
lowing Theorem 5.9.2 the Hamiltonian procedure still works because the
constrained Legendre transform FL|D is invertible.

The Constraint Submanifold. The constraints above give rise to the
constraint one-forms

ω1(q) = dθ − φ cos θdx− φ sin θdy
ω2(q) = − sin θdx+ cos θdy

which determine the kinematic distribution Dq:

Dq = span{∂ψ, ∂φ, cos θ∂x + sin θ∂y + φ∂θ}.

The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ},

and the intersection between the tangent space to the group orbits and the
constraint distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{cos θ∂x + sin θ∂y + φ∂θ}.

The momentum can be constructed by choosing a section of S = D ∩
TOrb regarded as a bundle over Q. Since Dq∩TqOrb(q) is one-dimensional,
the section can be chosen to be

ξqQ = cos θ∂x + sin θ∂y + φ∂θ,
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which is invariant under the action of SE(2) on Q. The nonholonomic
momentum map is thus given by

p =
∂L

∂q̇i
(ξqQ)i

= m(ẋ+ a sinψ cos θθ̇ + a cosψ sin θψ̇ − c sin θθ̇) cos θ
+m(ẏ + a sinψ sin θθ̇ − a cosψ cos θψ̇ + c cos θθ̇) sin θ
+m(cos θẋ+ sin θẏ + a sinψθ̇)aφ sinψ
+m(− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)cφ.

The kinematic constraints plus the momentum are given by

0 = ξ3 − φξ1

0 = ξ2

p = m(ξ1 + a sinψξ3) +maφ sinψ(ξ1 + a sinψξ3)
mφ(cξ2 − ca cosψψ̇ + c2ξ3)

where

ξ1 = cos θẋ+ sin θẏ
ξ2 = − sin θẋ+ cos θẏ
ξ3 = θ̇

Adding, subtracting, and scaling these equations, we can write

 ξ1

ξ2

ξ3

+


−caφ cosψ

K
ψ̇

0

−caφ
2 cosψ
K

ψ̇

 =


1
mK

p

0
φ

mK
p

 (5.9.82)

where
K = (1 + aφ sinψ)2 + c2φ2. (5.9.83)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p.

Next find the Legendre transform FL and restrict it to the constraint
submanifold D ⊂ TQ, we get

px = m(1 + aφ sinψ)ξ1 cos θ −m(cφξ1 − a cosψψ̇) sin θ
py = m(1 + aφ sinψ)ξ1 sin θ +m(cφξ1 − a cosψψ̇) cos θ

pθ = ma sinψ(1 + aφ sinψ)ξ1 +m(c2φξ1 − ca cosψψ̇)
pψ = ma2ψ̇ −mac cosψφξ1

pφ = J(ψ, φ)φ̇.
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After applying the constrained Legendre transformation FL|D and its in-
verse to the constraint equations (5.9.82), we have

 µ1

µ2

µ3

+


−cφ cosψ(1 + aφ sinψ)

F

pψ
a

(1 + aφ sinψ)2 cosψ
F

pψ
a

c cosψ(1 + aφ sinψ)
F

pψ
a



=


1 + aφ sinψ

F
p

cφ sin2 ψ

F
p

(1 + aφ sinψ)a sinψ + c2φ sin2 ψ

F
p

 , (5.9.84)

where

µ1 = cos θpx + sin θpy
µ2 = − sin θpx + cos θpy
µ3 = pθ

and

F = (1 + aφ sinψ)2 + c2φ2 sin2 ψ (5.9.85)
p = px cos θ + py sin θ + pθφ. (5.9.86)

Therefore, the constraint submanifold M⊂ T ∗Q is defined by

px = µ1 cos θ − µ2 sin θ
py = µ1 sin θ + µ2 cos θ
pθ = µ3.

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ, pφ, p) as its
induced local coordinates.

The Distributions H,V ∩ H and U . Using the induced coordinates,
the distribution H on M is

H = span{cos θ∂x + sin θ∂y + φ∂θ, ∂ψ, ∂φ, ∂pψ , ∂pφ , ∂p} (5.9.87)

and the subdistribution V ∩H is

V ∩H = span{cos θ∂x + sin θ∂y + φ∂θ}. (5.9.88)

Notice that in the case of the bicycle, the constraints are independent
of the velocities of the shape variables and hence the simplified procedure
employed in the snakeboard is also used here.
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As for the subdistribution U , we first calculate the two-form ΩM. After
pulling back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ
= (cos θdx+ sin θdy) ∧ dµ1 + µ1(− sin θdx+ cos θdy) ∧ dθ

+(− sin θdx+ cos θdy) ∧ dµ2 − µ2(cos θdx+ sin θdy) ∧ dθ
+dθ ∧ dµ3 + dψ ∧ dpψ + dφ ∧ dpφ .

Since U = (V ∩ H)⊥ = ker{i(V∩H)ΩH}, we need to calculate i(V∩H)ΩM,
and restrict it to H:

i(V∩H)ΩH = dµ1 − µ1φ(− sin θdx+ cos θdy)
−µ2dθ + µ2φ(cos θdx+ sin θdy) + φdµ3

= dµ1 + φdµ3

= dp+
c cosψ(1 + aφ sinψ)

F

pψ
a
dφ

−a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ.

Hence,

U = ker{dp+
c cosψ(1 + aφ sinψ)

F

pψ
a
dφ

− a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ}. (5.9.89)

The Reconstruction and Momentum Equations. A vector field XU
taking values in U must be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p (5.9.90)

where

ẋ = ξ1 cos θ − ξ2 sin θ =
(
caφ cosψ

K
ψ̇ +

1
mK

p

)
cos θ

ẏ = ξ1 sin θ + ξ2 cos θ =
(
caφ cosψ

K
ψ̇ +

1
mK

p

)
sin θ

θ̇ = φξ1 =
(
caφ2 cosψ

K
ψ̇ +

φ

mK
p

)
and

ṗ = −c cosψ(1 + aφ sinψ)
F

pψ
a
φ̇+

a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pφ̇.

(5.9.91)
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The ṗ equation is the momentum equation on the Hamiltonian side. Similar
to the example of the snakeboard, the momentum p equals the angular
momentum of the system about a fixed point P that can be determined in
the same way as in the case of the snakeboard. Notice also that the last
equation can be written simply as ṗ = µ3φ̇.

The Reduced Hamilton Equations. To find the remaining reduced
equations, we need to compute

iXHΩM = dHM, (5.9.92)

restrict it to the subdistribution U and then push it down to the reduced
constraint submanifold M. Let us first compute iXHΩM

iXHΩM =
(cos θẋ+ sin θẏ)dµ1 + µ1(− sin θẋ+ cos θẏ)dθ − µ1θ̇(− sin θdx+ cos θdy)
+(− sin θẋ+ cos θẏ)dµ2 − µ2(cos θẋ+ sin θẏ)dθ + µ2θ̇(cos θdx+ sin θdy)
+θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−(i(ψ̇∂ψ+φ̇∂φ+ṗψ∂pψ+ṗφ∂pφ+ṗ∂p)
dµ1)(cos θdx+ sin θdy)

−(i(ψ̇∂ψ+φ̇∂φ+ṗψ∂pψ+ṗφ∂pφ+ṗ∂p)
dµ2)(− sin θdx+ cos θdy).

As for dHH, we can find the constrained Hamiltonian HM via the con-
strained Legendre transform and have

HM =mga cosψ +
1
2J
p2
φ

+
1

2m

(
µ2

1 + µ2
2 +

(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

)2
)
.

Notice thatHM is SE(2)-invariant and henceHM = hM. Compute dHM =
dhM and we have

dhM =

−mga sinψdψ +
1
J
pφdpφ −

1
2J2

p2
φ

(
∂J

∂ψ
dψ +

∂J

∂φ
dφ

)
+

1
m

(µ1dµ1 + µ2dµ2

+
(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

)
d

(
K sinψ
F

pψ
a

+
cφ sinψ cosψ

F
p

))
.

It can be checked that iXHΩM = dHM is SE(2)-invariant, and vanishes
on V ∩ H when restricted to U . Hence both sides push down to H. The
push down of iXHΩM is given by

iXHΩH = (cos θẋ+ sin θẏ)dµ1 + θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

= ξ1dµ1 + ξ3dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ.
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Equating the terms of dhH = dhM with those of the push down of
iXHΩM gives the remaining reduced Hamilton equations:

ψ̇ =
1
ma

(
K

F

pψ
a

+
cφ cosψ

F
p

)
(5.9.93)

φ̇ =
pφ
J

(5.9.94)

ṗψ = mga sinψ +
1

2J2
p2
φ

∂J

∂ψ
+m(1 + aφ sinψ)aφ cosψ(ξ1)2

+mcaφ sinψξ1ψ̇ (5.9.95)

ṗφ =
1

2J2

∂J

∂φ
p2
φ, (5.9.96)

where
ξ1 =

cφ cosψ
K

ψ̇ +
1
mK

p =
cφ cosψ
mF

pψ
a

+
1
mF

p

as defined earlier in (5.9.82). The first two equations are nothing but the
inverse of the constrained Legendre transform. Notice that both the mo-
mentum equation (5.9.91) and the above set of reduced equations are inde-
pendent of the group elements of the symmetry group SE(2). If we add in
the set of reconstruction equations (5.9.82), we recover the full dynamics
of the system, and in a form that is suitable for control theoretical pur-
poses. Methods developed in Koon and Marsden [1997a] and will be used
to study the optimal control of the bicycle whose equations of motion have
been found in this section.
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6
Control of Mechanical and
Nonholonomic Systems

6.3 Stabilization of the Brockett Canonical
Form in the Case so(n)

Here we illustrate the stabilization algorithm of §6.3 of the text. We consider
the so(n) systems (6.1.2—6.1.3). Let g = so(n+1). Instead of working with
(n + 1) × (n + 1) matrices, we identify h with so(n) and we identify the
subspace m with Rn. Since g is of compact type, ε = −1. For x ∈ Rn, the
operator M(x) : so(n) → so(n) is given by

M(x)Y = −[x, [x, Y ]] = xxTY + Y xxT . (6.3.50)

This satisfies a minimal polynomial equation:

M(x)2Y = (xTx)M(x)Y. (6.3.51)

For Y ∈ so(n), the operator N(Y ) : Rn → Rn is given by

N(Y )x = Y TY x. (6.3.52)

The control (6.3.11) of the text in this setting is given by

u = −αx+ βY x+ γY TY x, (6.3.53)

for x ∈ Rn, Y ∈ so(n), and thus the system (6.3.12–6.3.13) in the text is

ẋ = −αx+ βY x+ γY TY x (6.3.54)
Ẏ = −β(xxTY + Y xxT )

+γ(Y TY xxT − xxTY TY ). (6.3.55)
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In Case III, with α = γ = 0, we know from equation (6.3.32) of the text
that the matrix M(x)Y − (xTx)Y evolves with constant spectrum. Since
xTx remains constant throughout this case, this means that

Y − 1
xTx

M(x)Y (6.3.56)

has constant spectrum.
Assume now that the system is in its initial configuration for Step 3 of

the algorithm in §6.3. Then Y TY x = λ∗x where λ∗ is the largest eigenvalue
of N(Y ) = Y TY . Observe that

M(x)Y = xxTY + Y xxT = xxTY +
1
λ∗
Y xxTY TY

=
(
xxT +

1
λ∗
Y xxTY T

)
Y.

We claim the symmetric operator 1
xT x

(xxT + 1
λ∗
Y xxTY T ) is actually an

orthogonal projector onto the subspace of Rn spanned by x and Y x. Indeed,
using the antisymmetry of Y , we compute(

xxT +
1
λ∗
Y xxTY T

)2

= (xTx)xxT +
1
λ∗

2Y xx
TY TY xxTY T

= (xTx)(xxT +
1
λ∗
Y xxTY T ).

This establishes our claim. It follows that the operator given by (6.3.56) is
the composition of the orthogonal projector onto the orthogonal comple-
ment of the subspace spanned by x and Y x with Y .

In particular, suppose v is an eigenvector of Y TY corresponding to a
nonzero eigenvalue λ 6= λ∗. Then Y x is also such an eigenvector, and Y v±
λ1/2iv are complex eigenvectors of Y itself corresponding to the eigenvalues
±λ1/2i, respectively. Both v and Y v are orthogonal to the subspace spanned
by x and Y x. The preceding discussion shows that(

Y − 1
xTx

M(x)Y
)
v = Y v(

Y − 1
xTx

M(x)Y
)
Y v = Y 2v = −λv.

It follows that(
Y − 1

xTx
M(x)Y

)
(Y v ± λ1/2iv) = ±λ1/2i(Y v ± λ1/2iv),

and thus ±λ1/2i are eigenvalues of

Y − 1
xTx

M(x)Y.
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(Similarly, if v is an eigenvector of Y TY corresponding to the possible
eigenvalue 0, then consideration of Y v shows that 0 is an eigenvalue of
Y − 1

xT x
M(x)Y .) On the other hand, we have

(Y − 1
xT x

M(x)Y )x = 0

(Y − 1
xT x

M(x)Y )Y x = Y 2x+ λ∗x = 0.

We see that the eigenvalues of Y other than ±λ∗1/2i are also eigenvalues
of Y − 1

xT x
M(x)Y with the same multiplicities. It follows that throughout

Step 3, the other eigenvalues of Y , and hence Y TY , will remain constant.
(While the preceding discussion seems to assume implicitly that λ∗ has
multiplicity 1, it is easy to see that the same result applies if there are
additional eigenvectors corresponding to λ∗.)

In Step 3, the eigenvalue of Y TY whose initial value is λ∗ is the only one
that is evolving nontrivially, and it will in fact converge to 0. To see this,
recall that Y converges to Y#, the projection of Y onto the nullspace of
M(x). It follows that

1
xTx

M(x)Y =
1
xTx

(µ0Y0 + · · ·+ µrYr)

will converge to 0, for if Y# = Y0 6= 0, then µ0 = 0. But as we have just
seen, ±λ∗1/2i are the only nonzero eigenvalues of 1

xT x
M(x)Y at time t = 0,

and thus they must converge to 0 asymptotically.
These considerations also tell us how many times we can expect the

stabilization algorithm to iterate. Indeed, since Y TY can have at most bn2 c
distinct positive eigenvalues, stabilization will be achieved in at most bn2 c
iterations.

Specializing further, let us consider the case so(3). Here Y TY has only
one nonzero eigenvalue, which has multiplicity 2. It follows that after one
execution of Step 3, Y will converge to 0. Thus the algorithm will stabilize
the system with just one iteration of the while loop.

As a numerical example of this, consider the 6th order system

ẋ = u (6.3.57)
Ẏ = xuT − uxT (6.3.58)

where x, u ∈ R3, Y ∈ so(3) with the following initial conditions:

x(0) =

 0.2
1.1
1.1



Y (0) =

 0 0.1 −0.2
−0.1 0 3.0
0.2 −3.0 0

 .
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The spectrum of Y (0)TY (0) is {9.05, 9.05, 0}.
After we apply Step 1 (with u = −λ∗x+ Y TY x) over the interval [0, t1]

with t1 = 2 sec, x and Y become respectively

x(t1) =

 −0.1076
1.0966
1.0726



Y (t1) =

 0 0.4359 0.1346
−0.4359 0 2.9738
−0.1346 −2.9738 0

 .

The spectrum of Y (t1)TY (t1) remains constant {9.05, 9.05, 0} with good
accuracy, but as expected, the vector x(t1) is now the eigenvector corre-
sponding to the eigenvalue λ = 9.05.

Application of Step 3 (with u = Y x) over the interval [t1, t2] (t2 = 4 sec)
results in the fast decay of ‖Y (t)‖ to zero as ‖x(t)‖ remains constant. At
the end of this interval, the eigenvalues of Y (t2)TY (t2) become very small:
{0.0007, 0.0007, 0}.

Finally, Step 4 is executed (with u = −x). As expected, x converges to
0 as the value of Y remains unchanged.

Time plots of ‖x(t)‖2 and ‖Y (t)‖2 are shown in Figure 6.3.1. The decrease
in these magnitudes is clearly seen. This provides an illustration of the
discontinuous switching control for stabilization developed in §6.3.
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Figure 6.3.1. Numerical Example.
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6.6 Nonsmooth Stabilization

Control of the Knife Edge Using Steering and Pushing Inputs.
Here we describe a further application of the nonsmooth stabilization al-
gorithm of §6.3 of the test (see also Bloch, Reyhanoglu, and McClamroch
[1992].) We consider the control of a knife edge moving in point contact on
a plane surface. Let x and y denote the coordinates of the point of contact
of the knife edge on the plane and let ϕ denote the heading angle of the
knife edge, measured from the x-axis. Then the equations of motion, with
all numerical constants set to unity, are given by

ẍ = λ sinϕ+ u1 cosϕ , (6.6.14)
ÿ = −λ cosϕ+ u1 sinϕ , (6.6.15)
ϕ̈ = u2 , (6.6.16)

where u1 denotes the control force in the direction defined by the heading
angle, u2 denotes the control torque about the vertical axis through the
point of contact; the components of the force of constraint arise from the
scalar nonholonomic constraint

ẋ sinϕ− ẏ cosϕ = 0 (6.6.17)

which has nonholonomy degree two at any configuration. It is clear that
the constraint manifold is a five-dimensional manifold and is defined by

M = {(ϕ, x, y, ϕ̇, ẋ, ẏ)|ẋ sinϕ− ẏ cosϕ = 0}

and any configuration is an equilibrium if the controls are zero.
Define the variables z1 = x cosϕ + y sinϕ , z2 = ϕ , z3 = −x sinϕ +

y cosϕ , z4 = ẋ cosϕ + ẏ sinϕ − ϕ̇(x sinϕ − y cosϕ) , z5 = ϕ̇ , so that the
reduced differential equations are given by

ż1 = z4 , (6.6.18)
ż2 = z5 , (6.6.19)
ż3 = −z1z5 , (6.6.20)

ż4 = u1 + u2z3 − z1z
2
5 , (6.6.21)

ż5 = u2 . (6.6.22)

We have:

6.6.4 Proposition. Let ze = (ze1, z
e
2, z

e
3, 0, 0) denote an equilibrium solu-

tion of the reduced differential equations corresponding to u = 0. The knife
edge dynamics described by equations (6.6.14)-(6.6.15) have the following
properties:

1. There is a smooth feedback which asymptotically stabilizes the closed
loop to any smooth one dimensional equilibrium manifold in M which
satisfies the transversality condition.
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2. There is no smooth feedback which asymptotically stabilizes ze.

3. The system is strongly accessible at ze since the space spanned by the
vectors

g1, g2, [g1, f ], [g2, f ], [g2, [f, [g1, f ]]]

has dimension 5 at ze.

4. The system is small time locally controllable at ze since the brackets
satisfy sufficient conditions for small time local controllability.

Note that the base variables are (z1, z2). Consider a parameterized rect-
angular closed path γ in the base space with four corner points of the form

(0, 0), (z1, 0), (z1, z2), (0, z2) ,

i.e., a = (z1, 0) and b = (0, z2) following the notation introduced in the
general development. By evaluating the holonomy integral in closed form
for this case, the holonomy equation is

zT3 = z1z2 .

This equation can be explicitly solved (inverted) to determine a closed path
γ∗ = γ(a∗, b∗) which achieves the desired holonomy. One solution can be
given as follows

a∗ =
(√

|zT3 | sign zT3 , 0
)
, b∗ =

(
0,
√
|zT3 |

)
.

Note that the previously described feedback algorithm can be used to
asymptotically stabilize the knife edge to the origin.
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7
Optimal Control

7.7 Optimal Control on Lie Algebras and
Adjoint Orbits

An interesting class of optimal control problems are those which lie natu-
rally on adjoint orbits of compact Lie groups. Analysis of problems of this
type may be found in Brockett [1994], Bloch and Crouch [1995, 1996],
Bloch, Brockett, and Crouch [1997] and Bloch, Crouch, Marsden, and
Ratiu[1998, 2002].

In this section we will set up the variational problem on the adjoint
orbits of compact Lie groups and derive the corresponding Hamiltonian
equations.

Let G be a compact Lie group (e.g. SO(n)) and g its Lie algebra. In this
case a natural drift free control system on an adjoint orbit of G takes the
form

ẋ = [x, u] (7.7.1)

(An arbitrary tangent vector to the adjoint orbit at the point x is of the
form [x, u].)

Let the pairing between vectors x in g and dual vectors p in g∗ be written
〈p, x〉 = −κ(x, p) where κ is the Killing form. (We choose the negative sign
here to ensure positive definiteness.)
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7.7.1 Definition. Let T > 0, x0, xT ∈ O, the orbit in g through x0, be
given and fixed. Then we define the optimal control problem

min
u∈g

∫ T

0

1
2
||u||2 − V (x)dt (7.7.2)

where || · || = 〈·, ·〉1/2 is the norm induced on g by the negative of the Killing
form on g, V is a smooth function on g, subject to the constraint on u that
there be a curve x(t) ∈ g such that

ẋ = [x, u] x(0) = x0, x(T ) = xT . (7.7.3)

We have

7.7.2 Theorem. The equations of the maximum principle for the varia-
tional problem with functional (7.7.2) subject to the dynamics (7.7.1) are

ẋ = [x, [p, x]]
ṗ = [p, [p, x]]− Vx . (7.7.4)

Proof. The Hamiltonian is given by

H(x, p, u) = 〈p, [x, u]〉 − 1
2
||u||2 + V (x) . (7.7.5)

Hence,
∂H

∂u
= −〈[x, p], ·〉 − 〈u, ·〉

and thus the optimal control is given by

u∗ = [p, x] . (7.7.6)

Substituting this into H, we find that the Hamiltonian evaluated along
the optimal trajectory is given by

H∗(p, x) = −1
2
〈x, [p, [p, x]]〉+ V (x) . (7.7.7)

Computing

ẋ =
(
∂H∗

∂p

)T
ṗ = −

(
∂H∗

∂x

)T
gives the result. �

A particularly interesting special case of this problem is that of Brockett
[1994]. His result in this case is as follows:
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7.7.3 Corollary. The equations of the maximum principle for the varia-
tional problem (7.7.2) subject to equations (7.7.1) with V (x) = − 1

2 ||[x, n]||2
are

ẋ = [x, [p, x]
ṗ = [p, [p, x]]− [n, [n, x]] . (7.7.8)

The proof of the corollary follows immediately, setting

V (x) =
1
2
〈x, [n, [n, x]]〉.

Note that with this functional the equations lie naturally on an adjoint
orbit. In addition, these equations are interesting in that the optimal flow
may be related to the integrable Toda lattice equations (see below and
Brockett [1994].)

We next show that these equations may be recast as the Euler-Lagrange
equations found by Brockett.

To do this, we introduce the following notation (see e.g. Bloch, Brockett,
and Ratiu [1992]): Let x and l lie in g. Then x may be decomposed as
x = xl+xl where xl ∈ Ker(adl) and xl ∈ Im(adl) and where adx(y) = [x, y].
Further, given any l ∈ g we may decompose g orthogonally relative to −κ(, )
as gl ⊕ gl where gl = Im(adl) and gl = Ker(adl).

Now any velocity vector is tangent to the orbit of the adjoint action and
hence is of the form ẋ = [x, a] for some x ∈ g. Hence ẋ ∈ Im(adx). The
inverse of operator adx which, following Brockett [1994], we will denote by
ad−1
x , is well defined on Im(adx) and hence on ẋ.
Then we have

7.7.4 Proposition. The equations (7.7.8) are equivalent to the Euler-
Lagrange equations (Brockett [1994])

ẍ = [ẋ, ad−1
x (ẋ)] + ad2

xad2
n(x). (7.7.9)

Proof. Eliminate p from the two equations (7.7.8). The computation is
straightforward but somewhat lengthy. �

The proof of this proposition may of course be obtained also by the
Legendre transformation. In terms of the operator ad, the integrand of
(7.7.2) with the given V (x) may be written as the Lagrangian (see Brockett
[1994])

L(x, ẋ) =
1
2
(||[ad−1

x ẋ||2 + ||[x, n]||2). (7.7.10)

Then, since 1
2 ||ad−1

x ẋ||2 = − 1
2 〈ad−2

x ẋ, ẋ〉 we have

p =
∂L

∂ẋ
= −ad−2

x ẋ.
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Substituting in (7.7.10) gives the (optimal) Hamiltonian H∗.
We remark that the kinetic energy in (7.7.10) is given by the so-called

normal metric (see e.g. Bloch, Brockett, and Ratiu [1992]). This is defined
as follows: Let O be an adjoint orbit of g and suppose ξ = [x, a] and
η = [x, b] are tangent vectors to the orbit at x then gn(ξ, η) = 〈ξ, η〉 =
−κ(ax, bx) where ax and bx lie in Im(adx) as defined above.

We consider now the precise sense in which the equations discussed above
are Hamiltonian. The discussion here is brief—more detail may be found
in Bloch, Brockett, and Crouch [1997].

We have

7.7.5 Theorem. Let ω be the standard symplectic structure on T ∗g. Con-
sider the Hamiltonian

H(x, p) =
1
2
||[p, x]||2 + V (x) (7.7.11)

where V(x) is any smooth function on g and p is a momentum variable
viewed as lying in g by indentifying g with its dual. The Hamiltonian equa-
tions of motion are

ẋ = [x, [p, x]]
ṗ = [p, [p, x]]− Vx. (7.7.12)

Proof. Let ξ = (δx, δp) denote an arbitrary tangent vector to T ∗g and
denote the Hamiltonian vector field corresponding to H by XH = (ζx, ζp).
We need to solve for XH from the equation dH · ξ = ω(XH , ξ). Now

dH · ξ = 〈[p, x], [δp, x]〉+ 〈[p, x], [p, δx]〉+
〈
∂V

∂x
, δx

〉
and

ω(XH , ξ) = 〈ζx, δp〉 − 〈ζp, δx〉.

Equating these expressions gives the result. �

We now have

7.7.6 Corollary. Let V (x) = 1
2 〈[x, n], [x, n]〉 in the Hamiltonian (7.7.11).

Then the Hamiltonian equations (7.7.12) yield the optimal Hamiltonian
equations (7.7.8).

Consider now the case V = 0. Remarkably, even though these equations
are Hamiltonian with respect to the standard symplectic structure on T ∗g,
they are in fact Hamiltonian on the cotangent bundle of an adjoint orbit
of G. That is, even though the Hamiltonian structure on the orbit is com-
plicated and is not the restriction of the structure on the Lie algebra, the
equations themselves do restrict. We have
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7.7.7 Theorem. For V (x) = 0 the equations

ẋ = [x, [p, x]]
ṗ = [p, [p, x]] . (7.7.13)

are the Hamiltonian form of the geodesic equations with respect to the nor-
mal metric on an adjoint orbit of g.

Sketch of Proof. From the optimal control calculation above we know
that these are the equations of the geodesic flow. It remains to observe that
this is the geodesic flow with respect to the normal metric. Now for V = 0
the Hamiltonian is just the norm of the velocity in the normal metric.
We now need to check that the equations of motion are Hamiltonian with
respect to this Hamiltonian and a symplectic structure on the cotangent
bundle of the orbit, which may be identified with the tangent bundle. A
tangent vector to the tangent bundle to the orbit at the point (x, [x, ξ]) is
of the form

(x, [x, ξ], [x, η], [[x, η], ξ] + [x, ζ]) (7.7.14)

for ξ, η, ζ ∈ g. Then, using the natural symplectic structure as in Thimm
[1981] gives the result. The details of this standard but lengthy computation
are given in Bloch, Brockett, and Crouch [1997]. �

We may also endow any orbit with the right invariant metric

gnl([x, a], [x, b]) = −κ(ax, Jbx) (7.7.15)

where J is a positive self-adjoint operator on the algebra. Then we have

7.7.8 Corollary. The geodesic equations on an adjoint orbit endowed
with the right invariant metric (7.7.15) are

ṗ = [p, J−1[p, x]]
ẋ = [x, J−1[p, x]] . (7.7.16)

We shall consider this right invariant case from the optimal control point
of view in the next paragraph.

We note also that, as expected, in the bi-invariant case with V = 0 it is
possible to explicitly compute the solutions of (7.7.13) despite their strong
coupling. This follows from

7.7.9 Lemma. [p, x] is conserved along the flow of (7.7.13).

This is proved by a simple computation. However proving complete inte-
grability in the Hamiltonian sense, i.e., finding a complete set of commuting
integrals, is by no means easy. This is the content of Thimm [1981] and
Bloch, Brockett, and Crouch [1997].
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Optimal Control on Symmetric Spaces. The equations discussed
above are not only well defined on adjoint orbits but also on general sym-
metric spaces where the tangent vectors to the space are given in the form
a suitable bracket—this includes the complex and real Grassmannians of q-
planes in n+1-space Gq,n+1(C) or Gq,n+1(R) and in particular the spheres.

This may be seen as follows: The complex Grassmannian is given by

U(n+ 1)/U(q)× U(p), q + p = n+ 1, q ≤ p (7.7.17)

and the real Grassmannian by

SO(n+ 1) SO(q)× SO(p), q + p = n+ 1, q ≤ p (7.7.18)

where U(n) is the unitary group and SO(n) the special orthogonal group. In
either case let g = k⊕m be the Lie algebra decomposition corresponding to
G/K. We may thus represent a point in the complex (real) Grassmannian
by a matrix

Q̂ =
[

0 Q
−Q∗ 0

]
(7.7.19)

in m where Q is a complex (real) p × q matrix of full rank and Q∗ is its
Hermitian conjugate (transpose). A point in k may be represented by the
matrix

K̂ =
[
K1 O
O K2

]
(7.7.20)

where K1 ∈ u(p)(so(p)) and K2 ∈ u(q)(so(q)). Define P̂ to be a similarly
partitioned matrix. Then we have

7.7.10 Proposition. Tangent vectors to the Grassmannian are repre-
sented by matrices of the form

[Q̂, K̂] .

Proof. A curve in the Grassmannian through the point Q̂ may be given
by

e−K̂tQ̂eK̂t.

Note that the given curve simply provides an orthogonal (or unitary) trans-
formation of the rows and columns of Q. Differentiating at t = 0 gives the
result. �

Since tangent vectors are given by brackets, just as in the case of orbits,
a normal metric may be defined as follows: Given two tangent vectors
ξ1 = [Q̂, K̂1] and ξ2 = [Q̂, K̂2] define < ξ1, ξ2 >N to be −K(K̂Q̂

1 , K̂
Q̂
2 )

where K̂Q̂
1 denotes the projection of K̂1 onto the image of adQ̂ in the

decomposition ls = Ker(adQ̂)⊕ Im(adQ̂). As in the case of orbits we thus
obtain
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7.7.11 Proposition. The geodesic equations on the real or complex Grass-
mannian are given by

˙̂
Q = [Q̂, [P̂ , Q̂]]
˙̂
P = [P̂ , [P̂ , Q̂]] . (7.7.21)

where Q̂ is given by 7.7.19 and similarly for P̂ .

For a symmetric space we have [k, k] ⊂ k, [k,m] ⊂ m. Thus, [m,m] ⊂ k
and since Q̂, P̂ ∈ m the equations are naturally well defined.

In fact the formalism developed here can be combined with the work
of Thimm [1981] to give an explicit proof of complete integrability of the
geodesic flow on symmetric spaces such as the real and complex Grass-
mannians. In particular it is possible to derive explicitly a complete set
of commuting flows and to prove their involutivity. This is the subject of
Bloch, Brockett, and Crouch [1997].

This should be contrasted with the observation of Brockett regarding the
optimal control equations for (7.7.2) with V (x) = 1

2 ||[x, n]||2. He observed
that the optimal flow under suitable conditions was given by ẋ = [x, [x, n]]
and in the particular case of x being tridiagonal one obtains the integrable
Toda lattice equations in Flaschka’s form but written as a double bracket
equation (see Bloch [1990]). Integrability of optimal control problems is a
rich subject (see, for example, Faybusovich [1988]).

As in the variational problem on adjoint orbits the double, double bracket
equations on Grassmannians are solutions to a natural optimal problem.

7.7.12 Definition. Let u(n) denote the Lie algebra of the unitary group
U(n). Let Q be a p× q complex matrix and let U ∈ u(p) and V ∈ u(q). Let
JU and JV be constant symmetric positive definite operators on the space
of complex p × p and q × q matrices respectively and let 〈·, ·〉 denote the
trace inner product 〈A,B〉 = 1

2 trace(A†B), where A† is the adjoint; that
is, the transpose conjugate.

Let T > 0, Q0, QT be given and fixed. Define the optimal control problem
over u(p)× u(q)

min
U,V

1
4

∫
{〈U, JUU〉+ 〈V, JV V 〉}dt (7.7.22)

subject to the constraint that there exists a curve Q(t) such that

Q̇ = UQ−QV, Q(0) = Q0, Q(T ) = QT . (7.7.23)

7.7.13 Theorem. The optimal control problem (7.7.12) has optimal con-
trols given by

U = J−1
U (PQ† −QP †)

V = J−1
V (P †Q−Q†P ) . (7.7.24)
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and the optimal evolution of the states Q and costates P is given by

Q̇ = J−1
U (PQ† −QP †)Q−QJ−1

V (P †Q−Q†P )

Ṗ = J−1
U (PQ† −QP †)P − PJ−1

V (P †Q−Q†P ).
(7.7.25)

Note: JU and JV are in general different operators acting on different
spaces. In certain case (see the rigid body below) the spaces and the oper-
ators may be taken to be the same.

Proof. Form the Hamiltonian

H(Q,P,U, V ) = 〈P,UQ−QV 〉 − 1
2
〈U, JUU〉 −

1
2
〈V, JV V 〉 . (7.7.26)

To find the optimal control we differentiate the Hamiltonian with respect
to U and V in the directions Y and Z respectively and set equal to zero.
This yields

〈P, Y Q〉 − 1
4
〈Y, JUU〉 −

1
4
〈U, JUY 〉 = 0

and
〈P,−QZ〉 − 1

4
〈Z, JV V 〉 −

1
4
〈V, JV Z〉 = 0 .

We have 〈Y, JUU〉 = 〈U, JUY 〉 and 〈U, JUY 〉 = 〈Y, JUU〉 and thus along
the optimal trajectory

〈P, Y Q〉 = 〈P, Y Q〉 . (7.7.27)

Now
〈P, Y Q〉 =

1
2
〈Y, PQ†〉 − 1

2
〈Y,QP †〉

and
〈P, Y Q〉 =

1
2
〈Y, PQ†∗〉 − 1

2
〈Y,QP †〉 .

Thus, using the fact that 〈P, Y Q〉 is real, along the optimal trajectory
we have

〈P, Y Q〉 =
1
2
〈P, Y Q〉+

1
2
〈P, Y Q〉

=
1
4
〈Y, PQ† −QP †〉+

1
4
〈Y, PQ† −QP †〉

=
1
4
〈Y, JUU〉+

1
4
〈Y, JUU〉 . (7.7.28)

Hence
JUU = PQ† −QP †.

Similarly for V .
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Now the equations for Q and P are given by

〈Z, Q̇〉 =∇PH(Z) = 〈Z,UQ−QV 〉
〈Ṗ , Z〉 = −∇QH(Z) = −〈P,UZ − ZV 〉 = 〈UP − PV,Z〉 , (7.7.29)

and hence the result. �

We remark that this result does not preclude the existence of conjugate
points.

We have the immediate corollary:

7.7.14 Corollary. For JU and JV equal to the identity, the optimal con-
trol equations for the problem (7.7.22) subject to (7.7.23) are

Q̇ = PQ†Q+QQ†P − 2QP †Q
Ṗ = 2PQ†P −QP †P − PP †Q . (7.7.30)

Further, in the general case we have

7.7.15 Corollary. The equations (7.7.25) are given by the double double
bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]]
˙̂
P = [P̂ , Ĵ−1[P̂ , Q̂]] . (7.7.31)

where Ĵ is the operator diag(JU , JV ),

Q̂ =
[

0 Q
−Q† 0

]
∈ u(p+ q), (7.7.32)

Q is a complex p × q matrix of full rank, Q† is its adjoint, and similarly
for P .

The proof is a computation.
Note that the equations (7.7.31) or (7.7.25) give the geodesic equations

on the complex Grassmannian (or real Grassmannian in the real case) with
respect to the right invariant “normal” metric.

As an example in the current setting, we next write explicitly the geodesic
flow on the sphere Sn. Recall (see e.g. Moser [1980]) that the geodesic mo-
tion on Sn may be written as follows: Let q = [q1, · · · , qn+1]T ∈ Rn+1 with
Euclidean norm ||q|| = 1, represent an element of Sn. Then the geodesic
flow can be found by setting q̈ = λq where λ is chosen so that ||q|| is com-
patible with the flow. This follows from the constrained optimization of the
free particle Lagrangian. This implies 〈q, q̇〉 = 0 and 〈q, q̈〉 + ||q̇||2 = 0.
Thus λ = −||q̇||2 and the geodesic flow is given by

q̈ = −||q̇||2q. (7.7.33)
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Letting p = [p1, · · · , pn+1]T ∈ Rn+1, this may be viewed as a Hamilto-
nian system restricted to ||q|| = 1 , 〈q,p〉 = 0. With Hamiltonian H =
1
2 ||q||

2||p||2, we get the flow

q̇ =
(
∂H

∂p

)T
= p ṗ = −

(
∂H

∂q

)T
= −||p||2q . (7.7.34)

In our current setting we have

7.7.16 Proposition. Let

P̂ =


0 · · · 0 p1

...
...

...
...

0 · · · 0 pn+1

−p1 · · · −pn+1 0

 Q̂ =


0 · · · 0 q1
...

...
...

...
0 · · · 0 qn+1

−q1 · · · −qn+1 0


(7.7.35)

where we normalize ||q|| = 1 and 〈q,p〉 = 0. Then the flow (7.7.13) yields
the geodesic flow (7.7.33).

The proof is a straightforward computation.

Exercises

� 7.7-1. Formulate the geodesic flow on a sphere directly as an optimal
control problem

This flow is completely integrable and again provides an example of an
integrable optimal control problem. Details of the proof of integrability can
be found in Thimm [1981] or Bloch, Brockett, and Crouch [1997].

The rigid body as an optimal control problem.1

We now discuss the SO(n) rigid body equations in the optimal control
setting.

For convenience we shall use the following pairing (multiple of the Killing
form) on so(n), the Lie algebra of n×n real skew matrices regarded as the
Lie algebra of the n-dimensional proper rotation group SO(n):

〈ξ, η〉 = −1
2

trace(ξη).

The factor of 1/2 in this formula is to make this inner product agree with the
usual inner product on R3 when it is identified with so(3) in the following
standard way: we associate the 3 × 3 skew matrix û to the vector u by
û · v = u× v, where u× v is the usual cross product in R3.

1Based on Bloch, Crouch, Marsden, and Ratiu [2002]
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We use this inner product to identify the dual of the Lie algebra, namely
so(n)∗, with the Lie algebra so(n).

We recall from Manakov [1976] and Ratiu [1980] that the left invariant
generalized rigid body equations on SO(n) may be written as

Q̇ = QΩ

Ṁ = [M,Ω] , (7.7.36)

where Q ∈ SO(n) denotes the configuration space variable (the attitude
of the body), Ω = Q−1Q̇ ∈ so(n) is the body angular velocity, and M :=
J(Ω) ∈ so(n) is the body angular momentum. Here J : so(n) → so(n) is
the symmetric (with respect to the above inner product) positive definite
operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix satisfying Λi+Λj > 0 for all i 6= j. For n = 3
the elements of Λi are related to the standard diagonal moment of inertia
tensor I by I1 = Λ2 + Λ3, I2 = Λ3 + Λ1, I3 = Λ1 + Λ2.

The equations Ṁ = [M,Ω] are readily checked to be the Euler-Poincaré
equations on so(n) for the Lagrangian

l(Ω) =
1
2
〈Ω, J(Ω)〉 .

It follows from general Euler-Poincaré theory (see, for example, Marsden
and Ratiu [1999]) that the equations (7.7.36) are the geodesic equations
on T SO(n), left trivialized as SO(n)× so(n), relative to the left invariant
metric whose expression at the identity is

〈〈Ω1,Ω2〉〉 = 〈Ω1, J(Ω2)〉 . (7.7.37)

According to Mishchenko and Fomenko [1978], there is a similar for-
malism for any semisimple Lie group and that in that context, one has
integrability on the generic coadjoint orbits.

The Symmetric Rigid Body System. By definition, the left invari-
ant symmetric rigid body system is given by the first order equations

Q̇ = QΩ

Ṗ = PΩ (7.7.38)

where Ω is regarded as a function of Q and P via the equations

Ω := J−1(M) ∈ so(n) and M := QTP − PTQ.

It is easy to check that this system of equations on the space SO(n)×SO(n)
is invariant under the left diagonal action of SO(n).

7.7.17 Proposition. If (Q,P ) is a solution of (7.7.38), then (Q,M)
where M = J(Ω) and Ω = Q−1Q̇ satisfies the rigid body equations (7.7.36).
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Proof. DifferentiatingM = QTP−PTQ and using the equations (7.7.38)
gives the second of the equations (7.7.36). �

It is because of this proposition that the equations (7.7.38) are called the
left invariant symmetric rigid body equations on SO(n)× SO(n).

Recall that the spatial angular momentum for the standard left in-
variant rigid body equations (7.7.36) is defined to be the value of momen-
tum map for the cotangent lifted left action of SO(n) on T ∗ SO(n) (see, for
example, Marsden and Ratiu [1999] for these basic notions).

7.7.18 Proposition. For a solution of the left invariant rigid body equa-
tions (7.7.36) obtained by means of Proposition 7.7.17, the spatial angular
momentum is given by m = PQT −QPT and hence m is conserved along
the rigid body flow.

Proof. If we start with a solution (Q(t), P (t)) of the symmetric rigid body
system, and map this solution to (Q(t),M(t)) where M(t) = QTP −PTQ,
then as we have seen, M satisfies the rigid body system, and so M is the
body angular momentum, that is, it is the value of the momentum map
for the right action. By general Euler-Poincaré and Lie-Poisson theory, m,
which is the value of the momentum map for the left action, is obtained
from M using the coadjoint action of SO(n) on so(n)∗ ∼= so(n), namely

m = QMQT = Q(QTP − PTQ)QT = PQT −QPT .

It follows by Noether’s theorem that ṁ = 0; one can also verify this directly
by differentiating m along (7.7.38). �

Local Equivalence of the Rigid Body and the Symmetric Rigid
Body Equations. Above we saw that solutions of the symmetric rigid
body system can be mapped to solutions of the rigid body system. Now we
consider the converse question. Thus, suppose we have a solution (Q,M)
of the standard left invariant rigid body equations. We seek to solve for P
in the expression

M = QTP − PTQ. (7.7.39)

For the following discussion, it will be convenient to make use of the
operator norm on matrices. We recall, for notational purposes, that this
norm is given by

‖A‖op = sup
‖x‖=1

‖Ax‖

where the norms on the right hand side are the usual Euclidean space
norms.

Since elements of SO(n) have operator norms bounded by 1 and since the
operator norm satisfies ‖AB‖op ≤ ‖A‖op‖B‖op, we see that if M satisfies
M = QTP − PTQ, then ‖M‖op ≤ 2. Therefore, ‖M‖op ≤ 2 is a necessary
condition for solvability of (7.7.39) for P .
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7.7.19 Definition. Let C denote the set of (Q,P ) that map to M ’s with
operator norm equal to 2 and let S denote the set of (Q,P ) that map to
M ’s with operator norm strictly less than 2. Also denote by SM the set of
points (Q,M) ∈ T ∗ SO(n) with ‖M‖op ≤ 2.

Note that C contains pairs (Q,P ) with the property that QTP is both
skew and orthogonal.

Recall that sinh : so(n) → so(n) is defined by

sinh ξ =
eξ − e−ξ

2
.

One sees that indeed sinh takes values in so(n) by using, for example, its
series expansion:

sinh ξ = ξ +
1
3!
ξ3 +

1
5!
ξ5 + . . . .

Recall from calculus that the inverse function sinh−1(u) has a convergent
power series expansion for |u| < 1 that is given by integrating the power
series expansion of the function 1/

√
1 + u2 term by term. This power series

expansion shows that the map sinh : so(n) → so(n) has an inverse on the
set U = {u ∈ so(n) | ‖u‖op < 1}. We shall denote this inverse, naturally,
by sinh−1, so

sinh−1 : U → so(n).

Example of SO(3). As an example, let us consider so(3) which we pa-
rameterize as follows: we write an element of so(3) as µĉ where ĉ is an
element of so(3) of unit operator norm (so c, the corresponding 3-vector
has vector norm one) and µ is a positive scalar. One checks that the opera-
tor norm of ĉ is equal to the Euclidean norm of c. Hence, the set U consists
of the set of elements µĉ where c is a unit vector and µ is a real number
with 0 ≤ µ < 1. From Rodrigues’ formula (see e.g. Marsden and Ratiu
[1999]) one finds that

eµĉ = I + sin(µ)ĉ+
(
I − ccT

)
(cosµ− 1). (7.7.40)

Thus, one sees that
sinh(µĉ) = sin(µ)ĉ .

Notice that from this formula, sinh is not globally one to one. However, it
has an inverse defined on the set U explicitly given by

sinh−1(µĉ) = sin−1(µ)ĉ.

7.7.20 Proposition. For ‖M‖op < 2, the equation (7.7.39) has the so-
lution

P = Q
(
esinh−1M/2

)
. (7.7.41)
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Proof. Notice that

M = esinh−1M/2 − e− sinh−1M/2 . �

Similarly, in the right invariant case, we obtain the formula

Pr =
(
esinh−1Mr/2

)
Qr . (7.7.42)

Example of SO(3). We now show that for SO(3) the set C is not empty,
even though there are no points Q,P such that QTP is both skew and
orthogonal (because in SO(3) there are no skew orthogonal matrices, as all
three by three skew matrices are singular). Let QTP = eµĉ where µ = π/2.
Then by equation (7.7.40) QTP = I + ĉ and hence is not skew. Now for x
such that cTx = 0 we have

‖(QTP − PTQ)x‖ = 2‖ĉx‖ = 2‖x‖

and thus ‖(QTP − PTQ)‖op = 2.
In fact, reversing the argument above shows that for SO(3) the set C

consists entirely of elements of form QTP = I + ĉ for some c.

7.7.21 Proposition. The sets C and S are invariant under the double
rigid body equations.

Proof. Notice that the operator norm is invariant under conjugation;
that is, for Q ∈ SO(n) and M ∈ so(n), we have

‖QMQ−1‖op = ‖M‖op.

This is readily checked from the definition of the operator norm. Recall
that under the identification of the dual so(n)∗ with the space so(n), the
coadjoint action agrees with conjugation. Thus, the map f : so(3) → R;
M 7→ ‖M‖op is a Casimir function and so is invariant under the dynam-
ics. In particular, its level sets are invariant and so the sets S and C are
invariant. �

One can see that the operator norm is invariant under the dynamics
by a direct argument as well. This is done by writing the operator norm
as ‖M‖op =

√
λ, where λ is the maximum eigenvalue of MTM (by the

Rayleigh-Ritz quotient). Then one differentiates the equation MTMv =
λv along the flow of the rigid body equations, subject to the constraint
‖v‖2 = 1 to see that λ̇ = 0.

Example of SO(3). For the rotation group, the trace norm (up to a
factor of 2) and the operator norm both agree with the standard Euclidean
norm under the identification v ∈ R3 7→ v̂ ∈ so(3). The standard norm is
indeed a Casimir function for the rotation group and is invariant under the
rigid body equations by conservation of angular momentum.
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We can obtain these equations from the optimal control viewpoint as
follows:

7.7.22 Definition. Let T > 0, Q0, QT ∈ SO(n) be given and fixed. Let
the rigid body optimal control problem be given by

min
U∈so(n)

1
2

∫ T

0

〈U, J(U)〉dt (7.7.43)

subject to the constraint on U that there be a curve Q(t) ∈ SO(n) such that

Q̇ = QU , Q(0) = Q0, Q(T ) = QT . (7.7.44)

7.7.23 Proposition. The rigid body optimal control problem (7.7.22) has
optimal evolution equations (7.7.38) where P is the costate vector given by
the maximum principle.

The optimal controls in this case are given by

U = J−1(QTP − PTQ). (7.7.45)

Remark The proof (see Bloch and Crouch [1996]) simply involves writing
the Hamiltonian of the maximum principle as

H = 〈P,QU〉 − 1
2
〈U, J(U)〉 (7.7.46)

and maximizing with respect to U in the standard fashion.

Exercises

� 7.7-2. Show that if instead of the Hamiltonian (7.7.46) one formulates
the Hamiltonian in Proposition 7.7.23 as

H = 〈QP,QU〉 − 1
2
〈U, J(U)〉 (7.7.47)

where QP is now a left invariant vector field and P is in so(n) one obtains
the rigid body equations in the standard rather than symmetric form

Now we show that the rigid body equations may be given as singular
case of the double double bracket equations discussed earlier for the general
optimal control problem. To see this, let

Q̂ =
[

0 Q
−QT 0

]
(7.7.48)

as before and similarly for P̂ . Note that these matrices now lie in so(2n)
and each block lies in SO(n).
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7.7.24 Corollary. The generalized rigid body equations on SO(n) are
given by the double double bracket equations (7.7.31) in the case Q and P
lie in SO(n), JU = J , and the operator J−1

V = 0.

Note that the reduced generalized rigid body equations (the dynamics)
are completely integrable (see e.g. Ratiu [1980]).

There is also a fascinating symmetric discrete rigid body system which
can also be obtained via the (discrete) maximum principle and which is
connected with the discrete integrable Moser-Veselov equations for the rigid
body Moser and Veselov [1991]. We just mention this briefly here and refer
the reader to Bloch, Crouch, Marsden, and Ratiu [1998, 2002] for details.

The Discrete Symmetric Rigid Body. We now define the symmetric
discrete rigid body equations as follows:

Qk+1 = QkUk

Pk+1 = PkUk , (7.7.49)

where Uk is defined by

UkΛ− ΛUTk = QTk Pk − PTk Qk = JD(Uk) . (7.7.50)

We can then obtain the discrete symmetric rigid body equations as fol-
lows:

7.7.25 Definition. Let Λ be a positive definite diagonal matrix. Let
Q0, QT ∈ SO(n) be given and fixed. Define the optimal control problem

min
Uk

∑
k

trace(ΛUk) (7.7.51)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0, Q(T ) = QT (7.7.52)

for Qk, Uk ∈ SO(n).

7.7.26 Theorem. The optimal control problem 7.7.25 yields the optimal
evolution equations

Qk+1 = QkUk

Pk+1 = PkUk , (7.7.53)

where Pk is the discrete covector and Uk is defined by

UkΛ− ΛUTk = QTk Pk − PTk Qk . (7.7.54)
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Optimal Control and the Full Toda Flow.

In this section we introduce an optimal control problem which yields the
full Toda flow as described originally in Faybusovich [1988]. We follow here
the treatment in Bloch and Crouch [1997]. This problem may be viewed as
a control problem on an adjoint orbit of lower triangular matrices.

We begin by introducing some specialized notation. Let G = gl(n) denote
the Lie algebra of n× n matrices (with corresponding Lie group GL(n) of
invertible n× n matrices).

7.7.27 Definition. For A ∈ gl(n), let A = A+ + A0 + A− where A+ is
the strictly upper part of A, A0 the diagonal part, and A− is the strictly
lower part. Let

πl(A) = A− +AT+ +A0 (lower)

πk(A) = A+ −AT+ (skew)

πk⊥(A) = A− +A0 +AT− (symmetric)

πl⊥(A) = A+ −AT− (strictly upper).

The reason for the above notation is as follows (see Symes [1980]):
Endow G with the inner product 〈A,B〉T = TrATB. We observe

G = L ⊕K

where L is the subalgebra of lower triangular matrices and K the subalgebra
of skew-symmetric matrices. L is the Lie algebra of L, the lower triangular
group and K is the Lie algebra of K, the group of orthogonal matrices.

Denote by ⊥ the perpendicular subspace under the scalar product. Then

L⊥ = {x : Tr(xT y) = 0,∀y ∈ L}

is the algebra of strictly upper triangular matrices and

K⊥ = {x : Tr(xT z) = 0,∀z ∈ K}

is the space of all symmetric matrices. Hence we can write

G ' G∗ = L⊥ ⊕K⊥,

and we can make the identification

L∗ ' K⊥

K∗ ' L⊥.

We now give some preliminary results that will be useful in the main
theorem.
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7.7.28 Lemma. For any matrix S ∈ G and L inL

πk⊥(LTS) = πk⊥(LTπk⊥S)
πk⊥(SLT ) = πk⊥(πk⊥(S)LT ).

Let F : G → G be analytic and consider

f(PQT ) = TrF (PQT ).

Let

FAf(A)(R) = lim
h→0

f(A+ hR)− f(A)
h

= 〈R,∇f(A))

for A,R ∈ gl(n). Hence

FQf(PQT )(R) = 〈PRT ,∇f(PQT )〉
= 〈RPT ,∇f(PQT )T 〉
= 〈R,∇f(PQT )TP 〉

FP f(PQT )(R) = 〈RQT ,∇f(PQT )〉
= 〈R,∇f(PQT )Q〉.

Hence, we have

7.7.29 Lemma. Let f(PQT ) = TrF (PQT ). Then the Hamiltonian flows
with respect to the canonical structure on T ∗G are given by

Q̇ =∇f(PQT )Q
Ṗ = −∇f(PQT )TP,

respectively.

The main result in Bloch and Crouch [1997] can now be stated in the
following way. Consider the optimal control problem

min
U

∫ T

0

1
2 〈U,U〉T dt

subject to: Ẋ = πl(U)X, X(0) = X0, X(T ) = XT ,
where X ∈ L, U ∈ G.

(7.7.55)

7.7.30 Theorem. For the optimal control problem (7.7.55), the optimal
controls are given by

U = πk⊥(RXT )

where R is the costate vector and the corresponding extremal flow is given
by

Ẋ = πl(πk⊥(RXT ))X (7.7.56)
Ṙ = −πk⊥(πTl (πk⊥(RXT ))R).



7.7 Optimal Control on Lie Algebras and Adjoint Orbits 105

Equations (7.7.56) are Hamiltonian with respect to the canonical structure
on T ∗G, with corresponding Hamiltonian function

H(R,X) = 1
2 〈πk⊥(RXT ), πk⊥(RXT )〉T . (7.7.57)

From this result, and Lemma 7.7.28, we observe that if S = πk⊥(R) we
may rewrite H in (7.7.57) in the form:

H = 1
2 〈πk⊥(SXT ), πk⊥(SXT )〉T . (7.7.58)

Using Lemma 7.7.28 once more, the Hamiltonian equations may be rewrit-
ten in the form

Ẋ = πl(πk⊥(SXT ))X (7.7.59)
Ṡ = −πk⊥(πTl (πk⊥(SXT ))S).

Now set
A = πk⊥(SXT ). (7.7.60)

Then the equations (7.7.59) are of the form

Ẋ = πl(∇f(A))X
Ṡ = −πk⊥(πTl (∇f(A))S)

where f(A) = 1
2Tr(A2).

Now we compute

Ȧ = πk⊥(ṠXT + SẊT )
= πk⊥(−πk⊥(πTl (∇f)S)XT )

+πk⊥(SXTπTl (∇f))
= −πk⊥(πTl (∇f)SXT )

+πk⊥(SXTπTl (∇f))
(by Lemma (7.7.28)

= πk⊥([A, πTl (∇f)]).

Hence
Ȧ = πk⊥([A, πTl (∇f)]). (7.7.61)

But since
∇f(A) = πl(∇f(A)) + πk(∇f(A))

and ∇f(A) ∈ K⊥ (for any invariant polynomial in A), we have

∇f(A) = πTl (∇f(A))− πk(∇f(A)).
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Observing also that [A,∇f(A)] = 0, we obtain

Ȧ = πk⊥ [A, πk(∇f(A))]
= [A, πk(∇f(A))]

(since [K⊥,K] ⊂ K⊥)
= [A,∇f(A)− πl∇f(A)]
= [πl(∇f(A)), A].

Thus for f(A) = 1
2Tr(A2), we obtain from (7.7.59) and (7.7.60) the follow-

ing set of equations which are equivalent to the extremal flow (7.7.56), and
represent the (augmented) full Toda flow:

Ẋ = πl(A)X (7.7.62)
Ȧ = [A, πk(A)] = [πl(A), A].

The equations (7.7.56) and (7.7.59) were originally derived in a completely
different fashion in the work of Symes [1980] . We note the special form of
the full reduced Toda flow equation (7.7.61)

Ȧ = πk⊥([A, πTl (∇f)]). (7.7.63)

We observe that this evolves naturally in a coadjoint orbit of L. We can
see this by considering tangent vectors to an orbit. These are of the form
ad∗WA for W ∈ L and A ∈ L∗ ' K⊥. Let A = 〈S, ·〉T for S ∈ K⊥, and let
V ∈ L. Then

ad∗W (A)(V ) = −A(adWV ) = −A([W,V ])
= −〈S, [W,V ]〉T = −〈[WT , S], V 〉T
= −〈[WT , S], πlV 〉T

since V ∈ L
= 〈πk⊥ [S,WT ], V 〉T .

Hence indeed the right hand side of (7.7.63) is a tangent vector to a coad-
joint orbit. The classical tridiagonal Toda flow lies on a low rank nongeneric
orbit of this type.
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9
Energy-Based Methods for
Stabilization

9.4 Stabilization of a Class of Nonholonomic
Systems

Example: Stabilization of Unicycle with Rider

Stabilization of the unicycle with rider is discussed in Zenkov, Bloch, and
Marsden [1999], Zenkov, Bloch, and Marsden [2002a]

We now present the dynamical model of a homogeneous disk on a hori-
zontal plane with a mass and pendulum attached. The pendulum is free to
move in the plane orthogonal to the disk, while the attached mass stays in
the disk’s plane. We view this as a simplified model of a rider on a unicycle
in which only the sideways motion of the rider (such as the rider’s limbs)
is modeled, without pedaling control.

Configuration Space. The configuration space for the unicycle with
rider as described in Chapter 1, is Q = S1 × S1 × S1 × SE(2), which
we parameterize with coordinates (θ,κ, ψ, φ, x, y). As in Figure 9.4.1, θ is
the tilt of the unicycle itself, κ is that of the limb, and ψ is the angular
position of the wheel of the unicycle. The variables (φ, x, y), regarded as a
point in SE(2), represent the angular orientation and position of the point
of contact of the wheel with the ground.

The Symmetry Group. This mechanical system is SO(2) × SE(2)-
invariant; the group SO(2) represents the symmetry of the wheel, that
is, the symmetry in the ψ variable, while the group SE(2) represents the
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Figure 9.4.1. The configuration variables for the unicycle with rider.

Euclidean symmetry of the overall system. The action by the group element
(α, β, a, b) on the configuration space is given by

(θ,κ, ψ, φ, x, y) 7→
(θ,κ, ψ + α, φ+ β, x cosβ − y sinβ + a, x sinβ + y cosβ + b).

Lagrangian. The Lagrangian of this system has the standard form of
kinetic minus potential energy:

L = Kdisk +
m

2
v2
m +

µ

2
v2
µ − U,

where,

Kdisk =
1
2
[
A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2

]
+
M

2
[
R2θ̇2 + 2R(ẏ cosφ− ẋ sinφ)θ̇ cos θ

+ (ẋ−Rφ̇ sin θ cosφ)2 + (ẏ −Rφ̇ sin θ sinφ)2
]
,

v2
m = (R+ l)2θ̇2 + 2(R+ l)(ẏ cosφ− ẋ sinφ)θ̇ cos θ

+
[
ẋ− (R+ l)φ̇ sin θ cosφ

]2 +
[
ẏ − (R+ l)φ̇ sin θ sinφ

]2
,

v2
µ = (R+ r)2θ̇2 + ρ2(κ̇ − θ̇)2 + 2ρ(R+ r)(κ̇ − θ̇)θ̇ cos κ̇

+ 2
[
(R+ r)θ̇ cos θ + ρ(κ̇ − θ̇) cos(κ − θ)

][
ẏ cosφ− ẋ sinφ

]
+
[
ẋ− φ̇ cosφ

(
(R+ r) sin θ + ρ sin(κ − θ)

)]2
+
[
ẏ − φ̇ sinφ

(
(R+ r) sin θ + ρ sin(κ − θ)

)]2
,

and

U = MgR cos θ +mg(R+ l) cos θ + µg [(R+ r) cos θ − ρ cos(κ − θ)] .
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Constraints. The constraints are given by the standard conditions of
rolling without slipping:

ẋ = −ψ̇R cosφ, ẏ = −ψ̇R sinφ.

Here M is the mass of the disk, R is the radius of the disk, A and B are
the principal moments of inertia of the disk, m is the rider mass, r is the
rod length, l is the distance from the center of the disk to the mass m, µ
is the limb mass, and ρ is the limb length.

Lagrange-d’Alembert Equations. The equations of motion with a
control torque u on the pendulum are those derived in the standard way
from the Lagrange-d’Alembert principle:

d

dt

∂Lc

∂θ̇
=
∂Lc
∂θ

,

d

dt

∂Lc
∂κ̇

=
∂Lc
∂κ

+ u,

d

dt

∂Lc

∂φ̇
= A cos θ θ̇ψ̇ + B cos(κ − θ)(κ̇ − θ̇)ψ̇,

d

dt

∂Lc

∂ψ̇
= −A cos θ θ̇φ̇− B cos(κ − θ)(κ̇ − θ̇)φ̇,

where Lc(θ,κ, θ̇, κ̇, ψ̇, φ̇) = L(θ,κ, φ, θ̇, κ̇, ψ̇, φ̇,−ψ̇R cosφ,−ψ̇R sinφ) is the
reduced Lagrangian, A = MR2 +mR(R + l) + µR(R + r), and B = µRρ.
These equations are supplemented, of course, with the constraints so that
one has a well posed initial value problem.

Nonholonomic Momenta and Routhian. The nonholonomic momen-
tum and the constrained Routhian are given by

p1 =
∂Lc

∂φ̇
= I11φ̇+ I12ψ̇, p2 =

∂Lc

∂ψ̇
= I21φ̇+ I22ψ̇,

and

R =
1
2
(
g11θ̇

2 + 2g12θ̇κ̇ + g22κ̇2
)
− 1

2
Iabpapb − U(θ,κ),
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respectively. Here,

g11 = MR2 +m(R+ l)2 + µ
[
(R+ r)2 − 2(R+ r)ρ cos κ + ρ2

]
+A,

g12 = µ
[
(R+ r)ρ cos κ − ρ2

]
,

g22 = µρ2,

I11 = MR2 sin2 θ +m(R+ l)2 sin2 θ

+ µ [(R+ r) sin θ + ρ sin(κ − θ)]2 +A cos2 θ +B sin2 θ,

I12 = MR2 sin θ +mR(R+ l) sin θ
+ µR [(R+ r) sin θ + ρ sin(κ − θ)] +B sin θ,

I22 = MR2 +mR2 + µR2 +B.

As usual, Iab are the components of the inverse inertia tensor.

Reduced Equations. Using the symmetry of the system, the variables
x, y, φ, ψ can be eliminated by taking the quotient by the action of the
group SO(2) × SE(2). Carrying this out, the resulting reduced equations
of motion may be written in terms of the Routhian as

d

dt

∂R
∂θ̇

= ∇θR, (9.4.9)

d

dt

∂R
∂κ̇

= ∇κR+ u, (9.4.10)

dp1

dt
=
[
I21p1 + I22p2

][
A cos θ θ̇ + B cos(κ − θ)(κ̇ − θ̇)

]
, (9.4.11)

dp2

dt
= −

[
I11p1 + I12p2

][
A cos θ θ̇ + B cos(κ − θ)(κ̇ − θ̇)

]
. (9.4.12)

The covariant derivatives in equations (9.4.9) and (9.4.10) are defined by

∇θ =
∂

∂θ
+
[
A cos θ − B cos(κ − θ)

]
×
[(
I21p1 + I22p2

) ∂

∂p1
−
(
I11p1 + I12p2

) ∂

∂p2

]
,

∇κ =
∂

∂κ
+ B cos(κ − θ)

[(
I21p1 + I22p2

) ∂

∂p1
−
(
I11p1 + I12p2

) ∂

∂p2

]
.

The first two of these equations describe the tilting motion of the disk-
pendulum system, while the second two model the (coupled) wheel dy-
namics. The full dynamics is governed by equations (9.4.9)–(9.4.12) cou-
pled with the reconstruction equation for the group variables x, y, φ, ψ. This
reconstruction equation is not needed here as it does not affect the evolu-
tion of the shape and the momentum variables, and thus is not used in
our stabilization analysis. This is because our stabilization is done mod-
ulo the group action, which is natural for the problem. See Zenkov, Bloch,
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and Marsden [1998] for additional information about the formalism we are
using here.

Feedback Law. Now we introduce the following form of the linear feed-
back control

u = k1θ + k2κ + k3θ̇ + k4κ̇.
We can then show that we can achieve linear stability of the pendu-

lum system for a suitable range of parameters and this, coupled with the
Lyapunov-Malkin theorem, give overall stability of the system. We omit
details here and refer to Zenkov, Bloch, and Marsden [2002a] for the de-
tails.

Example: Matching and Energy Methods for Unicycle
with Rider

We can also carry out stabilization using the matching techniques of Bloch,
Leonard, and Marsden [1998], Bloch, Leonard, and Marsden [2000], Auckly,
Kapitanski, and White [2000], Hamberg [1999], see Zenkov, Bloch, Leonard,
and Marsden [2000].

Structure of the nonholonomic system. For the unicycle with rider,
the symmetry group is SO(2) × SE(2) and falls into the general class of
nonholonomic systems of the form:

1. The shape space Q/G is a smooth two-dimensional manifold.

2. The curvature of the nonholonomic connection equals zero.

3. The momentum equation is of the form of a parallel transport equa-
tion.

The reduced equation of motion in this case are

d

dt

∂R
∂ṙ1

= ∇1R,
d

dt

∂R
∂ṙ2

= ∇2R+ u, (9.4.13)

dpa
dt

= Dbaαpbṙα, a = 1, . . . ,m, (9.4.14)

where R is the Routhian, rα are the shape variables, pa are the components
of the nonholonomic momentum, and the covariant derivatives in equation
(9.4.13) are defined by

∇α = ∂rα +Dbaαpb∂pa . (9.4.15)

The term u in the shape equation (9.4.13) represents the control input. The
full dynamics is governed by equations (9.4.13) and (9.4.14) coupled with
the reconstruction equation for the group variables. This reconstruction
equation is not needed here as it does not affect the evolution of the shape
and the momentum variables, and thus is not used in our stabilization
analysis.
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The Steady States. The equilibria

r = r0, p = p0 (9.4.16)

of equations (9.4.13) and (9.4.14) represent the steady state motions of or
system. These equilibria are distinguished by the conditions

∇1R = 0, ∇2R = 0

and thus are labeled by the p0. We assume that equilibria (9.4.16) are
unstable in the direction of unactuated shape variable.

Matching and Controlled Lagrangians. Matching in this setting pro-
ceeds as follows (see Zenkov, Bloch, Leonard, and Marsden [2000], Bloch,
Leonard, and Marsden [2000], Hamberg [1999]).

Consider an underactuated system with the Lagrangian L : TQ → R.
Suppose that the configuration variables split into two groups (q1, . . . , qm)
and (qm+1, . . . , qn) in such a manner that only the equations corresponding
to the second group1 are affected by the control forces:

d

dt

∂L

∂q̇i
=
∂L

∂qi
+ ui, (9.4.17)

where ui represent the control inputs and ua = 0 for a = 1, . . . ,m. The
uncontrolled system has an unstable equilibrium

q = q0, (9.4.18)

which we want to stabilize using the control inputs. The controlled La-
grangian approach requires a new function L̃, the controlled Lagrangian, to
be constructed such that the equations

d

dt

∂L̃

∂q̇i
=
∂L̃

∂qi
, (9.4.19)

are equivalent to (9.4.17). We assume that both L and L̃ are of the form

L =
1
2
gij q̇

iq̇j − U(q), L̃ =
1
2
g̃ij q̇

iq̇j − Ũ(q),

with gij , g̃ij , U , and Ũ representing the kinetic energy metrics and the
potential energies of the initial and the controlled Lagrangians.

Following Hamberg, we introduce the following tensors:

T ijk = Γ̃ijk − Γijk, hji = gikg̃
kj , h̃ji = g̃ikg

kj (9.4.20)

1One can think of this grouping of generalized coordinates more intrinsically as as-

suming there is a bundle structure Q→ Q, where the fibers of the bundle represent the

control directions.
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where Γijk and Γ̃ijk are the Christoffel symbols of the metrics gij and g̃ij .
The indices i, j, and k range from 1 to n, and a summation over repeated
indices is understood.

The conditions for equivalence of (9.4.17) and (9.4.19) are called the
matching conditions. They generalize the conditions in Bloch, Leonard,
and Marsden [2000] and are given in the following theorem:

9.4.7 Theorem. (Hamberg) Equations (9.4.17) and (9.4.19) are equiv-
alent iff the following two conditions hold for a = 1, . . . ,m:

galT
l
jk = 0, hja

∂Ũ

∂qj
=
∂U

∂qa
. (9.4.21)

The explicit formulae for the controls are

uα =
∂U

∂qα
− hjα

∂Ũ

∂qj
− gαlT

l
jk q̇

j q̇k, α = m+ 1, . . . , n. (9.4.22)

Of course, the controls provided by Theorem 9.4.7 cannot accomplish
asymptotic stabilization, which can be gained by adding dissipative terms
to uα, i.e. by controls of the form

uα =
∂U

∂qα
− hjα

∂Ũ

∂qj
− gαlT

l
jkq̇

j q̇k − dαj q̇
j . (9.4.23)

For a two degree of freedom system, one can use the following coefficients
dαj :

d21 = dh̃2
1, d22 = dh̃2

2, d > 0. (9.4.24)

Feedback Stabilization. Now we use matching techniques or stabiliza-
tion of of steady state motions

r = r0, p = p0 (9.4.25)

that satisfy the following condition:

∇αR|p=p0 = ∂rαR|p=p0 . (9.4.26)

Controlled Routhian. In order to define the constrained Routhian, we
introduce an auxiliary holonomic system whose Lagrangian is

Lp0 = R|p=p0 .

The steady state motion (9.4.25) is dynamically equivalent to the equilib-
rium of the corresponding auxiliary system. We then apply the holonomic
matching technique and obtain the controlled Lagrangian L̃p0 . This involves
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the new metric g̃αβ and the new potential energy, which we construct in
the following form:

1
2
Iabp0

ap
0
b + Ũ(r).

Next, we “unfreeze” the nonholonomic momentum in the above formula.
This gives us the controlled amended potential

Ũa =
1
2
Iabpapb + Ũ(r).

Finally, we define the controlled Routhian

R̃ =
1
2
g̃αβ ṙ

αṙβ − Ũa,

the controlled covariant derivatives

∇̃α =
∂

∂rα
+ D̃baαpb

∂

∂pa
,

and introduce the equations

d

dt

∂R̃
∂ṙα

= ∇̃αR̃, α = 1, 2. (9.4.27)

The controlled energy corresponding to this controlled Routhian can be
chosen, with appropriate choice of gains, to be positive definite at equilib-
rium (9.4.25).

Nonholonomic Matching. One can then show:

9.4.8 Theorem. The equations (9.4.27) associated with the controlled
Routhian R̃ and the controlled covariant derivatives ∇̃ coupled with the mo-
mentum equations (9.4.14) are equivalent to the original equations (9.4.13)
and (9.4.14) iff the following matching conditions hold:

g1γT
γ
αβ = 0, hα1

∂Ṽ

∂rα
=
∂V

∂r1
, hα1

[
1
2
∂Ibc

∂rα
+ D̃caαIab

]
=

1
2
∂Ibc

∂r1
+Dca1Iab.

(9.4.28)
The control u is given by

u =
∂U

∂q2
− hα2

∂Ũ

∂qα
− g2γT

γ
αβ q̇

αq̇β

+
(

1
2
∂Ibc

∂r2
+Dca2Iab − hα2

[
1
2
∂Ibc

∂rα
+ D̃caαIab

])
pbpc. (9.4.29)

One can rewrite the control using the controlled covariant derivatives as

u = ∇2U − g2β g̃
αβ∇̃αŨ − g2γT

γ
αβ ṙ

αṙβ . (9.4.30)
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Nonholonomic Stabilization. In order to stabilize the steady state
motion (9.4.25), we will use the results of Zenkov, Bloch, and Marsden
[1998] and in particular, the Lyapunov-Malkin theorem. First, we choose
the values of gains that produce the controlled Routhian with positive
definite at (9.4.25) controlled energy.

One can check that the linearized equations of motion have four pure
imaginary and m zero eigenvalues. For the Lyapunov-Malkin theorem to
be used, we need to move all the nonzero eigenvalues to the left half plane.
We accomplish that by adding the dissipative control terms (9.4.24) to
(9.4.30):

u = ∇2U − g2β g̃
αβ∇̃αŨ − g2γT

γ
αβ ṙ

αṙβ − dh̃2
αṙ
α. (9.4.31)

A direct computation shows that all nonzero eigenvalues of the linearized
equation, after the dissipative terms were added, are forced to the left half
plane. By the Lyapunov-Malkin theorem, the constructed control stabilizes
the steady state motion (9.4.25) along with nearby steady states.

This stabilizes the pendulum system and use of the Lyapunov-Malkin
theorem produces stability for the full system. For the details see Zenkov,
Bloch, Leonard, and Marsden [2000].
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Gauss, C. F. [1829] Über ein neues allgemeines Grundgesatz der Mechanik, Journal für

die Reine und Angewandte Mathematik 4, 232–235.

Gelfand, I.M. and S. V. Fomin [1963], Calculus of Variations. Prentice-Hall (reprinted

by Dover, 2000).

Getz, N.H. and J. E. Marsden [1994], Symmetry and dynamics of the rolling disk, CPAM

Berkeley paper 630.

Getz, N. H. and J. E. Marsden [1995], Control for an autonomous bicycle. In Interna-

tional Conference on Robotics and Automation, IEEE, Nagoya, Japan.

Getz, N. and J. E. Marsden [1997], Dynamical methods for polar decomposition and

inversion of matrices, Linear Algebra and Its Appl. 258, 311–343.

Georgiou, T. T., L. Praly, E.D. Sontag, and A. Teel [1995], Input–output stability, in

The Control Handbook , CRC Press, Baca Raton.

Giachetta, G. [1992], Jet methods in nonholonomic mechanics, J. Math. Phys. 33, 1652–

1665.



References 129

Gibbs, J.W. [1879] On the fundamental formulae of dynamics, Am. J. of Math. II,

49–64.

Godhavn, J.-M. and O. Egeland [1997], A Lyapunov approach to exponential stabiliza-

tion of nonholonomic systems in power form, IEEE Trans. Automat. Control 42,
1028–1032.

Goldman, W.M. and J. J. Millson [1990], Differential graded Lie algebras and singular-
ities of level sets of momentum mappings, Comm. Math. Phys. 131, 495–515.

Goldstein, H. [1980], Classical Mechanics, First Edition 1950, Second Edition 1980,

Addison-Wesley.

Gozzi, E. and W.D. Thacker [1987], Classical adiabatic holonomy in a Grassmannian
system, Phys. Rev. D 35, 2388–2396.

Greenwood, D.T. [1977] Classical Dynamics, Prentice Hall.

Griffiths, P.A. [1983], Exterior Differential Systems, Birkhäuser, Boston.
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Sussmann, H. J. [1998a], An introduction to the coordinate-free maximum principle, in
Geometry of Feedback and Optimal Control (B. Jackubczyk and W. Respondek, eds.),

Monographs Textbooks Pure. Appl. Math. 207 M. Dekker, 463–557.

Sussmann, H. J. [1998b], Geometry and optimal control. In Mathematical Control The-

ory, J. Baillieul & J.C. Willems, eds., Springer-Verlag, New York, 1998, 140–198.

Sussmann, H. J. and V. Jurdjevic [1972], Controllability of nonlinear systems, J. Diff.

Eqns. 12, 95–116; see also Control systems on Lie groups, J. Differential Equations

12, 313–329.

Sussmann, H. J. and W. Liu [1991], Limits of highly oscillatory controls and the approx-

imation of general paths by admissable trajectories, Proc. 30th IEEE Conf. Decision
and Control , 1190–1195.

Sussmann, H. J. and J.C. Willems [1997], 300 years of optimal control: from the Brachys-
trochrone to the Maximum Principle, IEEE Control System Magazine. 17, 32–44.

Symes, W. W. [1980] Hamiltonian group actions and integrable systems. Physica D 1,
339–376.

Symes, W.W. [1982], The QR algorithm and scattering for the nonperiodic Toda lattice,
Physica D 4, 275–280.

Synge, J. L. and B.A. Griffiths [1959] Principles of Mechanics, Third Edition, McGraw
Hill.

Tai, M. [2001], Lagrange Reduction of Nonholonomic Systems on Semidirect Products,

M.A. thesis, Univ. of California, Berkeley.

Teel, A.R. [1996], On graphs, conic relations, and input–output stability of nonlinear

feedback systems, IEEE Trans. Automat. Control 41, 702–709.



References 145

Teel, A., R. Murray, and G. Walsh [1995], Nonholonomic control systems: from steering

to stabilization with sinusoids, International Journal of Control 62 (4), 849–870.

Terra, G. and M.H. Kobayashi [2002], On classical mechanical systems with constraints,

Preprint .

Thimm, A. [1981], Integrable Hamiltonian systems on homogeneous spaces, Ergodic
Theory and Dynamical Systems 1, 495–517.

Thomson, W (Lord Kelvin) and P. G. Tait [1879], Treatise on Natural Philosophy, Cam-

bridge University Press.

Toda, M. [1975], Studies of a non-linear lattice, Phys. Rep. Phys. Lett. 8, 1–125.

Tomei, C. [1984], The topology of isospectral manifolds of diagonal matrices, Duke Math.
J 51, 981–996.

Truesdell, C. [1977], A First Course in Rational Continuum Mechanics, Academic Press,

New York.

Tsakiris, D. P. [1995] Motion control and planning for nonholonomic kinematic chains,

Ph.D. thesis, Systems Research Institute, University of Maryland.

Tulczyjew, W. M. [1977], The Legendre transformation, Ann. Inst. Poincaré 27, 101–
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