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Traditional
Engineering
Design

[G. Pahl and W. Beitz,

Engineering Design,

The Design Council,

Springer-Verlag,

New York, 1984, page 41.]

Determine Need

Specification

Identify essential problems
Propose function structures
Search for and propose solution principles
Combine and refine into concept variants
Evaluate against technical and economic criteria

Concept

Test and evaluate

Definitive Design

Finalize Details

Complete detail drawings and production documents
Final analysis and verification
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Refine and complete configuration(s)
Detailed analysis of refined design(s)
Review for errors, manufacturability, and cost
Prepare a preliminary parts list and fabrication drawings

Develop preliminary configurations

Refine and evaluate against technical and economic criteria
Select best preliminary design(s)
Introductory Analysis
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Example: Vehicle Structure Design

The straightforward problem:

Current Targets
KB (N/mm) 2480 2730
KT (N-m/deg) 4920 5420
m (kg) 160 144
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Load Test Results:

RABBIT CHASSIS PERFORMANCE TEST

TORSIONAL STIFFNESS TEST ( WINDSHIELD AND REAR HATCH INTACT )

TEST DATE : July 11
indicator radius : 1.42 m (56 in)
moment arm : 1.65 m (65 in)

weight (lbf) deflection (0.001 in)
0 0

29 43
62 95
91 137

124 176
153 225
190 275
219 318

load (N) moment (N-m) deflection (mm) twist (deg) y = mx + c
0.00 0.00 0.00 0.00000 0 slope : 4960.74 N-m/deg

128.99 212.84 1.09 0.04407 216.691 y - intercept : -10.16 N-m
275.78 455.03 2.41 0.09736 478.736
404.77 667.87 3.48 0.14041 690.387 y = mx + 0
551.55 910.06 4.47 0.18038 886.921 slope : 4917.04 N-m/deg
680.54 1122.90 5.72 0.23060 1133.85
845.12 1394.45 6.99 0.28184 1385.81
974.11 1607.28 8.08 0.32591 1602.51

moment (N-m) vs. twist (deg)
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RABBIT CHASSIS PERFORMANCE TEST

BENDING STIFFNESS TEST ( REAR HATCH AND WINDSHIELD INTACT )

TEST DATE : July 16
deflection (in) load (lbf)

0 0
0.004 64
0.007 124
0.013 188
0.031 450
0.036 514
0.046 638

deflection (mm) load (N) y = mx + c
0.00000 0.00 0 slope : 2424.16 N/mm
0.10160 284.67 252.456 y - intercept : 51.79 N
0.17780 551.55 441.797
0.33020 836.22 820.481 y = mx + 0
0.78740 2001.60 1956.53 slope : 2484.80 N/mm
0.91440 2286.27 2272.1
1.16840 2837.82 2903.24

load (N) vs. deflection (mm)
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Problem: There’s more to the problem!

• Information is imprecise

• Designer judgement and experience

• Some targets are not explicit (informal):
– style
– manufacturability
– availability

• Uncontrolled variations (noise)

• Negotiations:
– targets may change
– how do targets interact?
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Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on
unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate
concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in
a rational way.

Cost: Computation cost to effectively explore a large design space can
be significant.
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Most of engineering, particularly design, can best be represented with
some level of imprecision or approximation.

“Fuzziness is more than the exception in engineering design
problems: usually there is no well-defined best solution or
design.”

[Joseph A. Goguen, “L-Fuzzy Sets” Journal Mathematical Analysis and Applications,

Volume 18, 1967, page 146.]
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Imprecision is the representation an incomplete design description:
ranges of possibilities resulting from choices not yet made.

Preliminary design information is necessarily imprecise.

Designers need to evaluate designs early in the design process.

Designers need to rapidly explore large design spaces early in the design
process.

Need to trade-off Precision vs. Computation Cost.
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Functional Requirement µp(~p):

the customer’s expressed preference(s) on ~p,

based on performance considerations.

Performance considerations are customer specifications and
requirements.

Design Preference µd(

~d):

the customer’s un-expressed preference(s) on ~d,

based on design considerations.

Design considerations are the aspects of performance not quantified by
preferences on ~p.

14



Fuzziness: Imprecise Specification

0

1

µp

500 km
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crisp

range
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Fuzziness: Imprecise Design Variable

d1

αM

µ

α1

d

α1d1min

1

αd1min max
αd1 max

α1d1M M
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Calculating a comprehensive design problem

Use performance preferences in place of crisp targets:

2000 3000 4000
Bending Stiffness (N/mm)

0.0
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1.0

µ

5000 6000 7000 8000
Torsional Stiffness (N-m/deg)

0.0

0.2

0.4

0.6

0.8

1.0

µ

120 140 160 180
Weight (kg)

0.0

0.2

0.4

0.6

0.8

1.0

µ
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Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on
unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate
concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in
a rational way.

Cost: Computation cost to effectively explore a large design space can
be significant.
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Calculating a comprehensive design problem
Use designer preferences to incorporate unmodelled concerns
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Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on
unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate
concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in
a rational way.

Cost: Computation cost to effectively explore a large design space can
be significant.
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Set-based Design

Traditional evalua-
tion tools suppress
imprecision,
and evaluate de-
signs one at a
time:

(Performance Variable Space)

PVSDVS
(Design Variable Space)

f(d)

An alternative
approach is to
evaluate sets of
designs:

DVS

(f(d))

PVS
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Set-based Design

• Set refinement is a natural (& beneficial) way to develop designs.
[Ward and Liker 1995]

• Intrinsically slower but has potential for time savings. [Eppinger 1991]

• Facilitates concurrency, communication, iterative redesign.

• There is a trade-off: not natural for optimization.

With this negotiation model:

• Level-set information is found with minimal extra computation.

• Sufficient conditions for propagation of set-based information.
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The Basic Idea:

1. Designs are described by variables ~d ∈ DVS;
Measured performances are given by ~p ∈ PVS.

2. Specify preferences (µ ∈ [0,1]) on both DVS and PVS.

3. Map preferences from the design space (DVS) to the performance
space (PVS) using the performance model f , and the extension
principle [Zadeh 1975]:

µd(p) = sup
~d|f(~d)=p

min

i

(µd(di))

4. Aggregate results to determine overall preference.

[The Method of Imprecision (MoI): Wood and Antonsson 1988, Otto 1992]
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The Method of Imprecision (MoI)

Find the sets of designs ~d∗ with the best performance:

f(~d∗) = ~p∗

where ~p∗ maximizes

P
(
µd(

~d), µp(~p)

)

=

P
(
µd1(d1), . . . , µdq(dq), µp1(p1), . . . , µpn(pn)

)

~d q-vector of design variables
~p n-vector of performance variables
µd(di) preference for ith design variable
µp(pj) preference for jth measured aspect of performance
f mapping from design to performance

(analytic, black box, FEA, etc.)
P aggregation function — calculates overall preference
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How should multiple preferences be aggregated?
min geometric mean
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Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on
unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate
concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in
a rational way.

Cost: Computation cost to effectively explore a large design space can
be significant.
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Rationality and the Multi Attribute Decision Making problem (or, Why
not Economics?):

• Designs are almost always judged on several criteria.

• These criteria compete (stiff vs. light) but do not compare
(Newton/mm vs. kg?)

• Economics approach reduces everything to $$; introducing various
difficulties:
– Constraints
– Non-probabilistic uncertainty
– Practical issues in preference elicitation

[M. Tribus, Rational Descriptions, Decisions, and Designs, 1969]

[von Neumann and Morgenstern 1944, Tribus 1969, Keeney and Raiffa 1976, Bradley
and Agogino 1991, Thurston 1991.]
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Aggregation Operator Axioms

At each point ~x the following hold:

1. Monotonicity:
P(µ1, µ2;ω1, ω2)(~x) ≤ P(µ1, µ′

2;ω1, ω2)(~x) ∀ µ2(~x) ≤ µ′

2(~x)P(µ1, µ2;ω1, ω2)(~x) ≤ P(µ1, µ2;ω1, ω′

2)(~x) ∀ ω2 ≤ ω′

2; µ1(~x) < µ2(~x)

2. Symmetry:
P(µ1, µ2;ω1, ω2)(~x) = P(µ2, µ1;ω2, ω1)(~x)

3. Continuity:
P(µ1, µ2;ω1, ω2)(~x) = limµ′

2
(~x)→µ2(~x) P(µ1, µ′

2;ω1, ω2)(~x)

P(µ1, µ2;ω1, ω2)(~x) = limω′

2

→ω2

P(µ1, µ2;ω1, ω′

2)(~x)

4. Idempotency:
P(µ, µ;ω1, ω2)(~x) = µ(~x) ∀ ω1+ ω2 > 0

5. Annihilation:
P(µ,0;ω1, ω2)(~x) = 0 ∀ ω2 6= 0

6. Self-scaling weights:
P(µ1, µ2;ω1t, ω2t)(~x) = P(µ1, µ2;ω1, ω2)(~x) ∀ ω1+ ω2, t > 0

7. Zero weights:
P(µ1, µ2;ω1,0)(~x) = µ1(~x) ∀ ω1 6= 0

30



Trade-off Strategies and Weights

Trade-off strategies reflect the compensation among goals inherent in the
problem (independent of weights).

• A compensating strategy is used when higher preference in one
variable may compensate for lower preference in another.

• A non-compensating strategy is appropriate when the overall
performance of a design is limited by its lowest-performing attribute.

Weights reflect relative importance of attributes.

A strategy–weight pair is required to define the aggregation of two
independent attributes.
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Early MoI Aggregation Functions
[Otto and Antonsson 1990]

non-compensating: P(µ1, · · · , µn;ω1, . . . , ωn) = min(µ1, · · · , µn)

and compensating:

P(µ1, · · · , µn;ω1, . . . , ωn) = (µ1

ω1 · · · µn
ωn)

1

ω1+···+ωn

Other functions (QFD [Hauser and Clausing 1988], AHP [Saaty 1980], fuzzy logic):

• weighted sums:

u(x1, . . . , xN) =

N∑
i=1

ωi
u(xi)

N
.

• T-norms (< min) model intersection (logical AND).

• T-conorms (> max) model union (logical OR).
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Weighted Means are a class of functions

P(µ1, µ2;ω1, ω2)

that satisfy all the MoI axioms except annihilation and also have strict
monotonicity.

Theorem The properties of the weighted mean are necessary and
sufficient for the function P(µ1, µ2;ω1, ω2) to be of the form

P(µ1, µ2;ω1, ω2) = g

(
ω1g−1(µ1) + ω2g−1(µ2)

ω1+ ω2

)

where ∃ µa, µb such that

µa ≤ µ1, µ2 ≤ µb ; ω1, ω2 ≥ 0 ;ω1+ ω2 > 0

and g is a strictly monotonic, continuous function with inverse g−1.

Proof see [J. Aczél, Lectures on Functional Equations, 1966].
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A parameterized family of aggregation functions

g(t) = ts, where s is a real parameter, generates the aggregation
function:

Ps(µ1, µ2;ω1, ω2) =

(
ω1µ1

s + ω2µ2

s

ω1+ ω2

)1

s

A little algebra shows the following:

P0 = lims→0Ps = geometric mean

P−∞ = lims→−∞ Ps = min

P∞ = lims→+∞ Ps = max

P1 = ω1µ1+ω2µ2

ω1+ω2

= arithmetic mean
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P−∞ (min) P0 (geometric mean)
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µ
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Ps Example [H.-J. Zimmermann, Fuzzy Set Theory, 1985]

A company makes two products, 1 and 2:

• Product 1 yields $2 profit but requires $1 in imports.

• Product 2 can be exported for $2 revenue but makes only $1 profit.

x1 = Number of Product 1 produced.
x2 = Number of Product 2 produced.

Objective: “Maximize” balance of trade (z1) and profits (z2):

~z(~x) =

(−1 2

2 1
)(

x1
x2

)

subject to a number of constraints:
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Decision
Space with
Pareto-optimal
Region:

Constraints:

C1: −x1+3x2 ≤ 21

C2: x1+3x2 ≤ 27

C3: 4x1+3x2 ≤ 45

C4: 3x1+ x2 ≤ 30

C5: x1 ≥ 0

C6: x2 ≥ 0

0 1 2 3 4 5 6 7 8 9 10
x
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x
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Performance preferences:

z1 z2

-5.0 0.0 5.0 10.0 15.0
balance of trade

0.0

0.2

0.4

0.6

0.8

1.0

µ
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profit

0.0

0.2

0.4

0.6

0.8

1.0

µ
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(

0
7

)

=

(

14
7

)
, ~z

(

9
3

)

=

(
−3

21

)
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Some solutions:

Zimmermann uses the min (P−∞):

~x = (5.03,7.32) is best to two decimal places

~x = (5,7) is the best integer value

For the geometric mean (P0):

~x = (5.70,7.10) is best to two decimal places

~x = (6,7) is the best integer value .
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Optimal points for different aggregation functions Ps

s = 0 s = 1

g.mean a.mean

-10 -5 0 5 10
s
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The decision depends on the aggregation.

Use indifference points to determine strategies and weights.
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Definition:

A Negotiation (or a trade-off) is the choice of the compensation
parameter (or strategy) s to aggregate multiple preferences,
and the weights ω.

For any undominated (Pareto-optimal) design, there is a choice of s and ω

that selects that point over all other undominated points.

This is not true for methods that use fixed strategies
(weighted sum, for example).
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Choosing a strategy and a pair of weights

State of the art:

• specify weights
directly, with fixed
granularity (AHP,
QFD)

• extract eigenvectors
from matrix,
normalize (AHP)

• no choice of
strategies (usually
arithmetic mean)

This negotiation model calculates a strategy
and a weight pair using indifference points.
For two preferences:

• Get µ = 0.5, µ = 1.0 for each
attribute.

• We know P(µ1, µ2) = 0.5 for
µ1 = µ2 = 0.5.

• Ask, “At what value of µ1 is there
indifference between P(µ1,1.0) and
P(0.5,0.5) = 0.5?”

• Simple procedure (with some numerical
solving) returns s and ω1

ω2

.
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1. Determine x and y such that
Ps(x,1) = Ps(1, y) = 0.5.

2. Let b = ωy

ωx
.

3. If x = y, then b = 1:
(a) If x = 0.5, then s = −∞.
(b) If x = 0.25, then s = 0.
(c) If x > 0.25, then

s ∈ (−∞,0). Solve
xs+1 = 2(0.5)s numerically.

(d) If x < 0.25, then s ∈ (0, ∞).
Solve xs +1 = 2(0.5)s

numerically.

4. If x 6= y, then b 6= 1. Note that if
s = 0,

xm = 0.5 = y1−m ⇒ y1−logx 0.5 = 0.5

(a) If y1−logx 0.5 = 0.5, then
s = 0, and b = 1−logx 0.5

logx 0.5

(b) If y1−logx 0.5 > 0.5, then
s < 0.
If y1−logx 0.5 < 0.5, then
s > 0.
Solve numerically for s from(

1+bys

1+b

)1

s

=

(
xs+b

1+b

)1

s

= 0.5

which reduces to

(xs − 0.5s) (ys − 0.5s) =

(1− 0.5s)
2

From s, determine b.
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It should be noted that this method will never return an answer s > 1,
which is nice since it avoids “supercompensating” functions. It should also
be noted that if either x or y is close to 0, the (s, b) pair is quite sensitive
to small differences in x and y. In these cases, it might be preferable to
elicit other indifference points to determine s and b.

Saaty’s AHP could be used in pairwise comparison at the start, as a
check. There is (presently) no comparable normalization scheme for
strategies s.

45



Choosing a strategy and a pair of weights, Example

Bending stiffness vs. torsional
stiffness:
µ1(3600) = µ2(7200) = 1

µ1(3000) = µ2(6400) = 0.5
Ps(0.5,1) ≈ Ps(1,0.5)

≈ Ps(0.5,0.5) = 0.5

Conclude:
s = −∞, ω2 = ω1

B-pillar location (style) vs. other
design preferences:
Ps(0.4,1) = Ps(1,0.3) = 0.5

Conclude:
s = −1.4, ω2 = 0.6ω1

Quantified vs. Unquantified:
Ps(0.3,1) = Ps(1,0.2) = 0.5

Conclude:
s = −0.02, ω2 = 0.8ω1
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Uncontrolled Variations (Noise)

• For typical noise, the preference of a design parameter set is
weighted by its probability of occurring through the probabilistic
uncertainty.

• Given a probability space (NPS), the expected preference of a point
d ∈ DPS is defined by:

E[µ(d)] =
∫

NPS

µ(d) δPr
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Uncontrolled Variations (Noise)

• If the NPS ' IR, then a probability density function pdf(n) would be
used.

• The integral of the equation above then becomes:

E[µ(d)] =
∫

NPS|d
µ(d) pdf(n|d) δ(n|d)

• Since the distributions over n can vary with d, the notation n|d is
used.

48



Uncontrolled Variations (Noise)
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Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on
unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate
concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in
a rational way.

Cost: Computation cost to effectively explore a large design space can
be significant.
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Computation Cost Issues:

• Real problems have “many” (10+) design variables.

• Real problems can have expensive analysis functions.

Some solutions:

• Apply approximation methods to analysis function f [Law 1996]

• Technical (not substantial) restrictions on µ

• α-cut representations
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Set-Based Computation Cost

Wrapper around existing analysis methods (f ).

The Level Interval Algorithm (LIA) discretizes design preference into α-cut
intervals:
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Construct a linear approximation to ~f over Dd
ε where possible:

[Law and Antonsson 1995, 1996]

~f ′(~d) = ~f(~dctr) + ~�+ A[~d − ~dctr]

Where a linear approximation fails (e.g., non-monotonicity),

find extremal points (e.g., using Thompson’s method),

then build a linear approximation between extremal points.
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A linear approximation ~f ′ fulfills several purposes:

1. It removes near-linear design variables from the search space for
optimization.

d

d

1

2

f f

d

d

1

2

1

f(0,d  )

f(d ,d  )=f(0,d  )+k d2 12

2
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2. It allows the geometry of Pd
αk

to be interpolated between extremal
points.
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3. It provides a means to backwards map µp(~p) onto the DVS.
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Design of Experiments (DOE) is used to construct ~f ′.

Central Composite Design:

d1

d2

d3

Resolution: III vs. IV.
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Computation Cost:

1 5 10 15

20

40

function
number of

evaluations

resolution III
resolution IV

10

30

number of design variables (n)

50

60

3n+2

4n+1

6n-3

For a Central Composite Design.
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Return to the VW Example
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Hierarchical aggregation

Bending B-pillarTorsion Mass Floor pan B-pillar locationA-pillar Floor sill

Manufacturer prefsDesigner prefsStiffnesses

Measured performance Engineering prefs

Design preferences

Overall preference

Style

Mass

1 1min

1 0.7s = 0 1 1s = 0

1 0.3s = -0.2
1 0.6

s = -1.4

0.6 1
s = -1.4

1.3 1
s = 0

3.32 13.313.89.9 9.9 16.1
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The new maximization problem:

µo(~d) = P0 (µd, µp; 1,1.3)

where

µd =

P−1.4

(
P0

(
P−1.4 (d2, d4; 1,0.6), P−0.2 (d1, d3; 1,0.3); 1,1

)
, d5; 0.6,1

)

µp = P0

(
P−∞ (f1, f2; 1,1), f3; 1,0.7

)

Normalized weights:

ωd1 ωd2 ωd3 ωd4 ωd5 ωf1 ωf2 ωf3

3.3 2 1 3.3 16.1 9.9 9.9 13.8
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Some results:

(d1, d2, d3, d4, d5) KT KB m µo

µp µp µp

(1.0,0.9,0.9,1.0,50) 2832 5836 147 0.44

0.23 0.14 0.62 (*)

(1.1,1.3,1.2,1.4,100) 3365 6029 170 0

0.77 0.25 0

(0.7,0.9,0.8,1.0,0) 2803 5730 144 0.34

0.20 0.08 0.78

minimum assumption:

(1.1,0.9,0.8,1.2,150) 2869 5933 156 0.2

minimum/geometric mean, equal weights:

(0.9,1,0.9,1.2,50) 2901 5876 156 0.36

(0.7,0.9,0.9,1.3,50) 2912 5820 157 0.36
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Approximations

These results come from a coarse but complete search (55 = 3125 runs,
or about 50 hours). But:

• At 5 minutes a run, that would be 11 days.

• At 7 points per axis, 1 minute a run, that’s 12 days. [Miller, 1965]

• At 7 points per axis, 5 minutes a run, that’s 58 days.

Approximation (with DOE) gives results within 4% in only 21 runs, or
about 20 minutes.

Note that recalculation with new strategies and weights is of negligible
cost.
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Discussion of VW example
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µ
o• Calculated overall preference µo depends on:

– specified design preferences
– specified performance preferences
– performance analysis f (here, the FEM)
– trade-off strategies and weights

• Trends:
– overall performance varies with design preferences; exceptions

are floor pan thickness (d4) and A-pillar thickness (d1).
– styling dominates this decision problem (high weight).

• Choice of strategy affects the rank order of candidate designs.

• Explicit negotiation dependencies
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Conclusions
Demonstration of a formalism for representing and manipulating
imprecise descriptions of engineering designs, constraints and
specifications that:

• incorporates uncomputed performance by direct specification of
preferences.

• reconciles competing attributes explicitly and rationally.

• identifies and incorporates different trade-off strategies.

• effects of uncontrolled variations (noise) can be incorporated.

• set-based approach facilitates concurrency in design.

• provides a trade-off between computation cost and accuracy.

Now being applied to example design problems from industry.
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A framework for making preferences, trade-offs and negotiations explicit:

• Decision framework rather than decision making.

• Support for iteration.

• Allows engineers to attach “soft” requirements (their own and others’)
to an engineering model:

• Helps identify the rationale for decisions; can lessen political influence
in design negotiations.

• Gives a graphical display of preference in many dimensions.
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