Analysis and synthesis:
a complexity perspective

Pablo A. Parrilo
ETH Zurich

m control.ee.ethz.ch/—parrilo

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Outline

System analysis/design
Formal and informal methods
SOS/SDP techniques and applications

Why we think this is a good idea
A view on complexity
Connections with other approaches

Limitations, challenges, and
perspectives

System analysis

Analysis: establish properties of systems
System descriptions (models), not reality.

o Informal: reasoning, analogy, intuition, design
rules, simulation, extensive testing, etc.

o Formal: Mathematically correct proofs.
Guarantees can be deterministic or in probability.

Many recent advances in formal methods
(hardware/software design, robust control, etc)

Complexity issues

What are the barriers to fully automated
design/synthesis?

How to quantify the computational resources
needed for these tasks?

How do they scale with problem size?

If a system has a certain property, can we
concisely explain why? (a scientist’s nightmare)

Does the existence of a simple proof guarantee
that we can efficiently find it?

Polynomial Traveling
salesman

nonnega(j >
NP

co-NP

(concise (concise proofs)
counterexamples) Linear

programming

Unless they’re all the same...

Analysis vs. synthesis

o] § :
VX P(X)?
, @ much more complicated beast.
dy Vx P(x,y)?

e In general, a higher complexity class
e Optimization vs. games, minimax, robustness, etc

e Alternating quantifiers, relativized Turing machines:
the polynomial time hierarchy.

Polynomial time hierarchy

A possible way out?

Ay Vx P(X,y) =0

In general 1s [12>-hard.

*Really bad. No hope of solving this efficiently.
*But when P(X,y) is quadratic in x and affine in y...
*This 1s exactly semidefinite programming (SDP)
*Drops two levels to P, polynomial time !

*A reason behind the ubiquity of SDP-based methods

e Synthesis results depend on hand-crafted “tricks”
that we don’t fully understand yet.

e Until recently we could say the same about analysis,
where custom technigues abound.

e For analysis, there’s a method in the madness,

earlier results unified and expanded.

Semialgebraic modeling

Many problems in different domains can be
modeled by polynomial inequalities

()20, g;(x)=0

Centnuous, discrete, hybrid
NP-hard .n general

Torns of examples: spin glasses, dynamical
systems, robustness analysis, SAT, quantum
systems, etc.

How to prove things about.them, in an
algorithmic, certified and efficient way?

Proving vs. disproving

= Really, It’s automatic theorem proving

= Big difference: finding counterexamples vs.
producing proofs (NP vs. co-NP)

e Find bad events
(e.g. protocol deadlock, death)

or...

: Nominal
(e.g. Lyapunov, barriers, o

certificates)

Bad events are easy to describe (NP)

could potentially be long (co-NP)

Proving vs. disproving

Big difference: finding counterexamples vs.
producing proofs (NP vs. co-NP)

Decision theory exists (Tarski-Seidenberg,
etc), practical performance is quite poor

Want unconditionally valid proofs, but may falil
to get them sometimes

Rather, we use a particular proof system from
real algebra: the Positivstellensatz

An example

(X,Y)| f=x-y*+320, g=y+Xx"+2=0}

Is the set described
by these inequalities
empty?

How to certify this?

Example (continued)

(V)| f=x—y>+320, gi=y+Xx"+2=0}

Is empty, since

S, +s, fHtgE -1

with

s, =1+2(y+2)° +6(x-1)°, 5,=2, t, =6

Reason: evaluate on candidate feasible points

What is this? How to generalize it?

{xeR": f.(x)>0, g,(x)=0}

Define two algebraic objects:
* The cone generated by the ineqgualities

cone(f.) = SO+ZSi f +zsij fifj 4.,
i l,]

The polynomials S, are sums of sguares
* The ideal generated by the equalities

ideal(g;) =Y t,0,

Sums of squares (SOS)

A sufficient condition for nonnegativity:

30 Y= F2(X) ?

e Convex condition

e Efficiently checked using SDP

Write: P(X) = ZTQZ, Q=0

where z is a vector of monomials. Expanding and equating
sides, obtain linear constraints among the Qij.

Finding a PSD Q subject to these conditions is exactly a
semidefinite program (LMI).

o)
Positivstellensatz (Real Nullstellensatz)

{xeR": f.(x)>0, g.(X)=0} isempty
if and only i1f
1 f econe(f,), geideal(g,): f+g=-1

Infeasibility certificates for polynomial systems
over the reals.

Sums of squares (SOS) are essential
Conditions are convex in f,g

Bounded degree solutions can be computed!

A convex optimization problem.

Furthermore, it's a semidefinite program (SDP)

P-satz proofs

Proofs are given by algebraic identities
Extremely easy to verify
Use convex optimization to search for them

Convexity, hence a duality structure:
= On the primal, simple proofs.
= On the dual, weaker models (liftings, etc)

General algorithmic construction
Based on the axioms of formally real fields
Techniques for exploiting problem structure

= A formal, complete proof system
* Very effective in a wide variety of areas

* Look for short (bounded-depth) proofs
first, according to resources

System Analysis

= Want to decouple
= System complexity
= Complexity of
verification.

e Even for extremely complex systems,
there may exist simple robustness
proofs. Try to look for those first...

1.1u T

-..Fu

Special cases

Generalizes well-known methods:
Linear programming duality
S-procedure
SDP relaxations for QP
LMI techniques for linear systems
Structured singular value
Spectral bounds for graphs
Custom heuristics (e.g. NPP)

A few sample applications

Continuous and combinatorial optimization
Graph properties: stability numbers, cuts, ...

Dynamical systems: Lyapunov and Bendixson-
Dulac functions

Bounds for linear PDEs (Hamilton-Jacobi, etc)
Robustness analysis, model validation
Reachability analysis: set mappings, ...
Hybrid and time-delay systems

Data/model consistency in biological systems
Geometric theorem proving

Quantum information theory

DS applications: Bendixson-Dulac

Does a dynamical system have periodic solutions?
How to rule out oscillations?

In 2D, a well-known criterion: Bendixson-Dulac
Higher dimensional generalizations (Rantzer)

e Weaker stability criterion than Lyapunov
(allowing a zero-measure set of divergent
trajectories).

e Convexity for synthesis.

How to search for p ?

V-(pt)>0

Bendixson-Dulac

e Restrict to polynomial (or rationals), use SOS.

e As for Lyapunov, now a fully algorithmic procedure.

Given: X=Y Propose: p=a+bx+cy
V=—X—Y+X +y°

1
After optimization: a= 5 NE) , b= NE) :

L
TSR

/\
SN RN

Example: Lyapunov stability

V — VV y f < O Ubiquitous, fundamental problem

V Z O » Algorithmic solution

« Extends to uncertain, hybrid, etc.

Given: Propose:

X=-2Yy+3x" =X .-
V(X,y)= > c.xy’
I ox_2y (X, Y) i+§j<’,4, y

After optimization: coefficients of V

A Lyapunov function V, that proves stability

Why do we like these methods?

Very powerful!

For several problems, best available
technigues

In simplified special cases, reduce to well-
known successful methods

Reproduce domain-specific results
Very effective In “well-posed” instances
Rich algebraic/geometric structure
Convexity guarantees tractability
Efficient computation

Complexity

Traditional view: worst-case over
classes of iInstances

Rather, an instance-dependent notion:
proof length

Our claim: this makes more sense for
systems designed to be robust

Our hope: also holds for biology

hings to think about

Correct notion of proof length?

» Degree? Straight-line programs?
“Smart” proof structures?

Proof strategies affect proof length

» P-satz proofs are global

= For some problems, branching is better
Decomposition strategies

* (Re)use of abstractions

Exploiting structure

Isolate algebraic properties!

Symmetry reduction: invariance under a group
Sparsity: Few nonzeros, Newton polytopes

» |deal structure: Equalities, quotient ring

Graph structure: use the dependency graph to
simplify the SDPs

Methods (mostly) commute, can mix and match

Polynomial
descriptions

| / Symmetry reduction

Exploit A Sparsity

structure \
l Ideal structure

Semidefinite Graph structure

programs

Primal Feasibility

Algebraic
Lifting Duality

Lifted Problem |€—=R2E—3»| Psatz refutation
Duality

Y i

Lifted Problem [—=22C—3>| P-satz refutation
uality

v v

A convexity-based scheme has dual interpretations
Want to feedback information from the dual

For instance, attempting to proving emptiness,
we may obtain a feasible point in the set.

Model Proof
fragility <: complexity

Use dual information to get info on primal fragility

Numerical i1ssues

SDPs can essentially be solved in
polynomial time

Implementation: SOSTOOLS (Prajna,
Papachristodoulou, P.)

Good results with general-purpose
solvers. But, we need to do much better:

» Reliability, conditioning, stiffness

* Problem size

= Speed

Currently working on customized solvers

Future challenges

Structure: we know a lot, can we do more?

A good algorithmic use of abstractions,
modularization, and randomization.

Reuse/parametrization of known tautologies

Infinite # of variables? Possible, but not too nice
computationally. PSD integral operators,
discretizations, etc.

Incorporate stochastics

Other kinds of structure to exploit?
Algorithmics: alternatives to interior point?

Do proofs need domain-specific interpretations?

Summary

New mathematical tools

Algorithmic construction of P-satz relaxations
Generalization of many earlier schemes

Very powerful in practice

Done properly, can fully exploit structure
Customized solvers in the horizon

Lots of applications, many more to come!

