
Analysis and synthesis:
a complexity perspective

Pablo A. ParriloPablo A. Parrilo
ETH ZETH Züürichrich

control.ee.ethz.ch/~parrilo

Outline

System analysis/design
Formal and informal methods
SOS/SDP techniques and applications
Why we think this is a good idea
A view on complexity
Connections with other approaches
Limitations, challenges, and
perspectives

System analysis

Analysis: establish properties of systems

System descriptions (models), not reality.

o Informal: reasoning, analogy, intuition, design
rules, simulation, extensive testing, etc.

o Formal: Mathematically correct proofs.
Guarantees can be deterministic or in probability.

Many recent advances in formal methods
(hardware/software design, robust control, etc)

Complexity issues

What are the barriers to fully automated
design/synthesis?
How to quantify the computational resources
needed for these tasks?
How do they scale with problem size?
If a system has a certain property, can we
concisely explain why? (a scientist’s nightmare)
Does the existence of a simple proof guarantee
that we can efficiently find it?

NP
(concise proofs)

co-NP
(concise
counterexamples) Linear

programming

Traveling
salesman

Polynomial
nonnegativity

P

NPC
Co-NPC

Unless they’re all the same…

• So far, analysis or verification.

• Synthesis (design), a much more complicated beast.

() ?x P x∀

(,) ?y x P x y∃ ∀

• In general, a higher complexity class

• Optimization vs. games, minimax, robustness, etc

• Alternating quantifiers, relativized Turing machines:
the polynomial time hierarchy.

Analysis vs. synthesis

1∏

2∏

3∏

1∑

2∑

3∑

......

NPCo-NP

0 0∏ = ∑

P
Analysis

Synthesis

()?x P x∀

(,)?y x P x y∃ ∀

Polynomial time hierarchy

(,) 0y x P x y∃ ∀ ≥

A possible way out?

•In general is Π2-hard.

•Really bad. No hope of solving this efficiently.

•But when P(x,y) is quadratic in x and affine in y…

•This is exactly semidefinite programming (SDP)

•Drops two levels to P, polynomial time !

•A reason behind the ubiquity of SDP-based methods

• Synthesis results depend on hand-crafted “tricks”
that we don’t fully understand yet.

• Until recently we could say the same about analysis,
where custom techniques abound.

• For analysis, there’s a method in the madness,
earlier results unified and expanded.

Semialgebraic modeling

Many problems in different domains can be
modeled by polynomial inequalities

Continuous, discrete, hybrid
NP-hard in general
Tons of examples: spin glasses, dynamical
systems, robustness analysis, SAT, quantum
systems, etc.

How to prove things about them, in an
algorithmic, certified and efficient way?

0)(,0)(=≥ xgxf ii

Proving vs. disproving

Really, it’s automatic theorem proving
Big difference: finding counterexamples vs.
producing proofs (NP vs. co-NP)

“bad”
region

Nominal
System

• Find bad events
(e.g. protocol deadlock, death)

Bad events are easy to describe (NP)

Safety proofs could potentially be long (co-NP)

or…

• Safety guarantees
(e.g. Lyapunov, barriers,
certificates)

Proving vs. disproving

Big difference: finding counterexamples vs.
producing proofs (NP vs. co-NP)
Decision theory exists (Tarski-Seidenberg,
etc), practical performance is quite poor
Want unconditionally valid proofs, but may fail
to get them sometimes
Rather, we use a particular proof system from
real algebra: the Positivstellensatz

An example

}02:,03:|),{(22 =++=≥+−= xygyxfyx

Is the set described
by these inequalities
empty?

How to certify this?

Example (continued)

}02:,03:|),{(22 =++=≥+−= xygyxfyx

Is empty, since

1121 −=++ gtfss

with

6,2,)(6)(2 12
2

6
12

2
3

3
1

1 −==−+++= tsxys

Reason: evaluate on candidate feasible points

nonnegative zero

Define two algebraic objects:
The cone generated by the inequalities

The polynomials are sums of squares
The ideal generated by the equalities

∑∑ +++=
ji

jiij
i

iii ffsfssf
,

0:)(cone L

What is this? How to generalize it?

}0)(,0)(:{ =≥∈ xgxfRx ii
n

∑=
i

iii gtg :)(ideal

αs

A sufficient condition for nonnegativity:

Sums of squares (SOS)

2() : () () ?i i
i

f x p x f x∃ = ∑

• Convex condition

• Efficiently checked using SDP

Write: () , 0Tp x z Qz Q= ≥

where z is a vector of monomials. Expanding and equating
sides, obtain linear constraints among the Qij.

Finding a PSD Q subject to these conditions is exactly a
semidefinite program (LMI).

Infeasibility certificates for polynomial systems
over the reals.
Sums of squares (SOS) are essential
Conditions are convex in f,g
Bounded degree solutions can be computed!
A convex optimization problem.
Furthermore, it’s a semidefinite program (SDP)

1:)(ideal),(cone −=+∈∈∃ gfggff ii

Positivstellensatz (Real Nullstellensatz)

empty is}0)(,0)(:{ =≥∈ xgxfRx ii
n

if and only if

P-satz proofs

Proofs are given by algebraic identities
Extremely easy to verify
Use convex optimization to search for them

Convexity, hence a duality structure:
On the primal, simple proofs.
On the dual, weaker models (liftings, etc)

General algorithmic construction
Based on the axioms of formally real fields
Techniques for exploiting problem structure

Modeling
Robustness barriers

Polynomial inequalities

Analysis
Real algebraic geometry

Duality
SDP/SOS

A formal, complete proof system
Very effective in a wide variety of areas
Look for short (bounded-depth) proofs
first, according to resources

System Analysis

Want to decouple
System complexity
Complexity of
verification.

“bad”
region

Nominal
System

• Even for extremely complex systems,
there may exist simple robustness
proofs. Try to look for those first…

Special cases

Generalizes well-known methods:
Linear programming duality
S-procedure
SDP relaxations for QP
LMI techniques for linear systems
Structured singular value
Spectral bounds for graphs
Custom heuristics (e.g. NPP)

A few sample applications

Continuous and combinatorial optimization
Graph properties: stability numbers, cuts, …
Dynamical systems: Lyapunov and Bendixson-
Dulac functions
Bounds for linear PDEs (Hamilton-Jacobi, etc)
Robustness analysis, model validation
Reachability analysis: set mappings, …
Hybrid and time-delay systems
Data/model consistency in biological systems
Geometric theorem proving
Quantum information theory

DS applications: Bendixson-Dulac

• In 2D, a well-known criterion: Bendixson-Dulac

• Higher dimensional generalizations (Rantzer)

• Weaker stability criterion than Lyapunov
(allowing a zero-measure set of divergent
trajectories).

• Convexity for synthesis.

• How to search for ρ ?

0)(>⋅∇ fρ

Does a dynamical system have periodic solutions?
How to rule out oscillations?

Bendixson-Dulac

• Restrict to polynomial (or rationals), use SOS.

• As for Lyapunov, now a fully algorithmic procedure.

Given:
22 yxyxy

yx
++−−=

=

&

& Propose: cybxa ++=ρ

After optimization: 1,3,3
2
1

==−−= cba

 − + 3
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + − − y

1
3

3 x
1
6

3
1
2

2 1
2

1
2

3=⋅∇)(fρ 0>

x ' = y
y ' = - x - y + x 2 + y 2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y
Conclusion: a certificate of the inexistence of periodic orbits

Example: Lyapunov stability

• Ubiquitous, fundamental problem

• Algorithmic solution

• Extends to uncertain, hybrid, etc.
Given:

yxy
xxyx

26
32 32

−=
−+−=

&

&

Propose:

j

ji

i
ij yxcyxV ∑

≤+

=
4

),(

After optimization: coefficients of V.

A Lyapunov function V, that proves stability.

0
0

V V f
V

= ∇ ⋅ <
≥

&

Conclusion: a certificate of global stability

Why do we like these methods?

Very powerful!
For several problems, best available
techniques
In simplified special cases, reduce to well-
known successful methods
Reproduce domain-specific results
Very effective in “well-posed” instances
Rich algebraic/geometric structure
Convexity guarantees tractability
Efficient computation

Traditional view: worst-case over
classes of instances
Rather, an instance-dependent notion:
proof length

Our claim: this makes more sense for
systems designed to be robust
Our hope: also holds for biology

Complexity

Things to think about

Correct notion of proof length?
Degree? Straight-line programs?

“Smart” proof structures?
Proof strategies affect proof length

P-satz proofs are global
For some problems, branching is better

Decomposition strategies
(Re)use of abstractions

Exploiting structure

Isolate algebraic properties!

Symmetry reduction: invariance under a group
Sparsity: Few nonzeros, Newton polytopes
Ideal structure: Equalities, quotient ring
Graph structure: use the dependency graph to
simplify the SDPs

Methods (mostly) commute, can mix and match

P-satz
relaxations

Exploit
structure

Symmetry reduction

Ideal structure

Sparsity

Graph structureSemidefinite
programs

Polynomial
descriptions

A convexity-based scheme has dual interpretations
Want to feedback information from the dual

For instance, attempting to proving emptiness,
we may obtain a feasible point in the set.

Modeling
Robustness barriers

Polynomial inequalities

Analysis
Real algebraic geometry

Duality
SDP/SOS

Model
fragility

Proof
complexity

Use dual information to get info on primal fragility

Numerical issues

SDPs can essentially be solved in
polynomial time
Implementation: SOSTOOLS (Prajna,
Papachristodoulou, P.)
Good results with general-purpose
solvers. But, we need to do much better:

Reliability, conditioning, stiffness
Problem size
Speed

Currently working on customized solvers

Future challenges

Structure: we know a lot, can we do more?
A good algorithmic use of abstractions,
modularization, and randomization.
Reuse/parametrization of known tautologies
Infinite # of variables? Possible, but not too nice
computationally. PSD integral operators,
discretizations, etc.
Incorporate stochastics
Other kinds of structure to exploit?
Algorithmics: alternatives to interior point?
Do proofs need domain-specific interpretations?

Summary

New mathematical tools
Algorithmic construction of P-satz relaxations
Generalization of many earlier schemes
Very powerful in practice
Done properly, can fully exploit structure
Customized solvers in the horizon

Lots of applications, many more to come!

