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e Background on Inner Ear & Auditory Pathways.

¢ Basilar Membrane (BM), Outer Hair Cells (OHC) & Cilia.
e Feedforward Micromechanic Model of OHC.

e Model Application to Hearing Aids: gain curves, compar-
ing with NAL-NL1 data (National Acoustic Lab, Australia).



Inner Ear (Cochlea)
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Corti: BM1, OHC), Cilia 12




Schematic Uncoiled Cochlea




Stokes Fluid, BM moves with fluid velocity.
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OHC Active Function

Input-output functions on chinchilla BM before and after

furosemide injection (Ruggero-Rich,91). Compression when
stimulus is a CF tone (9 kHz), linear to a 1 kHz tone.
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OHC Active Function

EFFECT OF OUTER HAIR CELL AMF’LI IERS
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Compressive Amplification

Desirable to amplify weak sounds more than strong ones, so
that wide range of input signals is compressed into a smaller
range at output, a.k.a. Automatic Gain Control (AGC).
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Compressive Amplification
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Feedforward Model

Steele, Geisler, Lim (90’s -00’s).
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Balance of Forces

Fcz'lia(xa t) — 01(37) FBM(I‘, t)
Both fluids and OHC act on BM:

ld ohc
Fpa(z,t) = (FL + FY) (2, 1)

OHC longitudinal tilt = cilia force at r causes OHC to
push BM at x + A:

FOhC Mm@+ AE) = Co(x) Frjjjg(x, )

4

FO(z+ A, t) = Cy Colz) (FL + FY) (1)



Model Equations (2-Dim)

Laplace Equation (Stokes Fluid) and BCs:
Pew + P22 =0, (x,2) €(0,L) x (0, H),
Pale=0 = =2 p &(t), plo=r =0,
Pzlz=0 =2 pugt, pzl.—pg =0.
Pressure driven BM motion:
p+qg=m(x)up+r(x,t) ur+ s(x) u— € upy.

OHC force ¢:

¢z + A1) = o (pla, t) + q(z, 1)),



Model Equations (2-Dim)

Function a = a(x) € (0,1), can be generalized to ¢t dependent
or a nonlinear function in u.

For A < 1, away from boundaries:

Q a\
p(ﬂ?, t) o

l -« (1— a)

q(z,t) ~ 5 P(@,t) + O(A?),

providing gain to p.

Solve p in terms of §, uy (p = M uy), write g = My, (A) p, the
closed u equation is:

(m+ M+ Mgy M)uy = po(x,t) — r(x, t)up — () u + € ugy.



Model Equations (2-Dim)

M + My, M: compact nonnegative linear operator;
po explicit, linear in &;

BM stiffness function s(x) exponentially decaying over 0 to
L = 3.5 cm;

r(@,t) =710+ 7 ul x exp{—[z]/A}.

Discretize u equation by a stable 2nd order method.



Feedforward Gain =~ 40 dB

3 kHz tone w/o0 OHC.

passive vel =6




Feedforward Gain =~ 40 dB

same 3 kHz tone w OHC (blue), w/o OHC (red).

BM velocity in u m/s




Compressive Nonlinearity

a; = a;(x) in general.

For single tone input A sin (27 ft + ), compression can be
introduced more directly by choosing a = a(A, f), a in A
behaves similarly.



Model Input-Output Curve

input: 4kHz tone at diff dBs; output: BM max velocity.

Basilar membrane velocity (i mis)

4kHz tone amplitude (dB SPL)



Hearing Aid Modeling

e Normal ear (NE) played by ear model with compressive
feedforward OHC.

e Impaired ear (IE) with loss played by ear model without
OHC, a = 0 over some range of frequencies.

e Define loss using difference (dB) of NE and IE responses
(BM velocity) at absolute hearing thresholds.

e Calculate gain needed for 1E at higher input sound levels.



Schematic Gain Calculation
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Loss at absolute thresholds.
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Loss Raises Thresholds
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Gain Comparison at 50 dB

Red: NAL; Black: Model; simlr compression thresholds/ratios.
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NAL formula

Maximize speech intelligibility index (SII):

SII=> I;-K;-L;- D
)

i number of frequency band, I; € (0,1) band weight;
K; proportion of signal that is audible (inc. masking effect);

L; € (0,1) level distortion factor, smaller at high sound levels
(similar to compression nonlinearity);

D; € (0,1) desensitization factor: correction for severe hear-
ing loss (hearing more signal — less understanding).



NAL Gains

at 60, 70, 80 (dB).
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Conclusions

e OHC feedforward model helped to increase BM sensitivity.

e Computed (2)-dim models with compressive nonlineari-
ties, and presented a model based scheme for finding hear-
ing aids gain, results in qualitative agreement with NAL
data.

e Optimization of model parameters needed.



Ongoing and Future Works

e Study compression thresholds/ratios, their dependence on
frequency.

e Optimize SII over model output to select model parame-
ters, and compare with NAL quantitatively.

e How to provide optimal gain for maximal intelligibility in
the presence of noises ?
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