## Martensites: from Crystalline Structures to Macroscopic Properties

Johannes Zimmer

California Institute of Technology

Supported by: MURI CIMMS

#### Overview

- 1. What are Martensites?
- 2. Crystalline Level: Symmetry and Material Properties (with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)
- 3. Macroscopic Level
  - Regularization (Capillarity)

(with Patrick Dondl)

Relaxation of the Energy

(with Isaac Chenchiah, Carl Friedrich Kreiner)

• Dynamics

(with Marc Oliver Rieger)



#### 1. What are Martensites?

*Martensitic transformations*: change in crystalline structure First order phase transition, diffusionless



low temperature: tetragonal



3 Martensites: from Crystalline Structures to Macroscopic Properties

#### 1. What are Martensites?



Photo by Chunhwa Chu and Richard James, University of Minnesota

Microscopic level: Formation of microstructure. Why does this happen, and what are the consequences?



4 Martensites: from Crystalline Structures to Macroscopic Properties

#### Overview

- 1. What are Martensites?
- 2. Crystalline Level: Symmetry and Material Properties

(with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)

- 3. Macroscopic Level
  - Regularization (Capillarity)

(with Patrick Dondl)

• Relaxation of the Energy

(with Isaac Chenchiah, Carl Friedrich Kreiner)

• Dynamics

(with Marc Oliver Rieger)



## 2. Crystallographic Level

- **1.** Weak martensitic phase transitions Example: Cubic-tetragonal in shape memory alloys Characteristics:
  - Reversible phase transformation 0
  - Little or no dislocation/twinning in parent phase 0
- 2. Non-weak martensitic phase transitions Example: fcc-bcc in iron (*face-centered cubic* to *body-centered cubic*) Characteristics:
  - Irreversible phase transformation 0
  - Significant dislocation/twinning in parent phase 0

Fundamental question in material science:

#### Why this difference?

We show that group theory can provide an answer.

Crystals will be considered as ideal lattice. Phase changes change symmetry group of the crystal.









Fe-31%Ni-0.23%C

### Facts from Mathematical Crystallography: Symmetry of Bravais Lattices

Three linearly independent vectors  $\{e_1, \dots, e_3\}$  in  $\mathbb{R}^3$  generate the Bravais lattice  $L(e_1, \dots, e_3) := \{v \in \mathbb{R}^3 : v = \sum_j \alpha_j e_j, \alpha \in \mathbb{Z}^3\}$ . Another basis  $\{f_1, \dots, f_3\}$  generates the same lattice iff  $f_j = \sum_k \mu_j^k e_k$  for some  $\mu \in GL(3,\mathbb{Z})$ , where  $GL(3,\mathbb{Z}) := \{\mu \in Mat(3,\mathbb{Z}) : det(\mu) = \pm 1\}$  is the global symmetry group (shears and rotations + inversion).



Deformation gradient is  $F = f_1 \otimes e_1 + f_2 \otimes e_2$ . Energy W = W(F).



7 Martensites: from Crystalline Structures to Macroscopic Properties

## Invariance properties of the elastic energy density

- *Frame invariance*: W(F) = W(QF) for all Q∈ SO(3).
   Consequence: Replace lattice basis by lattice metric C<sub>ii</sub> := <e<sub>i</sub>,e<sub>i</sub>>.
- o Invariance under composition with a change of basis: W(F) = W(F $\mu$ ) for all  $\mu \in GL(3,\mathbb{Z})$  (for cubic reference cell). The action of GL(3, $\mathbb{Z}$ ) on C is C<sup>(e)</sup> =  $\mu^T C^{(f)}\mu$ , where f<sub>i</sub> =  $\mu^j_i e_i$ .

(Generic reference lattices: W(F) = W(QA $\mu$  A<sup>-1</sup>) for all  $\mu \in GL(3,\mathbb{Z})$ ; A depends on reference lattice, A = Id for square/cubic lattice.)

We need to understand orbits in  $GL(3,\mathbb{Z})$ , or restrict to a suitable subgroup.





#### **Restriction to Ericksen-Pitteri Neighborhoods**

Symmetry group GL(3, $\mathbb{Z}$ ) consists of shears and rotations (+ inversion). Rotations determine the *point group* of a lattice (self-mappings of lattice): P(e<sub>1</sub>,...,e<sub>3</sub>) := {Q  $\in$  O(3) : Qe<sub>j</sub> =  $\sum_{k} \mu_{j}^{k} e_{k}$  for some  $\mu \in$  GL(3, $\mathbb{Z}$ )}.

Exclusion of shears is possible if there is a domain invariant under the point group P and not under shears (*Ericksen-Pitteri Neighborhoods*, EPN).

**Theorem (Bhattacharya, Conti, Zanzotto, Z., '02).** The integral matrices representing the point groups of any pair of phases with maximal symmetry, such as fcc and bcc, generate the entire symmetry group  $GL(3,\mathbb{Z})$ .

#### **Physical consequences:**

- 1. Materials with fcc-bcc transition are unable to resist macroscopic shear (fluid-like behavior).
- 2. **Theorem (Fonseca)**. In this case, the relaxed energy is  $W^{qc} = f(\det F)$ .



9 Martensites: from Crystalline Structures to Macroscopic Properties

#### **Consequences for phase transitions**



Recent experimental evidence for successive twinning in during repeated heating-cooling cycle (J. Kornfield et al. for fcc-bcc, Y. Liu et al. for fcc-hcp)



#### **Consequences for phase transitions**

Square to rhombus transformation Product has lesser symmetry Square to triangle transformation Product has different symmetry





No dislocations but phase transformation

Plenty of dislocations (red circles) before phase transformation



#### **Consequences for phase transitions**

0

0

Weak martensitic transformation Product has lesser symmetry Non-weak martensitic transformation Product has different symmetry



# www.

- o Ericksen-Pitteri surgery possible.o
- Reversible transformation.

Symmetry dictates equal energy barriers.

Ericksen-Pitteri surgery not possible. Irreversible transformation.

• Continuum theory has to take full  $GL(3,\mathbb{Z})$  into account.



#### Overview

- 1. What are Martensites?
- 2. Crystalline Level: Symmetry and Material Properties

(with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)

- 3. Macroscopic Level
  - Regularization (Capillarity)

(with Patrick Dondl)

Relaxation of the Energy

(with Isaac Chenchiah, Carl Friedrich Kreiner)

• Dynamics

(with Marc Oliver Rieger)

#### First Continuum Approach: Regularization

Continuum level: Energy still nonconvex (several low-symmetry phases). Consequence: Standard analytical and numerical methods won't work. One way out: regularize. Here: finite elasticity, diffuse interface model:

$$u_{tt} = \text{Div}(\sigma(\nabla u)) + \beta \Delta u_t - \Delta^2 u + f$$

(Balance law for momentum, added capillarity and optional viscosity; u:  $\mathbb{R}^n \times [0,T] \to \mathbb{R}^n$  for n=2,3 is the displacement and  $\sigma(F)$  the stress tensor (derivative of energy W(F)), complemented with I.C. and B.C.)

**Theorem (Dondl, Z., '02).** If W(F) is C<sup>2</sup> and grows quadratically for large strains, then there exists a solution  $u \in H_0^1(\Omega) \cap H^2(\Omega)$ .

Sketch of proof:

- Rewrite as semigroup for  $(u(t), v(t))^{T}$ .
- Use that the operator obtained in this way generates an analytic contraction semigroup for  $\beta > 0$  (unitary group for  $\beta=0$ ).
- Elliptic regularity to get Lipschitz continuity of right-hand side.



#### Numerical simulations I

- Fully 2D computations
- Finite elements: Bogner-Fox-Schmit (C<sup>1</sup>) to resolve higher derivatives
- o Square domain
- o Dynamic problem
- o Parallelization ongoing

#### **Results:**

 Interaction with elastic obstacle (Two-well potential with non-transforming defect)





#### Numerical simulations II

2. Scaling law: Capillarity of order  $\varepsilon$ , domain (0,1)× (0,L).

Naïve dimensional analysis: Scaling of length for phase width is  $E^{\epsilon} \sim C \epsilon^{\frac{1}{2}} L^{\frac{1}{2}}$ .

Kohn/Müller, 1994: Analytic prediction of regime with a scaling relation  $E^{\epsilon} \sim C \epsilon^{\frac{2}{3}} L^{\frac{1}{3}}$ . (refinement at the boundary).

Simulation: 70x70 grid, u simply supported/clamped,  $W(\nabla u) = (u_v^2 - 1)^2 + u_x^2$ 



Strong impact of the regularization on the (dynamics of the) system. **Insight from models without additional regularizing terms?** 



16 Martensites: from Crystalline Structures to Macroscopic Properties

#### Overview

- 1. What are Martensites?
- 2. Crystalline Level: Symmetry and Material Properties (with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)
- 3. Macroscopic Level
  - Regularization (Capillarity)

(with Patrick Dondl)

Relaxation of the Energy

(with Isaac Chenchiah, Carl Friedrich Kreiner)

Dynamics

(with Marc Oliver Rieger)



### Second Continuum Approach: Nonconvex Envelopes of the Energy

Fundamental problem in elasticity: Find deformation u:  $\Omega \subset \mathbb{R}^n \to \mathbb{R}^n$  that minimizes

 $I(u) := \int_{\Omega} W(Du) \mathrm{d}x$ 

subject to suitable boundary conditions. Here, W is the (macroscopic) energy density.

The problem has a solution only if W is *quasiconvex*, that is,

$$\int_{\Omega} W(F) dx \leq W(F + D\phi) dx$$
  
$$\forall F \in \mathsf{Mat}(n, \mathbb{R}), \phi \in C_0^{\infty}(\Omega, \mathbb{R}^n).$$

Fundamental Theorem in relaxation theory: under suitable conditions,

$$\min_{u \in \mathcal{A}} \int_{\Omega} W^{\mathsf{qc}}(Du) \mathrm{d}x = \inf_{u \in \mathcal{A}} \int_{\Omega} W(Du) \mathrm{d}x.$$

No oscillations

No attainment: oscillating minimizing sequences, weak convergence

Numerics: oscillations of scale of discretization

Problem: relaxed (effective) energy W<sup>qc</sup> very difficult to compute. Other areas of application: optimal design and homogenization.



### Second Continuum Approach: Nonconvex Envelopes of the Energy



Multiscale problem:

- o Microstructures on microscopic level
- Averaging on mesoscopic level, represented by relaxed energy (quasiconvex envelope)



Approximations of quasiconvex envelope:

1. Rank-1-convexity (:= convexity along rank-1-lines). It is known that  $W^{c} \le W^{qc} \le W^{rc} \le W$ ; often, one has  $W^{qc} = W^{rc}$ .

Still, rank-one convexity is hard to compute. Consider first another approximation:

2. Separate convexity (:= convexity in direction of base vectors) [Tartar, Ball, Kohn]

Goal: Compute rank-1-convex (separately convex) hull of sets A A<sup>rc</sup> := { $B \in Mat(n,\mathbb{R})$  : f(B) = 0 for every rk-1-convex f with f(A) = 0}.



## Separately Convex Hulls: A Graph-Theoretical Approach

#### Algorithm.

Input: Finite set A in  $\mathbb{R}^n$  (think of A as set of matrices). Output: Separately convex hull of A.

- 1. Define coordinate set  $x_j(A) := \{x_j(A) : a \in A\}$ and grid(A) :=  $x_1(A) \times \cdots \times x_n(A)$ .
- 2. Construct graph:
  - Vertices := grid points
  - Edges:= sep. convex lines between neighboring grid points.
  - Orientation: on edges entering or leaving points in A (pointing away from A).
- 3. Search for loops. Loops + interior + points with connections leading to loops belong to sep. convex hull.
- 4. Update orientation in 2., enlarged by points obtained in 3.

## Theorem (Chenchiah, Kreiner, Z. '02). This algorithm computes the separately convex hull.





#### Towards Rank-1-Convex Hulls

Previous work: Dolzmann 1999, Aubry, Fago, Ortiz 2002 General strategy:

- 1. Guess direction in which you want to convexify (optional).
- 2. Discretize space and rank-1-directions. Apply successive convexifications.

Advantage: Works very well if one has information about micostructure.

Drawbacks:

- 1. High complexity, computationally expensive.
- 2. Quality of the approximation depends on orientation of the grid.
- 3. Often it is hard to find starting point; algorithm might fail if crucial points are missing.

Our approach: make explicit use of mathematical structure.

One approach, ongoing:

- Rank-1 lines are algebraic objects (determinantal varieties), as are their intersections.
- Use tools from computational algebraic geometry.
- 21 Martensites: from Crystalline Structures to Macroscopic Properties





#### **Towards Rank-1-Convex Hulls**

Idea: Use structure of rank-1-convexity. Here: Krein-Milman type theorems.

**Definition.** A point  $e \in A$  is *rank-1-extreme* if it is not in the interior of a rank-1 line in A.

**Lemma (Chenchiah, Kreiner, Z. '02).** Suppose  $A \in \mathbb{R}^d$  is compact. Then the extreme points of the rank-1-convex hull of A are in A.

Current work, inspired by work by Matousek and Plechac on separate convexity:

- Start with grid comprising A.
- Compute rank-1-extreme grid points. Discard if not in A.
- Consider intersections of (discretized) rank-1-cones emanating from extreme points.
- Examine extensibility of rank-1-convexity from cone to entire space (might require complicated interpolation).



#### Overview

- 1. What are Martensites?
- 2. Crystalline Level: Symmetry and Material Properties (with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)
- 3. Macroscopic Level
  - Regularization (Capillarity)

(with Patrick Dondl)

Relaxation of the Energy

(with Isaac Chenchiah, Carl Friedrich Kreiner)

Dynamics

(with Marc Oliver Rieger)

#### Third Continuum Approach: Dynamics

1. Regularized dynamics: e.g., purely thermoviscous system (no capillarity)

$$u_{tt} = \operatorname{Div} (\sigma(\nabla u, \theta) + \nabla u_t) \quad \text{in } \Omega \times ]0, T[,$$

$$\theta_t = \Delta \theta + \theta \sigma_{\theta}(\nabla u, \theta) \times \nabla u_t + \nabla u_t \times \nabla u_t \quad \text{in } \Omega \times ]0, T[.$$

Three-dimensional thermoviscoelastic bar with constant density, nonconvex Helmholtz free energy density.

(Balance laws of momentum and energy; u is the displacement and  $\theta$  the temperature)

Difficulties:

- Several space dimensions (very low regularity of the strain).
- Viscosity allows to deal with nonconvexity of the energy, but introduces strong nonlinearity in heat equation.

**Theorem (Z., '00).** Under suitable growth assumption on the energy, there exists a weak renormalized solution.



### Third Continuum Approach: Dynamics

2. Dynamics without regularization:

Dynamics of a one-dimensional thermoelastic bar with constant density, nonconvex Helmholtz free energy density.

Balance laws of momentum and energy:

$$u_{tt} - (\phi(u_x) + \alpha_2 \theta u_x)_x = f,$$
  
$$\alpha_1 \theta_t - \kappa \theta_{xx} - \alpha_2 \theta u_x u_{xt} = g.$$

Here u:  $I \times [0,T] \rightarrow \mathbb{R}$  is the displacement,  $\theta$ :  $I \times [0,T] \rightarrow \mathbb{R}$  the absolute temperature

Mathematical difficulties arise from nonconvexity of the potential and the nonlinearity of the equations.



#### Young measures I

The concept of (gradient) Young measures:



A Young measure v gives a "one-point-statistics" for  $\{\nabla u_k\}_k$ .

In the example: 
$$\nu = \frac{1}{2}(\delta_{(-1,0)} + \delta_{(+1,0)}).$$

50% probability each that  $\nabla u_k(x)=(-1,0)$  or (+1,0).

Intuitively: Young measure solutions to nonconvex PDEs can be defined by replacing the variable with oscillations by a Young measure.



#### Young measures II

**Definition:** A Young measure is a family of probability measures  $\{v_x\}_{x\in\Omega}$  on  $\mathbb{R}^N$  associated with a sequence of measurable functions  $\{f_j\}_j$  with  $f_j$ :  $\Omega \subset \mathbb{R}^n \to \mathbb{R}^N$  such that for any continuous function  $\phi: \mathbb{R}^N \to \mathbb{R}$  the function

$$\overline{\phi}(x) = \int_{\mathbb{R}^N} \phi(F) \, d\nu_x(F) =: \langle \nu_x, \phi \rangle$$

is measurable, and such that for every weakly-converging sequence  $\{f_i\}_i$  we have

$$(\phi(f_j))_j \rightharpoonup \overline{\phi}.$$

A gradient Young measure is a Young measure generated by a sequence  $f_i = \nabla u_i$ , where  $u_i \in W^{1,2}(\Omega)$ .



Young Measure Solution for Thermoelasticity

**Definition:** For thermoelasticity, we define a *Young measure solution* in the following way:

Let T > 0, let  $u \in W^{1,\infty}(0,T), L^2(I)) \cap L^{\infty}((0,T), W^{1,6}(I)),$  $\theta \in W^{1,\infty}((0,T), L^1(I)) \cap L^2(0,T), H^1(I)).$ 

and let v be a gradient Young measure with  $\langle Id, v \rangle = u_x$ a.e., then  $(u,v,\theta)$  is a Young measure solution if for all  $\xi, \zeta \in H_0^{-1}((0,T) \times I)$ :

$$\int_0^T \int_I \left( u_t \xi_t - u_x \theta \xi_x - \langle \phi, \nu \rangle \xi_x \right) \, \mathrm{d}x \, \mathrm{d}t = -\int_0^T \int_I f \xi \, \mathrm{d}x \, \mathrm{d}t,$$
$$\int_0^T \int_I \left( \ln \theta \, \zeta_t + \theta_{xx} \frac{\zeta}{\theta} - \frac{1}{2} \langle |\cdot|^2, \nu \rangle \zeta_t \right) \, \mathrm{d}x \, \mathrm{d}t = -\int_0^T \int_I \frac{g}{\theta} \zeta \, \mathrm{d}x \, \mathrm{d}t.$$



28 Martensites: from Crystalline Structures to Macroscopic Properties

#### **Approximate Solutions**

Consider a sequence of approximating systems:

$$u_{tt} - (u_x \theta - \phi(u_x))_x - \epsilon u_{xxxx} = f,$$
  
$$\theta_t - \theta_{xx} + \theta u_x u_{xt} = g.$$

(Regularization as in First Continuum Approach!)

Assume bound  $\theta(x,t) > \theta_{min} > 0$  for all  $x \in I$ ,  $t \in [0,T]$  uniform in  $\varepsilon$ .

(Exclude absolute temperatures close to zero, where classical equations of thermoelasticity do not hold).



#### **Global Existence for Thermoelasticity**

**Theorem (Rieger, Z. '02).** Suppose  $u_0, u_1, \theta_0 \in H^1(I)$  and  $f,g \in L^2(L^2(I))$ . Then there exists a Young measure solution  $(u,v,\theta)$  to (1)-(2), provided the a priori assumption on the temperature bounds holds and the sequence  $\theta^{\epsilon}$  converges strongly in t. The solution is global in time, and the initial data can be arbitrarily large.

#### Sketch of proof:

- 1. Prove a priori bounds for approximate systems, independent of epsilon.
- 2. Passage to the limit.
- 3. Show limiting objects give Young measure solution.

Main difficulty: no control of higher order derivatives.



#### Some Details of the Proof I

1. Energy estimate:  

$$\max_{t \in [0,T]} \int_{I} \left[ (u_{t}^{\epsilon})^{2} + \Phi(u_{x}^{\epsilon}) + \theta^{\epsilon} + \epsilon (u_{xx}^{\epsilon})^{2} \right] \mathrm{d}x$$

$$+ \int_{0}^{t} \int_{I} |\theta_{x}^{\epsilon}|^{2} \mathrm{d}x \, \mathrm{d}s \leq C.$$

This implies convergence of

$$u^{\epsilon} \to u \text{ in } L^{\infty}(W^{1,6}(I)) \cap W^{1,\infty}(L^{2}(I)),$$
  
$$\theta^{\epsilon} \to \theta \text{ in } L^{2}(H^{1}(I)) \cap L^{\infty}(L^{1}(I)),$$
  
$$\theta^{\epsilon}_{xx} \to \theta_{xx} \text{ in } L^{2}(H^{-1}(I)).$$

Additionally,  $u_{x}^{\epsilon}$  generates gradient Young measure v.



#### Some Details of the Proof II

 $u^{\epsilon} \rightharpoonup u \text{ in } L^{\infty}(W^{1,6}(I)) \cap W^{1,\infty}(L^{2}(I)),$   $u_{x}^{\epsilon} \text{ generates a gradient Young measure } \nu,$   $\theta^{\epsilon} \rightharpoonup \theta \text{ in } L^{2}(H^{1}(I)) \cap L^{\infty}(L^{1}(I)),$  $\theta_{xx}^{\epsilon} \rightharpoonup \theta_{xx} \text{ in } L^{2}(H^{-1}(I)).$ 

- 2. Passage to the limit:
  - o Convergence of u<sup>ε</sup>: sufficient regularity
  - Convergence of  $\theta^{\varepsilon} u_{x}^{\varepsilon}$ : Div-Curl-Lemma for ( $\theta^{\varepsilon}$ ,0) and ( $u_{x}^{\varepsilon}$ ,  $u_{t}^{\varepsilon}$ ).
  - Convergence of  $\ln(\theta^{\epsilon})_t$  and  $\theta^{\epsilon}_x/\theta^{\epsilon}$  needs additional assumption (Possible improvement: parabolic regularity)

$$\int_0^T \int_I \left( u_t \xi_t - u_x \theta \xi_x - \langle \phi, \nu \rangle \xi_x \right) \, \mathrm{d}x \, \mathrm{d}t = -\int_0^T \int_I f \xi \, \mathrm{d}x \, \mathrm{d}t,$$
$$\int_0^T \int_I \left( \ln \theta \, \zeta_t + \theta_{xx} \frac{\zeta}{\theta} - \frac{1}{2} \langle |\cdot|^2, \nu \rangle \zeta_t \right) \, \mathrm{d}x \, \mathrm{d}t = -\int_0^T \int_I \frac{g}{\theta} \zeta \, \mathrm{d}x \, \mathrm{d}t.$$



32 Martensites: from Crystalline Structures to Macroscopic Properties

#### Conclusions

- 1. Crystalline Level: Symmetry dictates energy landscape. Difference between weak and non-weak transformations: Phase transitions with two maximal subgroups of  $GL(3,\mathbb{Z})$ 
  - o cannot be described locally by Ericksen-Pitteri neighborhood,
  - o cannot resist shear (fluid-like).
- 2. Continuum level:
  - Analysis and numerical simulation for regularized system with capillarity gives some insight, but regularization heavily influences behavior.
  - Alternative approach: compute effective energy (=quasiconvex envelope). Approximate by rank-1 convexity and separate convexity.
  - Evolution of microstructures: Analysis in terms of Young measures.
- 3. Future work: Passage from crystalline to continuum level:
  - Traveling wave solution in bistable systems.

