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Outline
• Background on Inner Ear & Auditory Pathways.

• Basilar Membrane (BM), Outer Hair Cells (OHC) & Cilia.

• Feedforward Micromechanic Model of OHC.

• Model Application to Hearing Aids: gain curves, compar-
ing with NAL-NL1 data (National Acoustic Lab, Australia).
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Inner Ear (Cochlea)
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Cross Section View
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Corti: BM1, OHC5, Cilia 12
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Schematic Uncoiled Cochlea
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Side Views
Stokes Fluid, BM moves with fluid velocity.
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OHC Active Function
Input-output functions on chinchilla BM before and after
furosemide injection (Ruggero-Rich,91). Compression when
stimulus is a CF tone (9 kHz), linear to a 1 kHz tone.
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OHC Active Function
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Compressive Amplification
Desirable to amplify weak sounds more than strong ones, so
that wide range of input signals is compressed into a smaller
range at output, a.k.a. Automatic Gain Control (AGC).
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Compressive Amplification
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Feedforward Model
Steele, Geisler, Lim (90’s -00’s).
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Balance of Forces

Fcilia(x, t) = C1(x) FBM (x, t)

Both fluids and OHC act on BM:

FBM (x, t) = (F
fld
BM + F ohcBM )(x, t)

OHC longitudinal tilt =⇒ cilia force at x causes OHC to
push BM at x + ∆:

F ohcBM (x + ∆, t) = C2(x) Fcilia(x, t)

⇓

F ohcBM (x + ∆, t) = C1C2(x) (F
fld
BM + F ohcBM )(x, t)
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Model Equations (2-Dim)
Laplace Equation (Stokes Fluid) and BCs:

pxx + pzz = 0, (x, z) ∈ (0, L)× (0, H),

px|x=0 = −2 ρ ξ(t), p|x=L = 0,

pz|z=0 = 2 ρ utt, pz|z=H = 0.

Pressure driven BM motion:

p + q = m(x) utt + r(x, t) ut + s(x) u− ε uxx.

OHC force q:

q(x + ∆, t) = α (p(x, t) + q(x, t)).
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Model Equations (2-Dim)
Function α = α(x) ∈ (0, 1), can be generalized to t dependent
or a nonlinear function in u.

For ∆� 1, away from boundaries:

q(x, t) ∼ α

1− α
p(x, t)− α∆

(1− α)2
px(x, t) + O(∆2),

providing gain to p.

Solve p in terms of ξ, utt (p = M utt), write q = Mfw(∆) p, the
closed u equation is:

(m + M + MfwM)utt = p0(x, t)− r(x, t)ut − s(x)u + ε uxx.
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Model Equations (2-Dim)
M + MfwM : compact nonnegative linear operator;

p0 explicit, linear in ξ;

BM stiffness function s(x) exponentially decaying over 0 to
L = 3.5 cm;

r(x, t) = r0 + γ |u| ? exp{−|x|/λ}.

Discretize u equation by a stable 2nd order method.
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Feedforward Gain ≈ 40 dB
3 kHz tone w/o OHC.
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Feedforward Gain ≈ 40 dB
same 3 kHz tone w OHC (blue), w/o OHC (red).
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Compressive Nonlinearity
ai = ai(x) in general.

For single tone input A sin (2π f t + ϕ), compression can be
introduced more directly by choosing α = α(A, f), α in A
behaves similarly.
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Model Input-Output Curve
input: 4kHz tone at diff dBs; output: BM max velocity.
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Hearing Aid Modeling
• Normal ear (NE) played by ear model with compressive
feedforward OHC.

• Impaired ear (IE) with loss played by ear model without
OHC, α = 0 over some range of frequencies.

• Define loss using difference (dB) of NE and IE responses
(BM velocity) at absolute hearing thresholds.

• Calculate gain needed for IE at higher input sound levels.
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Schematic Gain Calculation

23



Audiogram
Loss at absolute thresholds.
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Loss Raises Thresholds
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Gain Comparison at 50 dB
Red: NAL; Black: Model; simlr compression thresholds/ratios.
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NAL formula
Maximize speech intelligibility index (SII):

SII =
∑
i

Ii ·Ki · Li ·Di,

i number of frequency band, Ii ∈ (0, 1) band weight;

Ki proportion of signal that is audible (inc. masking effect);

Li ∈ (0, 1) level distortion factor, smaller at high sound levels
(similar to compression nonlinearity);

Di ∈ (0, 1) desensitization factor: correction for severe hear-
ing loss (hearing more signal −→ less understanding).
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NAL Gains
at 60, 70, 80 (dB).
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Conclusions
•OHC feedforward model helped to increase BM sensitivity.

• Computed (2)-dim models with compressive nonlineari-
ties, and presented a model based scheme for finding hear-
ing aids gain, results in qualitative agreement with NAL
data.

• Optimization of model parameters needed.

29



Ongoing and Future Works
• Study compression thresholds/ratios, their dependence on
frequency.

• Optimize SII over model output to select model parame-
ters, and compare with NAL quantitatively.

• How to provide optimal gain for maximal intelligibility in
the presence of noises ?
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