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balanced truncation



Cavity flow oscillations

Motivation

Full simulation 4-mode POD/Galerkin
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POD
Pro: works for nonlinear systems
Pro: tractable computation using eigenvalue solvers
Con: often yields unpredictable results

Most energetic modes are not necessarily most important to 
the dynamics

Balanced truncation
Pro: Guaranteed error bounds
Con: Works only for linear input-output systems
Con: Computationally expensive, cannot compute for

POD vs. Balanced truncation

(n > 106)

n > 10, 000



POD modes

Overview of POD/Galerkin

û(t) = Pu(t) =
n∑

j=1

aj(t)ϕj , aj(t) = 〈u(t),ϕj〉

Goal: Given u(x, t), find optimal orthonormal functions
ϕk(x), called POD modes, which minimize the time aver-
age of ‖u − Pu‖, for fixed n.

Given a set of data {u(t) ∈ H | t ∈ I}, project onto
orthonormal basis functions ϕj ∈ H:

Solution: Eigenvalue problem

Rϕk = λkϕk, R =
1
T

∫ T

0
u(t) ⊗ u∗(t) dt



Standard approach
Start with a nonlinear system
Integrate solutions for one or more initial conditions
Compute POD modes from the ensemble of data

Galerkin projections are given by

Overview of POD/Galerkin

ẋ = f(x), x ∈ H

x0 ∈ H

x̂(t) =
n∑

j=1

aj(t)ϕj , ϕj ∈ H

ȧj = 〈f(x̂),ϕj〉



Standard approach
Start with a stable, linear input-output system

Compute controllability and observability Gramians

Find a transformation T that diagonalizes X and Y

Project onto first n columns of T.

Overview of balanced truncation

ẋ = Ax + Bu

y = Cx

X =
∫ ∞

0
eAtBB∗eA∗t dt Y =

∫ ∞

0
eA∗tC∗CeAt dt

AX + XA∗ + BB∗ = 0 A∗Y + Y A + C∗C = 0

x = Tz, T−1X(T−1)∗ = T ∗Y T = Σ



Error bounds
Consider the transfer function
Recall the L2-induced norm

Any reduction to r states must satisfy

Balanced truncation guarantees

Disclaimer: balanced truncation is not optimal.  There are other 
methods for model reduction (e.g. Hankel norm reduction).

Balanced truncation: properties

‖Gr − G‖∞ > σr+1

G(s) = C(sI − A)−1B

‖G‖∞ = max
ω

σ1(G(iω)) = max
u

‖Gu‖2

‖u‖2

‖Gr − G‖∞ < 2
n∑

j=r+1

σj



1. Balanced truncation may be viewed as POD/Galerkin with respect 
to an inner product defined by the observability Gramian

2. Computational procedure for computing approximate balanced 
truncations for very large systems, using the method of snapshots

3. Example: linearized channel flow

Main results

Can we compute balanced truncations 
without solving Lyapunov equations, 
or ever storing the full Gramians?



Controllability Gramian
Well known (e.g., Lall, Marsden, Glavaski, 2002)
Construct an ensemble of solutions

Then

POD modes of this dataset are eigenvectors of X
Standard POD procedure projects onto most controllable 
states, ignores observability

Empirical Gramians

{x1(t), x2(t), . . . , xp(t)}

u = 0

x1(0) = Bê1

x2(0) = Bê2

...
xp(0) = Bêp

X =
∫ ∞

0
eAtBB∗eA∗t dt

=
∫ ∞

0
(x1x

∗
1 + x2x

∗
2 + · · · + xpx

∗
p) dt

x1(t) = eAtBê1

x2(t) = eAtBê2

...

xp(t) = eAtBêp

=⇒



Notes
Balancing modes are appropriately scaled eigenvectors of XY.  
Thus, balanced truncation is just POD with respect to an inner 
product defined by the observability Gramian:

Even if output is y = x, observability is still important—Y is 
solution to 

If A is normal, A commutes with X and Y, so they have the same 
eigenvectors (Farrell & Ioannou 1993).  In this case, POD 
modes are the same as balancing modes.

Empirical Gramians

〈x1, x2〉 = x∗
1Y x2

A∗Y + Y A + I = 0



Observability Gramian
Consider the adjoint system
Construct an ensemble of solutions

Empirical Gramian is

Note that if C = Id, need to compute n different trajectories.  
(Doesn’t scale well for very large n)

Empirical Gramians

z1(0) = C∗ê1

z2(0) = C∗ê2

...
zq(0) = C∗êq

ż = A∗z
{z1(t), . . . , zq(t)}

z1(t) = eA∗tC∗ê1

z2(t) = eA∗tC∗ê2

...

zq(t) = eA∗tC∗êq

=⇒

Y =
∫ ∞

0
eA∗tC∗CeAt dt

=
∫ ∞

0
(z1z

∗
1 + z2z

∗
2 + · · · + zqz

∗
q ) dt



Approximate observability Gramian
Instead of the system

Consider the almost identical system

                  is a projection onto the first r POD modes (which are 
columns of    )
For this system, empirical observability Gramian is tractable for 
large n: compute r copies of adjoint system with initial 
conditions equal to each of the POD modes

Approximate Gramians

ẋ = Ax + Bu

y = x

ẋ = Ax + Bu

y = Px

P = ϕϕ∗

ϕ



Procedure:
Construct data matrices containing primal and dual snapshots

Form the singular value decomposition of

First r modes of balancing transformation (r is rank of     ) are 

Balanced truncation using snapshots

ρ =

x(t1) · · · x(tnp)

 µ =

z(t1) · · · z(tnd)



µ∗ρ =

 z(t1)∗x(t1) · · · z(t1)∗x(tnp)
...

. . .
...

z(tnd) ∗ x(t1) · · · z(tnd)∗x(tnp)

 = UΣV ∗

Primal Dual
µ∗ρ

Σ
T1 = ρV Σ−1/2



Theorem:
Define
If      has rank n, then                            and

If      has rank r < n, then there exist S2 and T2 such that

Balanced truncation using snapshots

S1 = Σ−1/2U∗µ∗ T1 = ρV Σ−1/2

S1 = (T1)−1

S1XS∗
1 = T ∗

1 Y T1 = Σ

T =
[
T1 T2

]
S =

[
S1

S2

]

SXS∗ =
[
Σ 0
0 X2

]
T ∗Y T =

[
Σ 0
0 Y2

]
S = T−1

Σ

Σ

T−1XY T =
[
Σ2 0
0 0

]



Original system

Galerkin projection (standard inner product)

Balanced truncation = Galerkin projection (Y inner product)

Galerkin projection

ẋ = Ax + Bu

y = Cx

ż = S1AT1z + S1Bu

y = CT1z

ż = (T1T
∗
1 )−1T ∗

1 AT1z + (T1T
∗
1 )−1T ∗

1 Bu

y = CT1z



Galerkin projection using an “energy-based” inner product 
preserves stability of the origin

Observability Gramian is a Lyapunov function, so stability of 
the origin is preserved under balanced truncation, or POD/
Galerkin with Y as inner product

Stability

V (x) = x∗Qx

V̇ (x) = x∗(A∗Q + QA)x ≤ 0
x = Tz

V (z) = z∗T ∗QTz

V̇ (z) = ż∗T ∗QTz + z∗T ∗QT ż

= z∗T ∗(A∗Q + QA)Tz ≤ 0

ż = (T ∗QT )−1T ∗QATz

ẋ = Ax

Also true for nonlinear systems
(Rowley, Murray, & Colonius, 2002), (Prajna, CDC 2003)



1. Compute an ensemble of solutions to               with various 
relevant initial conditions (e.g. columns of B), and assemble these 
snapshots into a matrix      of dimension               (     snapshots)

2. Compute POD modes from this data (SVD of    )
3. If the first  r modes capture a large fraction of energy, solve r 

copies of the adjoint system                 with initial conditions 
equal to the each of the first r POD modes, assembling this data 
into a matrix       of dimension              (     snapshots)

4. Form the               matrix        , and compute its SVD 
5. The balancing modes are columns of the rectangular matrix

Summary of the method
ẋ = Ax

ρ

ρ

ż = A∗z

µ

Largest matrix one has to store is 
#snapshots by #states

n × np

nd × np µ∗ρ µ∗ρ = UΣV ∗
n × nd

np

nd

T1 = ρV Σ−1/2



Plane channel flow
Linearize Navier-Stokes about a parallel shear flow
In terms of wall-normal velocity    and wall-normal vorticity  
pressure can be eliminated using continuity:

Consider streamwise-constant perturbations

Discretize with Chebyshev modes in y-direction, Fourier in      
z-direction

Example: linearized channel flow

(U(y), 0, 0)

[(
∂

∂t
+ U

∂

∂x

)
∇2 − U ′′ ∂

∂x
− 1

R
∇4

]
v = 0[

∂

∂t
+ U

∂

∂x
− 1

R
∇2

]
η + U ′ ∂v

∂z
= 0

v η

(∂/∂x = 0)

v = ∂v/∂y = η = 0
at solid walls

∂v

∂t
=

1
R
∇2v

∂η

∂t
=

1
R
∇2η − U ′ ∂v

∂z



POD modes
E-vectors of X:

Balancing modes
Scaled e-vectors of XY:

Approximate balancing modes
Scaled e-vectors of XY:

Energy decay

Computing modes
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Mode 2

POD

Balancing

Approximate 
balancing
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Mode 3

POD

Balancing

Approximate 
balancing
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Mode 4

POD

Balancing

Approximate 
balancing
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Linear systems--have norms!

Error norms

BT Approx BT POD
‖G5 − G‖∞ 0.446 0.560 5.35

‖G5 − G‖∞/‖G‖∞ 1.18% 1.48% 14.1%

ε1 < ‖Gr − G‖∞ < ε2

ε1 = σ6 = 0.2008 ε2 = 2
∑n

j=6 σj = 0.8581

Balanced truncation not optimal,
but works the best here

BT, standard i.p. POD, Y i.p.
‖G5 − G‖∞ 3.48 0.669

‖G5 − G‖∞/‖G‖∞ 9.19% 1.77%



Movie
Full simulation, impulse response



Movie
Error, 5-mode POD truncation



Movie
Error, 5-mode balanced truncation



POD modes of impulse response data represent most 
controllable modes

Observability also important if A non-normal
Balanced truncation

Same as POD/Galerkin of impulse response data, using inner 
product specified by observability Gramian Y
Y is a good inner product: guarantees stability of Galerkin 
projections, gives good results in practice

Approximate empirical Gramians
Involve several integrations of adjoint system
Method of snapshots scales well for very large n
5-mode approximation agrees well with exact balanced 
truncation for streamwise-constant linearized channel flow.

Conclusions

The End


