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Outline
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Asynchronous Variational Integrators

Advance in time complex systems with multiple 
time scales
Algorithms are derived from a variational 
principle
Remarkable conservation properties

There is a discrete Noether’s theorem
• Symplectic-energy-momentum preserving

Examples:
Finite Elements: 
• Allow elements to progress asynchronously
• In the spirit of subcycling and element-by-element algorithms

Molecular Dynamics:
• Multi-time step methods
• Allow group-wise interactions to advance asynchronously



Finite elements at a glance
Steps

Decompose the domain of the 
problem into elements 
(triangles, tetrahedra, etc)
Associate to each node a 
basis function Na(x)
Construct the functional space 
Vh containing all linear 
combinations of Na(x)
Seek solutions satisfying a 
constrained variational 
principle in Vh

Example
In an elasticity problem, the 
unknowns are the 
displacements, which  belong 
to the space Vh

Domain of the problem

Triangular element



AVI in a nutshell
(1)

(6)(5)

(3)(2)

(4)

One-dimensional example of AVI



Variational Formulation
Discrete Lagrangians

Discrete Action Sum



Variational Formulation
Discrete Variational Principle:

“The discrete motion renders the Discrete Action Sum stationary with 
respect to admissible spatial variations of the nodal trajectories”

More precisely, Discrete Euler-Lagrange equations

This is the algorithm !



Example
Choose Discrete Lagrangians

where



Conservation Properties
Disc. Linear Momentum

Disc. Angular Momentum

This is the discrete Noether’s theorem !



Structural Dynamics Example

Apache AH-64



Helicopter Blades

ω = 40 rad/s
Time step computed from the 
Courant condition



Rigid Case



Soft Case



Number of Updates

Contour plot of log(number of updates) for each 
element after 150 revolutions

Slivers ! 10-node tets, slivers !
Speed-up ≈ 6



Symplectic Flow
Every variational time integrator is symplectic
Continuous case – Free Action Variations

Action Zero over 
trajectories

Symplectic 
form           

Discrete case - Free discrete action variations
Consequences

Liouville’s theorem, good long-time energy behavior

Canonical 
one-form      

Free Action 
variations



Energy conservation

235 millions 
updates of the 

fastest element !

Rigid Case

Soft Case

Characteristic energy behavior 
of Variational Integrators



Local Energy Behavior
A local energy balance equation is obtained as 
the Euler-Lagrange equation conjugate to the 
elemental time step.
Local energy conservation and time-adaptivity

Elemental energy

Energy imbalance



Convergence
Convergence of AVIs proved in Lew, Marsden, Ortiz and West 
(2003), to appear in IJNME (West).

Convergence behavior of AVI



Configurational Forces
Configurational forces are derivatives of the energy with 
respect to changes in the configuration of the mechanical 
system

Crack propagation, phase transformations
Invariance of the elastic energy under rigid translations and 
rotations of the particles in the reference configuration leads to 
the path independent J-integral and L-integral respectively
Discrete case

Configurational forces are conjugate to the positions of the nodes in the 
mesh
Resulting algorithms lead to variational mesh adaption (Thoutireddy
and Ortiz, 2003)
Discrete Noether’s theorem define discrete path independent J and L 
integrals



Discrete Conserved J-Integral
a

This is Sd
VALE (Thoutireddy

and Ortiz, 2003)

Set of nodal coordinates

Discrete L-integral



Computing what matters
Get statistical quantities right, such as temperature, 
even in the face of chaotic dynamics and errors in  the 
computation of individual trajectories
ODE Example (In LMOW ’03, computations by M. West)

Compute the temperature, time averaged kinetic energy, of a 
system of interacting particles in the plane.
System of 16 point masses, 4 x 4, in the plane joined by 
springs. The system starts from the regular configuration with 
random initial velocities. 

ODE Discrete Lagrangian



Computing what matters
VI1 converges to 

the average 
kinetic energy 
even for fairly 

large time steps

RK4 suffers 
substantial 
numerical 

dissipationi

Average kinetic energy as a function of time and time step 
size for a 4th order non-symplectic Runge-Kutta and a 1st

order variational integrator. (West, to appear in Lew, Ortiz, 
Marsden and West, 2003)



Computing what matters
Error due to the finite time 

averaging
VI4 is always better, and VI1 is better than RK4 for 

large time steps !

Temperature error as a function of computational cost 
comparison between a 1st(VI1) and 4th(VI4) order variational 

integrator and a 4th order non-symplectic Runge-Kutta (RK4). 
The three plots correspond to different averaging time lengths 

(West, to appear in Lew, Ortiz, Marsden and West, 2003)  



Shock Propagation in Solids
When propagating a shock numerically a “stabilization” 
method is needed
Artificial Viscosity is easily combined with existing finite 
element codes and used with non-structured meshes

For largely deforming 
solids the Art Visc should:

Work well with high-order 
elements
Work well with 
Lagrangian formulations
Be Material Frame 
Indifferent

Second order explicit 
Newmark



Artificial Viscosity Formulation
Physical motivation

A viscous shock has a length-scale
Amount of dissipation is independent of the shape of the shock

Locally add viscosity to make the shock width 
comparable to the mesh size
Need to supply the dissipation that the discretization is 
not capturing (Von Neumann & Ritchmyer, 1950)
Traditionally, the extra dissipation has been included as 
an “added” pressure term         volumetric stress !!

Lew, Radovitzky and Ortiz,  J. Comp. Aided Mat. Design, 8 (2-3):213-231, 2002. 



Artificial Viscosity Formulation
The total viscosity coefficient is

The artificial viscosity value is 

For multidimensional computations:

Values computed at each Gauss point
Observations

The artificial viscosity is computed at the “constitutive” level
Material Frame Indifferent
Order-independent formulation
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Tantalum model

J

p

J

Ab-initio equation of state and elastic 
constants (Cohen, 2000)
J2-isotropic plasticity 
Steinberg-Guinan model for the 
pressure dependence of the yield 
surface EoS isothermal

J

Isochoric elastic constantsIsothermal elastic constants



Shocked Ta - Validation and Verification
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Engineering Model of HMX
Mie-Grüneisen equation of state 
designed to reproduce well the 
detonation front velocity (Morano
and Shepherd, 1999)
One-step chemistry Particle velocity

PressureProducts mass fraction



Detonation front with AVI

The computational 
effort is localized where 

the action is !!

Max/Min Ratio = 103

Number of updates 
between two outputs



Integration into the VTF
Neohookean
Aluminum

HMX

Impact problem on a Canister with HMX

Impact velocity

2170 m/s

Artificial Viscosity

AVI



Thinner-walled tube

Impact problem on a Canister with HMX
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