Asynchronous simulation of high-explosive detonations

Adrián J. Lew

Graduate Aeronautical Laboratories, Caltech April 2003

Jointly with: J. Marsden, M. Ortiz, M. West

Outline

Asynchronous Variational Integrators (AVI)

Artificial Viscosity for largely deforming shocked solids

Detonation front simulation with AVIs

Asynchronous Variational Integrators

- Advance in time complex systems with multiple time scales
- Algorithms are derived from a variational principle
- Remarkable conservation properties
 - There is a discrete Noether's theorem
 - Symplectic-energy-momentum preserving

Examples:

Finite Elements:

- Allow elements to progress asynchronously
- In the spirit of subcycling and element-by-element algorithms

Molecular Dynamics:

- Multi-time step methods
- Allow group-wise interactions to advance asynchronousl

Finite elements at a glance

Steps

- Decompose the domain of the problem into elements (triangles, tetrahedra, etc)
- Associate to each node a basis function N_a(x)
- Construct the functional space V_h containing all linear combinations of N_a(x)
- Seek solutions satisfying a constrained variational principle in V_h

Example

In an elasticity problem, the unknowns are the displacements, which belong to the space V_h

AVI in a nutshell

One-dimensional example of AVI

Variational Formulation

Discrete Lagrangians

$$L_d^{K,j} \approx \int_{K,j} \mathcal{L} \, dt dX$$

Discrete Action Sum

$$S_d = \sum_{K,j} L_d^{K,j}$$

Variational Formulation

Discrete Variational Principle:

"The discrete motion renders the Discrete Action Sum stationary with respect to admissible spatial variations of the nodal trajectories"

Example

Choose Discrete Lagrangians

$$\begin{split} L_{d}^{K,j} &= \\ \frac{1}{2m_{a,K}} \left| \boldsymbol{p}_{a,K}^{3/2} \right|^{2} \left(t_{a}^{2} - t_{a}^{1} \right) + \\ \frac{1}{2m_{a,K}} \left| \boldsymbol{p}_{a,K}^{5/2} \right|^{2} \left(t_{a}^{3} - t_{a}^{2} \right) + \\ \frac{1}{2m_{b,K}} \left| \boldsymbol{p}_{b,K}^{3/2} \right|^{2} \left(t_{b}^{2} - t_{b}^{1} \right) - \Phi_{K} \left[\boldsymbol{\varphi}_{h} \left(t_{K}^{2} \right) \right] \left(t_{K}^{2} - t_{K}^{1} \right) \end{split}$$

where

$$oldsymbol{p}_{a,K}^{i+1/2} = m_{a,K} rac{oldsymbol{x}_a^{i+1} - oldsymbol{x}_a^i}{t_a^{i+1} - t_a^i} \ \Phi_K [oldsymbol{arphi}_h] = \int_K W(
abla_0 oldsymbol{arphi}_h) \, dV + ext{f.t.}$$

Conservation Properties

This is the discrete Noether's theorem !

Structural Dynamics Example

Apache AH-64

Helicopter Blades

Rigid Case

Soft Case

Number of Updates

Symplectic Flow

Every variational time integrator is symplectic Continuous case – Free Action Variations Action $\longrightarrow S(q(t)) = \int_0^t L(q, \dot{q}) dt$ Zero over trajectories Free Action wariations $\rightarrow dS(q(t)) \cdot \delta q(t) = \int_0^t \left(\frac{\partial L}{\partial q^i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} \right) \delta q^i dt + \frac{\partial L}{\partial \dot{q}^i} \delta q^i \Big|_0^t$ $\Theta_L \cdot \delta q$ $d^{2}S = 0 \Longrightarrow \underbrace{d\Theta_{L} \cdot \delta q(t)}_{F_{t}^{*}d\Theta_{L} \cdot \delta q(0)} = \underbrace{d\Theta_{L} \cdot \delta q(0)}_{\uparrow} \qquad \underbrace{\delta q(0)}_{f} \qquad \underbrace{f}_{Canonical one-form}$ Discrete case - Free discrete action variations

> Liouville's theorem, good long-time energy behavior

Energy conservation

Local Energy Behavior

A local energy balance equation is obtained as the Euler-Lagrange equation conjugate to the elemental time step.

Local energy conservation and time-adaptivity

Convergence

Convergence of AVIs proved in Lew, Marsden, Ortiz and West (2003), to appear in IJNME (West).

Convergence behavior of AVI

Configurational Forces

- Configurational forces are derivatives of the energy with respect to changes in the configuration of the mechanical system
 - Crack propagation, phase transformations
- Invariance of the elastic energy under rigid translations and rotations of the particles in the reference configuration leads to the path independent J-integral and L-integral respectively

Discrete case

- Configurational forces are conjugate to the positions of the nodes in the mesh
- Resulting algorithms lead to variational mesh adaption (Thoutireddy and Ortiz, 2003)
- Discrete Noether's theorem define discrete path independent J and L integrals

Discrete Conserved J-Integral

Computing what matters

- Get statistical quantities right, such as temperature, even in the face of chaotic dynamics and errors in the computation of individual trajectories
- ODE Example (In LMOW '03, computations by M. West)
 - Compute the temperature, time averaged kinetic energy, of a system of interacting particles in the plane.
 - System of 16 point masses, 4 x 4, in the plane joined by springs. The system starts from the regular configuration with random initial velocities.

ODE Discrete Lagrangian

$$L_d(q_0,q_1,h)\approx \int_0^h L\bigl(q(t),\dot{q}(t)\bigr)\,dt$$

Computing what matters

Average kinetic energy as a function of time and time step size for a 4th order non-symplectic Runge-Kutta and a 1st order variational integrator. (West, to appear in Lew, Ortiz, Marsden and West, 2003)

Computing what matters

Temperature error as a function of computational cost comparison between a 1st(VI1) and 4th(VI4) order variational integrator and a 4th order non-symplectic Runge-Kutta (RK4). The three plots correspond to different averaging time lengths (West, to appear in Lew, Ortiz, Marsden and West, 2003)

Shock Propagation in Solids

- When propagating a shock numerically a "stabilization" method is needed
- Artificial Viscosity is easily combined with existing finite element codes and used with non-structured meshes

- For largely deforming solids the Art Visc should:
 - Work well with high-order elements
 - Work well with
 Lagrangian formulations
 - Be Material Frame Indifferent

Artificial Viscosity Formulation

Physical motivation

- A viscous shock has a length-scale
- Amount of dissipation is independent of the shape of the shock
- Locally add viscosity to make the shock width comparable to the mesh size
- Need to supply the dissipation that the discretization is not capturing (Von Neumann & Ritchmyer, 1950)
- Traditionally, the extra dissipation has been included as an "added" pressure term > volumetric stress !!

Lew, Radovitzky and Ortiz, J. Comp. Aided Mat. Design, 8 (2-3):213-231, 2002.

Artificial Viscosity Formulation

□ For multidimensional computations:

$$h = g(J, |K|, d)$$
 $\Delta u = h \frac{\partial \log J}{\partial t}$

□ Values computed at each Gauss point

Observations

- > The artificial viscosity is computed at the "constitutive" level
- Material Frame Indifferent
- Order-independent formulation

Tantalum model

Shocked Ta - Validation and Verification

	Theoretical	Numerical
p ₂ [GPa]	194.86	194.8±0.1
v ₂ [10 ⁻⁵ m ³ /kg]	3.953	3.953±0.001
T ₂ [K]	5263	5260±30
D[m/s]	5852	5855±30

Jump Conditions

Engineering Model of HMX

Mie-Grüneisen equation of state designed to reproduce well the detonation front velocity (Morano and Shepherd, 1999)

One-step chemistry

Particle velocity

Detonation front with AVI

Integration into the VTF

Thinner-walled tube

Impact problem on a Canister with HMX

Selected References

- □ Marsden and West, Acta Numerica, 10, 2001
- Marsden, Patrick and Shkoller, Comm. Math. Phys., 199, 351-395, 1998.
- Kane, Marsden and Ortiz, J. Math. Phys., 40, 3353-3371, 1999.
- Lew, Marsden, Ortiz and West, Archive for Rational Mechanics & Analysis, (2), 85-146, 2003.
- Lew, Radovitzky and Ortiz, *Journal of Computer-Aided Material Design*, 8, 213-231, 2001.
- Arienti, Morano and Shepherd, GALCIT Report FM99-8, 1999
- □ Reich S., SIAM J. Numer. Anal., 36(5), 1549-1570, 1999.

