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Discrete differential geometry

Aim: Development of discrete equivalents of the geometric notions and
methods of differential geometry. The latter appears then as a limit of
refinements of the discretization.

• new geometric objects in Discrete Geometry

• new methods (difference equations, geometric understanding of
integrability)

• deep understanding of smooth theory (unification of surfaces and their
transformations)

• solution of problems in Differential Geometry

3



Bobenko Surfaces made from Circles

Discrete surfaces

Triangulated (Euclidean) Circular (Möbius)

Natural in Möbius geometry:
• curvature line parametrized
surfaces
• conformally parametrized
surfaces
• (triply)-orthogonal coordi-
nate systems
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Discrete orthogonal coordinate systems

Dupin Theorem. Coordinate surfaces of a triply orthogonal coordinate
system intersect along their common curvature lines

• Circular lattices as discrete curvature line
parametrization [Martin et al., Nutbourne ’86]
• Discrete orthogonal coordinate systems
[B.’96]
• Cauchy problem based on Miguel’s theorem
[Cieśliński, Doliwa, Santini ’97]
• Convergence with all derivatives (C∞-
convergence) [B./Matthes/Suris ’03] movie.gif
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Discrete conformal energy

W =
∑

k

βk − 2π

βi are external angles between the circumscribed circles.

W ≥ 0 and W = 0 iff the vertex and all its neighbors lie on a sphere.
Minimizing of W makes the surface as round as possible. Analogue of the
Willmore energy

W =
∫

(k1 − k2)2

• conformal

• W ≥ 0 and W = 0 iff the round sphere

• W =
∫

H2 − ∫
K, on compact surfaces

∫
K topological invariant

• related to elastic energy
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Minimizing discrete conformal energy

Triangulation: Triangulation: discrete Boy surface

“spherical”, W = 0 “non-spherical”, W > 0 (projective plane)

sphere.gif nonsphere.gif boy.gif
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Minimal surface: Schwarz’ P-surface

continuous∗ discrete

∗ from: Dierkes et al. Minimal Surfaces I. Springer 1992.
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Isothermic surfaces

continuous

Definition. A surface in 3-space is called isothermic
if it admits conformal curvature line coordinates.

[Hilbert/Cohn-Vossen]

• Definition is Moebius invariant.

• Curvature lines divide the surface into infinitesimal squares.

Examples: surfaces of revolution, quadrics, constant mean curvature
surfaces, minimal surfaces.
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Isothermic surfaces

discrete

Definition. A polyhedral surface in 3-space is called dis-
crete isothermic if all faces are conformal squares, i. e. pla-
nar with cross ratio -1. [B./Pinkall ’96] a

b′

b

a′

aa′
bb′ = −1

• Definition is Moebius invariant.

• ‘Curvature lines’ divide the surface into conformal squares.
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Duality for isothermic surfaces

continuous

Definition/Theorem. If f : R2 ⊃ D → R3 is an isothermic immersion, then
the dual isothermic immersion is defined by

df∗ =
fx

‖fx‖2 dx− fy

‖fy‖2 dy.
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Duality for isothermic surfaces

discrete

Proposition. Suppose a, b, a′, b′ ∈ C with

a

b′

b

a′

a + b + a′ + b′ = 0 and
aa′

bb′
= −1

and let

a∗ =
1
a

, a′∗ =
1
a′

, b∗ = − 1
b

, b′∗ = − 1
b′

.

Then

a∗ + b∗ + a′∗ + b′∗ = 0 and
a∗a′∗

b∗b′∗
= −1.

⇓
Can define duality for discrete isothermic surfaces if edges
may be labeled ‘+’ and ‘−’ appropriately.
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Minimal surfaces

• Minimal surfaces are isothermic.

• Isothermic F is minimal. ⇐⇒ F ∗ contained in a sphere.
(It’s the Gauss map.)

A way to construct minimal surfaces:

conformally parametrized

sphere
dualize−−−−−→ minimal surface

Idea:

conformally parametrized

discrete sphere
dualize−−−−−→ discrete minimal surface
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Circle packings

circle packing ←→ triangulation

circles ←→ vertices

touching circles ←→ edges

Koebe’s Theorem (1936). To every triangulation of the sphere there
corresponds a circle packing. It is unique up to Moebius transformations.

“Auf diesen Schließungssatz bzw. einen damit zusammenhängenden

merkwürdigen Polyedersatz beabsichtige ich in einer besonderen Note

zurückzukommen, die ich der Preuß. Akademie der Wissenschaften

überreichen will.”
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Orthogonal circle patterns

orthogonal
circle pattern

←→ polytopal cell
decomposition

red circles ←→ faces

black circles ←→ vertices

Red circles intersect black circles orthogo-
nally.

Theorem. To every polytopal cell decomposition of the sphere there
corresponds an orthogonal circle pattern. It is unique up to Moebius
transformations.

Schramm ’92 (more general result).

Brightwell/Scheinerman ’93 (proof à la Thurston).
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Koebe polyhedra

Theorem. Every polytopal cell decomposition of the sphere can be realized by a

polyhedron with edges tangent to the sphere. This realization is unique up to

projective transformations which fix the sphere.

There is a simultaneous representation of the dual cell decomposition with

orthogonanally intersecting edges.
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Koebe polyhedra

b

b′ a′

a

aa′

bb′
= −1

Theorem. Every polytopal cell decomposition of the sphere can be realized by a

polyhedron with edges tangent to the sphere. This realization is unique up to

projective transformations which fix the sphere.

There is a simultaneous representation of the dual cell decomposition with

orthogonanally intersecting edges.
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S-isothermic discrete surfaces∗

touching spheres

orthogonal circles

planar faces

orthogonal kites

The dual of an S-isothermic surface is S-isothermic.

∗ [B./Pinkall ’99]
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Discrete minimal surfaces

Definition. Discrete minimal ⇐⇒
{

S-isothermic,
extra condition at centers of spheres:

h

h

N

An S-isothermic surface is minimal if and only if its dual is a Koebe polyhedron.
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How to construct the discrete anlogue of a continuous
minimal surface

continuous minimal surface
⇓

image of curvature lines under Gauss-map
⇓

cell decomposition of (a branched cover of) the sphere
⇓

orthogonal circle pattern
⇓

Koebe polyhedron
⇓

discrete minimal surface
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−→ −→

cell decomposition circle pattern

−→ −→

Koebe polyhedron discrete minimal surface
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Pictures

Catenoid
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Pictures

Schwarz P Scherk tower
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The combinatorics of singularities

Schwarz P
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The combinatorics of singularities

Scherk

→
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Constructing orthogonal circle patterns

unknowns:

radii r

closure condition:

∀j :
∑

neighbors k

2ϕjk = 2π,

where

ϕjk = arctan
rk

rj

j k

rj rk

ϕjk

How to solve the closure equations for the radii?
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Constructing orthogonal circle patterns

change of variables: r = eρ

minimize the convex function [B./Springborn ’02]

S(ρ) =
∑

j◦−◦k

(
ImLi2

(
ieρk−ρj

)
+ Im Li2

(
ieρj−ρk

)− π

2
(ρj + ρk)

)
+ 2π

∑

◦j
ρj

dilogarithm function: Li2(z) =
z

12
+

z2

22
+

z3

32
+ . . .

Explicit formula, no contraints, easy to compute (!)

Convexity ⇒ uniqueness. Existence more delicate.

Other methods:

• Adjust, iteratively, each radius such that neighboring circles fit [Thurston].

Implemented in Stephenson’s circlepack for packings.

• Other variational principles [Colin de Verdière ’91, Brägger ’92, Rivin ’94,

Leibon ’01]
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Generalization of Schwarz’s CLP-surface

mn

α

discrete minimal surface combinatorics of curvature lines

Ulrike Scheerer
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Another Plateau problem

m

n

l

k

discrete minimal surface combinatorics of curvature lines

Ulrike Scheerer
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Theorems about discrete minimal surfaces

• Existence

• Uniqueness

• Convergence

• Associated family (isometry preserving the Gauss map)
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