Trade-Offs, Strategies and Negotiation in Engineering Design

Erik K. Antonsson, Ph.D., P.E.
Professor of Mechanical Engineering
Engineering Design Research Laboratory
http://www.design.caltech.edu/
Division of Engineering and Applied Science
California Institute of Technology
Pasadena, California
CIMMS Focused Workshop on
Uncertainty Management in Engineering Design

May 23, 2002

Collaborators:

- Michael Scott
- William Law
- Kevin Otto
- Kris Wood
- Ford Motor Company
- Volkswagen, Wolfsburg

Traditional

Engineering

Design

Example: Vehicle Structure Design

The straightforward problem:

Current Targets

$K_{B}(\mathrm{~N} / \mathrm{mm})$	2480	2730
$K_{T}(\mathrm{~N}-\mathrm{m} / \mathrm{deg})$	4920	5420
$m(\mathrm{~kg})$	160	144

$\mathbf{W}_{\text {ere }}$ changing everything.

100% Eaxaicideis. 100% Eaxamiememembyy 100% Fisestantinnsision 46% memandise pidity
37% Mememand sifines
 10%
Better fuel economy
10010 More trunk space

Load Test Results:

RABBIT CHASSIS PERFORMANCE TES

TORSIONAL STIFFNESS TEST (WINDSHIELD AND REAR HATCH INTACT)

TEST DATE indicator radius moment arm	: July 11 ius : $1.42 \mathrm{~m}(56 \mathrm{in})$: 1.65 m (65 in)
weight (lbf)	deflection (0.00
0	0
29	43
62	95
91	137
124	176
153	225
190	275
219	318

RABBIT CHASSIS PERFORMANCE TEST
bENDING STIFFNESS TEST (REAR HATCH AND WINDSHIELD INTACT
TEST DATE : July 16

x^{z}

Problem: There's more to the problem!

- Information is imprecise
- Designer judgement and experience
- Some targets are not explicit (informal):
- style
- manufacturability
- availability
- Uncontrolled variations (noise)
- Negotiations:
- targets may change
- how do targets interact?

Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.
Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Difficulties in Making the Decision Computable
Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Most of engineering, particularly design, can best be represented with some level of imprecision or approximation.
"Fuzziness is more than the exception in engineering design problems: usually there is no well-defined best solution or design."
[Joseph A. Goguen, "L-Fuzzy Sets" Journal Mathematical Analysis and Applications, Volume 18, 1967, page 146.]

Imprecision is the representation an incomplete design description: ranges of possibilities resulting from choices not yet made.

Preliminary design information is necessarily imprecise.

Designers need to evaluate designs early in the design process.

Designers need to rapidly explore large design spaces early in the design process.

Need to trade-off Precision vs. Computation Cost.

Functional Requirement $\mu_{p}(\vec{p})$:

the customer's expressed preference(s) on \vec{p},
based on performance considerations.

Performance considerations are customer specifications and requirements.

Design Preference $\mu_{d}(\vec{d})$:
the customer's un-expressed preference(s) on \vec{d}, based on design considerations.

Design considerations are the aspects of performance not quantified by preferences on \vec{p}.

Fuzziness: Imprecise Specification

Fuzziness: Imprecise Design Variable

Calculating a comprehensive design problem

Use performance preferences in place of crisp targets:

Difficulties in Making the Decision Computable
Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Calculating a comprehensive design problem

Use designer preferences to incorporate unmodelled concerns

Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.
Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Set-based Design

DVS

Traditional evaluation tools suppress imprecision, and evaluate designs one at a time:
(Design Variable Space)
(Performance Variable Space)
$\stackrel{\mathrm{f}}{\mathrm{f}}(\mathrm{d})$

DVS PVS

An alternative approach is to evaluate sets of designs:

Set-based Design

- Set refinement is a natural (\& beneficial) way to develop designs.
[Ward and Liker 1995]
- Intrinsically slower but has potential for time savings. [Eppinger 1991]
- Facilitates concurrency, communication, iterative redesign.
- There is a trade-off: not natural for optimization.

With this negotiation model:

- Level-set information is found with minimal extra computation.
- Sufficient conditions for propagation of set-based information.

The Basic Idea:

1. Designs are described by variables $\vec{d} \in D V S$; Measured performances are given by $\vec{p} \in P V S$.
2. Specify preferences $(\mu \in[0,1])$ on both $D V S$ and $P V S$.
3. Map preferences from the design space (DVS) to the performance space ($P V S$) using the performance model f, and the extension principle [Zadeh 1975]:

$$
\mu_{d}(p)=\sup _{\vec{d} \mid f(\vec{d})=p} \min _{i}\left(\mu_{d}\left(d_{i}\right)\right)
$$

4. Aggregate results to determine overall preference.
[The Method of Imprecision (M): Wood and Antonsson 1988, Otto 1992]

The Method of Imprecision (M)

Find the sets of designs \vec{d}^{*} with the best performance:

$$
f\left(\vec{d}^{*}\right)=\overrightarrow{p^{*}}
$$

where p^{*} maximizes

$$
\begin{gathered}
\mathcal{P}\left(\mu_{d}(\vec{d}), \mu_{p}(\vec{p})\right)= \\
\mathcal{P}\left(\mu_{d_{1}}\left(d_{1}\right), \ldots, \mu_{d_{q}}\left(d_{q}\right), \mu_{p_{1}}\left(p_{1}\right), \ldots, \mu_{p_{n}}\left(p_{n}\right)\right)
\end{gathered}
$$

$\vec{d} \quad q$-vector of design variables
$\vec{p} \quad n$-vector of performance variables
$\mu_{d}\left(d_{i}\right) \quad$ preference for ith design variable
$\mu_{p}\left(p_{j}\right) \quad$ preference for jth measured aspect of performance
$f \quad$ mapping from design to performance (analytic, black box, FEA, etc.)
$\mathcal{P} \quad$ aggregation function - calculates overall preference

How should multiple preferences be aggregated?
min

arithmetic mean

geometric mean

max

Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.
Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Rationality and the Multi Attribute Decision Making problem (or, Why not Economics?):

- Designs are almost always judged on several criteria.
- These criteria compete (stiff vs. light) but do not compare (Newton/mm vs. kg?)
- Economics approach reduces everything to $\$ \$$; introducing various difficulties:
- Constraints
- Non-probabilistic uncertainty
- Practical issues in preference elicitation
[M. Tribus, Rational Descriptions, Decisions, and Designs, 1969]
[von Neumann and Morgenstern 1944, Tribus 1969, Keeney and Raiffa 1976, Bradley and Agogino 1991, Thurston 1991.]

Aggregation Operator Axioms

At each point \vec{x} the following hold:

1. Monotonicity:
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x}) \leq \mathcal{P}\left(\mu_{1}, \mu_{2}^{\prime} ; \omega_{1}, \omega_{2}\right)(\vec{x}) \quad \forall \mu_{2}(\vec{x}) \leq \mu_{2}^{\prime}(\vec{x})$
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x}) \leq \mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}^{\prime}\right)(\vec{x}) \quad \forall \omega_{2} \leq \omega_{2}^{\prime} ; \quad \mu_{1}(\vec{x})<\mu_{2}(\vec{x})$
2. Symmetry:
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x})=\mathcal{P}\left(\mu_{2}, \mu_{1} ; \omega_{2}, \omega_{1}\right)(\vec{x})$
3. Continuity:
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x})=\lim _{\mu_{2}^{\prime}(\vec{x}) \rightarrow \mu_{2}(\vec{x})} \mathcal{P}\left(\mu_{1}, \mu_{2}^{\prime} ; \omega_{1}, \omega_{2}\right)(\vec{x})$
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x})=\lim _{\omega_{2}^{\prime} \rightarrow \omega_{2}} \mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}^{\prime}\right)(\vec{x})$
4. Idempotency:
$\mathcal{P}\left(\mu, \mu ; \omega_{1}, \omega_{2}\right)(\vec{x})=\mu(\vec{x}) \forall \omega_{1}+\omega_{2}>0$
5. Annihilation:
$\mathcal{P}\left(\mu, 0 ; \omega_{1}, \omega_{2}\right)(\vec{x})=0 \quad \forall \omega_{2} \neq 0$
6. Self-scaling weights:
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1} t, \omega_{2} t\right)(\vec{x})=\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)(\vec{x}) \quad \forall \omega_{1}+\omega_{2}, t>0$
7. Zero weights:
$\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, 0\right)(\vec{x})=\mu_{1}(\vec{x}) \forall \omega_{1} \neq 0$

Trade-off Strategies and Weights

Trade-off strategies reflect the compensation among goals inherent in the problem (independent of weights).

- A compensating strategy is used when higher preference in one variable may compensate for lower preference in another.
- A non-compensating strategy is appropriate when the overall performance of a design is limited by its lowest-performing attribute.

Weights reflect relative importance of attributes.
A strategy-weight pair is required to define the aggregation of two independent attributes.

Early $\mathrm{Mbl}_{\mathrm{b}}$ Aggregation Functions

[Otto and Antonsson 1990]
non-compensating: $\mathcal{P}\left(\mu_{1}, \cdots, \mu_{n} ; \omega_{1}, \ldots, \omega_{n}\right)=\min \left(\mu_{1}, \cdots, \mu_{n}\right)$
and compensating:

$$
\mathcal{P}\left(\mu_{1}, \cdots, \mu_{n} ; \omega_{1}, \ldots, \omega_{n}\right)=\left(\mu_{1} \omega_{1} \cdots \mu_{n} \omega_{n}\right)^{\frac{1}{\omega_{1}+\cdots+\omega_{n}}}
$$

Other functions (QFD [Hauser and Clausing 1988], AHP [Saaty 1980], fuzzy logic):

- weighted sums:

$$
u\left(x^{1}, \ldots, x^{N}\right)=\sum_{i=1}^{N} \omega_{i} \frac{u\left(x^{i}\right)}{N} .
$$

- T-norms (< min) model intersection (logical AND).
- T-conorms (> max) model union (logical OR).

Weighted Means are a class of functions

$$
\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)
$$

that satisfy all the Mb axioms except annihilation and also have strict monotonicity.

Theorem The properties of the weighted mean are necessary and sufficient for the function $\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)$ to be of the form

$$
\mathcal{P}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)=g\left(\frac{\omega_{1} g^{-1}\left(\mu_{1}\right)+\omega_{2} g^{-1}\left(\mu_{2}\right)}{\omega_{1}+\omega_{2}}\right)
$$

where $\exists \mu_{a}, \mu_{b}$ such that

$$
\mu_{a} \leq \mu_{1}, \mu_{2} \leq \mu_{b} ; \omega_{1}, \omega_{2} \geq 0 ; \omega_{1}+\omega_{2}>0
$$

and g is a strictly monotonic, continuous function with inverse g^{-1}.
Proof see [J. Aczél, Lectures on Functional Equations, 1966].

A parameterized family of aggregation functions

$g(t)=t^{s}$, where s is a real parameter, generates the aggregation function:

$$
\mathcal{P}_{s}\left(\mu_{1}, \mu_{2} ; \omega_{1}, \omega_{2}\right)=\left(\frac{\omega_{1} \mu_{1}^{s}+\omega_{2} \mu_{2}^{s}}{\omega_{1}+\omega_{2}}\right)^{\frac{1}{s}}
$$

A little algebra shows the following:

$$
\begin{aligned}
& \mathcal{P}_{0}=\lim _{s \rightarrow 0} \mathcal{P}_{s}=\text { geometric mean } \\
& \mathcal{P}_{-\infty}=\lim _{s \rightarrow-\infty} \mathcal{P}_{s}=\text { min } \\
& \mathcal{P}_{\infty}=\lim _{s \rightarrow+\infty} \mathcal{P}_{s}=\text { max } \\
& \mathcal{P}_{1}=\frac{\omega_{1} \mu_{1}+\omega_{2} \mu_{2}}{\omega_{1}+\omega_{2}}=\text { arithmetic mean }
\end{aligned}
$$

\mathcal{P}_{1} (arithmetic mean)

\mathcal{P}_{0} (geometric mean)

$\mathcal{P}_{\infty}($ max $)$

\mathcal{P}_{s} Example [H.-J. Zimmermann, Fuzzy Set Theory, 1985]

A company makes two products, 1 and 2:

- Product 1 yields $\$ 2$ profit but requires $\$ 1$ in imports.
- Product 2 can be exported for $\$ 2$ revenue but makes only $\$ 1$ profit.
$x_{1}=$ Number of Product 1 produced.
$x_{2}=$ Number of Product 2 produced.

Objective: "Maximize" balance of trade $\left(z_{1}\right)$ and profits $\left(z_{2}\right)$:

$$
\vec{z}(\vec{x})=\left(\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

subject to a number of constraints:

- undominated points

Decision Space with Pareto-optimal Region:

Constraints:

C1:	$-x_{1}+3 x_{2}$	≤ 21
C2:	$x_{1}+3 x_{2}$	≤ 27
C3:	$4 x_{1}+3 x_{2}$	≤ 45
C4:	$3 x_{1}+x_{2}$	≤ 30
C5:	x_{1}	≥ 0
C6:	x_{2}	≥ 0

Performance preferences:

z_{1}

z_{2}

Note: $\vec{z}\binom{0}{7}=\binom{14}{7}, \quad \vec{z}\binom{9}{3}=\binom{-3}{21}$

Some solutions:

Zimmermann uses the $\min \left(\mathcal{P}_{-\infty}\right)$:
$\vec{x}=(5.03,7.32)$ is best to two decimal places
$\vec{x}=(5,7)$ is the best integer value

For the geometric mean $\left(\mathcal{P}_{0}\right)$:
$\vec{x}=(5.70,7.10)$ is best to two decimal places
$\vec{x}=(6,7)$ is the best integer value

Optimal points for different aggregation functions \mathcal{P}_{s}

The decision depends on the aggregation.
Use indifference points to determine strategies and weights.

Definition:

A Negotiation (or a trade-off) is the choice of the compensation parameter (or strategy) s to aggregate multiple preferences, and the weights ω.

For any undominated (Pareto-optimal) design, there is a choice of s and ω that selects that point over all other undominated points.

This is not true for methods that use fixed strategies (weighted sum, for example).

Choosing a strategy and a pair of weights

State of the art:

- specify weights directly, with fixed granularity (AHP, QFD)
- extract eigenvectors from matrix, normalize (AHP)
- no choice of strategies (usually arithmetic mean)

This negotiation model calculates a strategy and a weight pair using indifference points. For two preferences:

- Get $\mu=0.5, \mu=1.0$ for each attribute.
- We know $\mathcal{P}\left(\mu_{1}, \mu_{2}\right)=0.5$ for $\mu_{1}=\mu_{2}=0.5$.
- Ask, "At what value of μ_{1} is there indifference between $\mathcal{P}\left(\mu_{1}, 1.0\right)$ and $\mathcal{P}(0.5,0.5)=0.5$?"
- Simple procedure (with some numerical solving) returns s and $\frac{\omega_{1}}{\omega_{2}}$.

1. Determine x and y such that $\mathcal{P}_{s}(x, 1)=\mathcal{P}_{s}(1, y)=0.5$.
2. Let $b=\frac{\omega_{y}}{\omega_{v}}$.
3. If $x=y$, then $b=1$:
(a) If $x=0.5$, then $s=-\infty$.
(b) If $x=0.25$, then $s=0$.
(c) If $x>0.25$, then
$s \in(-\infty, 0)$. Solve
$x^{s}+1=2(0.5)^{s}$ numerically.
(d) If $x<0.25$, then $s \in(0, \infty)$.

Solve $x^{s}+1=2(0.5)^{s}$
numerically.
4. If $x \neq y$, then $b \neq 1$. Note that if $s=0$,
$x^{m}=0.5=y^{1-m} \Rightarrow y^{1-\log _{x} 0.5}=0.5$
(a) If $y^{1-\log _{x} 0.5}=0.5$, then
$s=0$, and $b=\frac{1-\log _{x} 0.5}{\log _{x} 0.5}$
(b) If $y^{1-\log _{x} 0.5}>0.5$, then
$s<0$.
If $y^{1-\log _{x} 0.5}<0.5$, then
$s>0$.
Solve numerically for s from
$\left(\frac{1+b y^{s}}{1+b}\right)^{\frac{1}{s}}=\left(\frac{x^{s}+b}{1+b}\right)^{\frac{1}{s}}=0.5$ which reduces to
$\left(x^{s}-0.5^{s}\right)\left(y^{s}-0.5^{s}\right)=$ $\left(1-0.5^{s}\right)^{2}$
From s, determine b.

It should be noted that this method will never return an answer $s>1$, which is nice since it avoids "supercompensating" functions. It should also be noted that if either x or y is close to 0 , the (s, b) pair is quite sensitive to small differences in x and y. In these cases, it might be preferable to elicit other indifference points to determine s and b.

Saaty's AHP could be used in pairwise comparison at the start, as a check. There is (presently) no comparable normalization scheme for strategies s.

Choosing a strategy and a pair of weights, Example

Bending stiffness vs. torsional stiffness:

$$
\begin{gathered}
\mu_{1}(3600)=\mu_{2}(7200)=1 \\
\mu_{1}(3000)=\mu_{2}(6400)=0.5 \\
\mathcal{P}_{s}(0.5,1) \approx \mathcal{P}_{s}(1,0.5) \\
\quad \approx \mathcal{P}_{s}(0.5,0.5)=0.5
\end{gathered}
$$

Conclude:

$$
s=-\infty, \omega_{2}=\omega_{1}
$$

B-pillar location (style) vs. other design preferences:
$\mathcal{P}_{s}(0.4,1)=\mathcal{P}_{s}(1,0.3)=0.5$
Conclude:

$$
s=-1.4, \omega_{2}=0.6 \omega_{1}
$$

Quantified vs. Unquantified:
$\mathcal{P}_{s}(0.3,1)=\mathcal{P}_{s}(1,0.2)=0.5$
Conclude:

$$
s=-0.02, \omega_{2}=0.8 \omega_{1}
$$

Uncontrolled Variations (Noise)

- For typical noise, the preference of a design parameter set is weighted by its probability of occurring through the probabilistic uncertainty.
- Given a probability space (NPS), the expected preference of a point $d \in \operatorname{DPS}$ is defined by:

$$
E[\mu(d)]=\int_{\mathrm{NPS}}{ }^{\mu(d)} \delta \operatorname{Pr}
$$

Uncontrolled Variations (Noise)

- If the $\mathrm{NPS} \simeq \mathbb{R}$, then a probability density function $p d f(n)$ would be used.
- The integral of the equation above then becomes:

$$
E[\mu(d)]=\int_{\mathrm{NPS} \mid d} \mu(d) p d f(n \mid d) \delta(n \mid d)
$$

- Since the distributions over n can vary with d, the notation $n \mid d$ is used.

Uncontrolled Variations (Noise)

Difficulties in Making the Decision Computable

Fuzziness: Specifications are imprecise.

Unmodelled Criteria: Many (often crucial) decisions depend on unquantified or unmeasured criteria.

Set-based design: Sets provide rapid design exploration; facilitate concurrency and support iteration.

Rationality: Need to reconcile competing, incommensurate objectives in a rational way.

Cost: Computation cost to effectively explore a large design space can be significant.

Computation Cost Issues:

- Real problems have "many" (10+) design variables.
- Real problems can have expensive analysis functions.

Some solutions:

- Apply approximation methods to analysis function f [Law 1996]
- Technical (not substantial) restrictions on μ
- α-cut representations

Set-Based Computation Cost

Wrapper around existing analysis methods (f).

The Level Interval Algorithm (LIA) discretizes design preference into α-cut intervals:

Construct a linear approximation to \vec{f} over D_{ϵ}^{d} where possible:
[Law and Antonsson 1995, 1996]

$$
\overrightarrow{f^{\prime}}(\vec{d})=\vec{f}\left(\vec{d}_{\mathrm{ctr}}\right)+\vec{\Delta}+\mathbf{A}\left[\vec{d}-\vec{d}_{\mathrm{ctr}}\right]
$$

Where a linear approximation fails (e.g., non-monotonicity), find extremal points (e.g., using Thompson's method), then build a linear approximation between extremal points.

A linear approximation \vec{f}^{\prime} fulfills several purposes:

1. It removes near-linear design variables from the search space for optimization.

2. It allows the geometry of $P_{\alpha_{k}}^{d}$ to be interpolated between extremal points.

3. It provides a means to backwards map $\mu_{p}(\vec{p})$ onto the DVS.

Design of Experiments (DOE) is used to construct $\overrightarrow{f^{\prime}}$.
Central Composite Design:

Computation Cost:

For a Central Composite Design.

Return to the VW Example

Hierarchical aggregation

The new maximization problem:

$$
\mu_{o}(\vec{d})=\mathcal{P}_{0}\left(\mu_{d}, \mu_{p} ; 1,1.3\right)
$$

where
$\mu_{d}=$
$\mathcal{P}_{-1.4}\left(\mathcal{P}_{0}\left(\mathcal{P}_{-1.4}\left(d_{2}, d_{4} ; 1,0.6\right), \mathcal{P}_{-0.2}\left(d_{1}, d_{3} ; 1,0.3\right) ; 1,1\right), d_{5} ; 0.6,1\right)$
$\mu_{p}=\mathcal{P}_{0}\left(\mathcal{P}_{-\infty}\left(f_{1}, f_{2} ; 1,1\right), f_{3} ; 1,0.7\right)$
Normalized weights:

$\omega_{d_{1}}$	$\omega_{d_{2}}$	$\omega_{d_{3}}$	$\omega_{d_{4}}$	$\omega_{d_{5}}$	$\omega_{f_{1}}$	$\omega_{f_{2}}$	$\omega_{f_{3}}$
3.3	2	1	3.3	16.1	9.9	9.9	13.8

Some results:

$\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)$	K_{T}	K_{B}	m	μ_{o}
	μ_{p}	μ_{p}	μ_{p}	
$(1.0,0.9,0.9,1.0,50)$	2832	5836	147	0.44
	0.23	0.14	0.62	$\left(^{*}\right)$
$(1.1,1.3,1.2,1.4,100)$	3365	6029	170	0
	0.77	0.25	0	
$(0.7,0.9,0.8,1.0,0)$	2803	5730	144	0.34
	0.20	0.08	0.78	

minimum assumption:

(1.1, 0.9, 0.8, 1.2, 150)	2869	5933	156	0.2
minimum/geometric mean, equal weights:				
(0.9, 1, 0.9, 1.2, 50)	2901	5876	156	0.36
(0.7, 0.9, 0.9, 1.3, 50)	2912	5820	157	0.36

Approximations
These results come from a coarse but complete search ($5^{5}=3125$ runs, or about 50 hours). But:

- At 5 minutes a run, that would be 11 days.
- At 7 points per axis, 1 minute a run, that's 12 days.
[Miller, 1965]
- At 7 points per axis, 5 minutes a run, that's 58 days.

Approximation (with DOE) gives results within 4\% in only 21 runs, or about 20 minutes.

Note that recalculation with new strategies and weights is of negligible cost.

Discussion of VW example

- Calculated overall preference μ_{o} depends on:
- specified design preferences
- specified performance preferences
- performance analysis f (here, the FEM)

- trade-off strategies and weights
- Trends:
- overall performance varies with design preferences; exceptions are floor pan thickness $\left(d_{4}\right)$ and A-pillar thickness $\left(d_{1}\right)$.
- styling dominates this decision problem (high weight).
- Choice of strategy affects the rank order of candidate designs.
- Explicit negotiation dependencies

Conclusions

Demonstration of a formalism for representing and manipulating imprecise descriptions of engineering designs, constraints and specifications that:

- incorporates uncomputed performance by direct specification of preferences.
- reconciles competing attributes explicitly and rationally.
- identifies and incorporates different trade-off strategies.
- effects of uncontrolled variations (noise) can be incorporated.
- set-based approach facilitates concurrency in design.
- provides a trade-off between computation cost and accuracy.

Now being applied to example design problems from industry.

A framework for making preferences, trade-offs and negotiations explicit:

- Decision framework rather than decision making.
- Support for iteration.
- Allows engineers to attach "soft" requirements (their own and others') to an engineering model:
- Helps identify the rationale for decisions; can lessen political influence in design negotiations.
- Gives a graphical display of preference in many dimensions.

Sponsors:

- National Science Foundation
- NASA's Jet Propulsion Laboratory
- DARPA/NSF OPAAL Program

