

Department of Mathematics The University of Texas at Austin

Modeling Ear Hair Cells and Sound Compression in Hearing Aids

Jack Xin

Mathematics and ICES

Collaborator

Yingyong Qi, Qualcomm

Supported in part by NSF-ITR, Guggenheim Foundation.

Outline

• Background on Inner Ear & Auditory Pathways.

• Basilar Membrane (BM), Outer Hair Cells (OHC) & Cilia.

• Feedforward Micromechanic Model of OHC.

• Model Application to Hearing Aids: gain curves, comparing with NAL-NL1 data (National Acoustic Lab, Australia).

Inner Ear (Cochlea)

Cross Section View

Corti: BM1, OHC5, Cilia 12

Schematic Uncoiled Cochlea

Side Views

OHC Active Function

Input-output functions on chinchilla BM before and after furosemide injection (Ruggero-Rich,91). Compression when stimulus is a CF tone (9 kHz), linear to a 1 kHz tone.

OHC Active Function

EFFECT OF OUTER HAIR CELL AMPLIFIERS

NORMAL & PARALYZED (RUGGERO & RICH, 1991)

SOLID CURVES: = NORMAL

DOTTED CURVES: = OUTER HAIR CELLS PARALIZED WITH FUROSEMIDE (DATA TAKEN APPROX. 15 MINUTES AFTER INJECTION)

NOTE: C.F. = 9000HZ

Compressive Amplification

Desirable to amplify weak sounds more than strong ones, so that wide range of input signals is compressed into a smaller range at output, a.k.a. Automatic Gain Control (AGC).

Input sound pressure level (d8)

Compressive Amplification

Feedforward Model

Steele, Geisler, Lim (90's -00's).

(a) Transverse View

(b) Longitudinal View

Balance of Forces

$$F_{cilia}(x,t) = C_1(x) \ F_{BM}(x,t)$$

Both fluids and OHC act on BM:

$$F_{BM}(x,t) = (F_{BM}^{fld} + F_{BM}^{ohc})(x,t)$$

OHC longitudinal tilt \implies cilia force at x causes OHC to push BM at $x + \Delta$:

$$F_{BM}^{ohc}(x + \Delta, t) = C_2(x) \ F_{cilia}(x, t)$$

$$\Downarrow$$

$$F_{BM}^{ohc}(x + \Delta, t) = C_1 C_2(x) \ (F_{BM}^{fld} + F_{BM}^{ohc})(x, t)$$

Model Equations (2-Dim)

Laplace Equation (Stokes Fluid) and BCs:

$$p_{xx} + p_{zz} = 0, \quad (x, z) \in (0, L) \times (0, H),$$

$$p_x|_{x=0} = -2 \rho \xi(t), \ p|_{x=L} = 0,$$

$$p_z|_{z=0} = 2 \rho u_{tt}, \quad p_z|_{z=H} = 0.$$

Pressure driven BM motion:

$$p + q = m(x) u_{tt} + r(x, t) u_t + s(x) u - \epsilon u_{xx}.$$

OHC force q:

$$q(x + \Delta, t) = \alpha \ (p(x, t) + q(x, t)).$$

Model Equations (2-Dim)

Function $\alpha = \alpha(x) \in (0, 1)$, can be generalized to t dependent or a nonlinear function in u.

For $\Delta \ll 1$, away from boundaries:

$$q(x,t) \sim \frac{\alpha}{1-\alpha} p(x,t) - \frac{\alpha \Delta}{(1-\alpha)^2} p_x(x,t) + O(\Delta^2),$$

providing gain to p.

Solve p in terms of ξ , u_{tt} ($p = M u_{tt}$), write $q = M_{fw}(\Delta) p$, the closed u equation is:

$$(m + M + M_{fw}M)u_{tt} = p_0(x,t) - r(x,t)u_t - s(x)u + \epsilon u_{xx}.$$

Model Equations (2-Dim)

 $M + M_{fw} M$: compact nonnegative linear operator;

 p_0 explicit, linear in ξ ;

BM stiffness function s(x) exponentially decaying over 0 to L = 3.5 cm;

$$r(x,t) = r_0 + \gamma |u| \star \exp\{-|x|/\lambda\}.$$

Discretize u equation by a stable 2nd order method.

Feedforward Gain $\approx 40~\mathrm{dB}$

3 kHz tone w/o OHC.

Feedforward Gain $\thickapprox 40~\mathrm{dB}$

same 3 kHz tone w OHC (blue), w/o OHC (red).

Compressive Nonlinearity

$a_i = a_i(x)$ in general.

For single tone input $A \sin(2\pi f t + \varphi)$, compression can be introduced more directly by choosing $\alpha = \alpha(A, f)$, α in Abehaves similarly.

Model Input-Output Curve

input: 4kHz tone at diff dBs; output: BM max velocity.

Hearing Aid Modeling

- Normal ear (NE) played by ear model with compressive feedforward OHC.
- Impaired ear (IE) with loss played by ear model without OHC, $\alpha = 0$ over some range of frequencies.
- Define loss using difference (dB) of NE and IE responses (BM velocity) at absolute hearing thresholds.
- Calculate gain needed for IE at higher input sound levels.

Schematic Gain Calculation

Audiogram

Loss at absolute thresholds.

Loss Raises Thresholds

Gain Comparison at 50 dB

Red: NAL; Black: Model; simlr compression thresholds/ratios.

NAL formula

Maximize speech intelligibility index (SII):

$$SII = \sum_{i} I_i \cdot K_i \cdot L_i \cdot D_i,$$

i number of frequency band, $I_i \in (0, 1)$ band weight;

 K_i proportion of signal that is audible (inc. masking effect);

 $L_i \in (0, 1)$ level distortion factor, smaller at high sound levels (similar to compression nonlinearity);

 $D_i \in (0,1)$ desensitization factor: correction for severe hearing loss (hearing more signal \longrightarrow less understanding).

NAL Gains

at 60, 70, 80 (dB).

Conclusions

• OHC feedforward model helped to increase BM sensitivity.

• Computed (2)-dim models with compressive nonlinearities, and presented a model based scheme for finding hearing aids gain, results in qualitative agreement with NAL data.

• Optimization of model parameters needed.

Ongoing and Future Works

• Study compression thresholds/ratios, their dependence on frequency.

• Optimize SII over model output to select model parameters, and compare with NAL quantitatively.

• How to provide optimal gain for maximal intelligibility in the presence of noises ?