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Overview

1. What are Martensites?
2. Crystalline Level: Symmetry and Material Properties

(with Kaushik Bhattacharya, Sergio Conti, Giovanni Zanzotto)

3. Macroscopic Level
• Regularization (Capillarity)

(with Patrick Dondl)

• Relaxation of the Energy
(with Isaac Chenchiah, Carl Friedrich Kreiner)

• Dynamics
(with Marc Oliver Rieger)
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1. What are Martensites?

Martensitic transformations: change in crystalline structure
First order phase transition, diffusionless 

high temperature:
cubic

low temperature:
tetragonal
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1. What are Martensites?

Photo  by Chunhwa Chu and Richard James, 
University of Minnesota

Microscopic level:  Formation of microstructure.
Why does this happen, and what are the consequences?
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2. Crystallographic Level
1. Weak martensitic phase transitions

Example: Cubic-tetragonal in shape memory alloys
Characteristics:
o Reversible phase transformation
o Little or no dislocation/twinning in parent phase

2. Non-weak martensitic phase transitions
Example: fcc-bcc in iron (face-centered cubic to body-centered cubic)
Characteristics:
o Irreversible phase transformation
o Significant dislocation/twinning in parent phase 

Fundamental question in material science:
Why this difference?
We show that group theory can provide an answer.

Crystals will be considered as ideal lattice. 
Phase changes change symmetry group of the crystal.

Fe-31%Ni-0.23%C

Fe-29%Ni-0.26%C
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Facts from Mathematical Crystallography: 
Symmetry of Bravais Lattices

Three linearly independent vectors {e1,L,e3} in R3 generate the Bravais lattice 
L(e1,L,e3) := {v ∈ R3 : v = ∑j αjej, α ∈ Z3}.
Another basis {f1,L,f3} generates
the same lattice iff fj = ∑k µj

k ek for some µ ∈ GL(3,Z),
where GL(3,Z) := {µ ∈ Mat(3,Z) : det(µ) = ± 1}
is the global symmetry group (shears and rotations + inversion). 

Square reference 
configuration: 
e1=(1,0), e2=(0,1).

Deformation to f1, f2.
Assume Cauchy-Born
(still a simple lattice).

Deformation gradient is F = f1⊗ e1 + f2⊗ e2.
Energy W = W(F).
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Invariance properties of the
elastic energy density

o Frame invariance: W(F) = W(QF) for all Q∈ SO(3).
Consequence: Replace lattice basis by lattice metric Cij := <ei,ej>.

o Invariance under composition with a change of basis:
W(F) = W(Fµ) for all µ ∈ GL(3,Z) (for cubic reference cell).
The action of GL(3,Z) on C is C(e) = µTC(f)µ, where fi = µj

i ej. 

(Generic reference lattices: W(F) = W(QAµ A-1) for all µ ∈ GL(3,Z);
A depends on reference lattice, A = Id for square/cubic lattice.)

We need to understand orbits in GL(3,Z), or restrict to a suitable subgroup.

Square reference 
configuration: 
e1=(1,0), e2=(0,1).

Deformation to
f1, f2.
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Restriction to Ericksen-Pitteri Neighborhoods
Symmetry group GL(3,Z) consists of shears and rotations (+ inversion).
Rotations determine the point group of a lattice (self-mappings of lattice):
P(e1,L,e3) := {Q ∈ O(3) : Qej = ∑k µj

k ek for some µ ∈ GL(3,Z)}.

Exclusion of shears is possible if there 
is a domain invariant under the point group P
and not under shears (Ericksen-Pitteri Neighborhoods, EPN).

Theorem (Bhattacharya, Conti, Zanzotto, Z., ’02). The integral matrices
representing the point groups of any pair of phases with maximal symmetry,
such as fcc and bcc, generate the entire symmetry group GL(3,Z).

Physical consequences:
1. Materials with fcc-bcc transition are unable to resist macroscopic shear

(fluid-like behavior).
2. Theorem (Fonseca). In this case, the relaxed energy  is Wqc = f(det F).
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Consequences for phase transitions
Non-weak martensitic transformation
Product has different symmetry

Weak martensitic transformation
Product has lesser symmetry

Recent experimental evidence for successive twinning in during repeated 
heating-cooling cycle (J. Kornfield et al. for fcc-bcc, Y. Liu et al. for fcc-hcp)
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Consequences for phase transitions
Square to rhombus transformation
Product has lesser symmetry

Square to triangle transformation
Product has different symmetry

Plenty of dislocations (red circles) 
before phase transformation

No dislocations but phase transformation 
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Consequences for phase transitions
Weak martensitic transformation
Product has lesser symmetry

Non-weak martensitic transformation
Product has different symmetry

o Symmetry dictates equal energy 
barriers.

o Ericksen-Pitteri surgery not possible.
o Irreversible transformation.
o Continuum theory has to take full 

GL(3,Z) into account.

o Ericksen-Pitteri surgery possible.
o Reversible transformation. 
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First Continuum Approach: Regularization

Continuum level: Energy still nonconvex (several low-symmetry phases). 
Consequence: Standard analytical and numerical methods won’t work.
One way out: regularize. Here: finite elasticity, diffuse interface model: 

(Balance law for momentum, added capillarity and optional viscosity;
u: Rn×[0,T] → Rn for n=2,3 is the displacement and σ(F) the stress
tensor (derivative of energy W(F)), complemented with I.C. and B.C.)

Theorem (Dondl, Z., ’02). If W(F) is C2 and grows quadratically for large
strains, then there exists a solution u ∈ H1

0(Ω)∩ H2(Ω).

Sketch of proof: 
o Rewrite as semigroup for (u(t), v(t))T.
o Use that the operator obtained in this way generates an analytic

contraction semigroup for β > 0 (unitary group for β=0).
o Elliptic regularity to get Lipschitz continuity of right-hand side.



Martensites: from Crystalline Structures to Macroscopic Properties                Johannes Zimmer15

Numerical simulations I

o Fully 2D computations
o Finite elements: Bogner-Fox-Schmit (C1) to resolve higher 

derivatives
o Square domain
o Dynamic problem
o Parallelization ongoing

Results:
1. Interaction with elastic obstacle

(Two-well potential with 
non-transforming defect)
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Numerical simulations II
2. Scaling law: Capillarity of order ε, domain (0,1)× (0,L).

Naïve dimensional analysis: Scaling of length for phase width is

Kohn/Müller, 1994: Analytic prediction of regime with a scaling relation
(refinement at the boundary).

Simulation: 70x70 grid, u simply supported/clamped, W(∇u) = (uy
2-1)2 + ux

2

Strong impact of the regularization on the (dynamics of the) system.
Insight from models without additional regularizing terms?

Energy plot: total, potential, 
Capillarity, kinetic.
ε = 0.5

ε=0.5 ε=0.5
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Second Continuum Approach: 
Nonconvex Envelopes of the Energy

Fundamental problem in elasticity: 
Find deformation u: Ω⊂ Rn → Rn that minimizes

subject to suitable boundary conditions. Here, W is the (macroscopic) energy 
density.

The problem has a solution only if W is quasiconvex, that is, 

Fundamental Theorem in relaxation theory: under suitable conditions, 

No oscillations No attainment: oscillating minimizing sequences, weak convergence

Numerics: oscillations of scale of discretization

Problem: relaxed (effective) energy Wqc very difficult to compute.
Other areas of application: optimal design and homogenization.
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Second Continuum Approach: 
Nonconvex Envelopes of the Energy

Multiscale problem:
o Microstructures on microscopic level
o Averaging on mesoscopic level, 

represented by relaxed energy
(quasiconvex envelope)

Approximations of quasiconvex envelope:
1. Rank-1-convexity (:= convexity along rank-1-lines). It is known that 

Wc · Wqc · Wrc · W; often, one has Wqc = Wrc.

Still, rank-one convexity is hard to compute. Consider first another approximation:

2. Separate convexity (:= convexity in direction of base vectors) [Tartar, Ball,  
Kohn]

Goal: Compute rank-1-convex (separately convex) hull of sets A
Arc := {B ∈ Mat(n,R) : f(B) = 0  for every rk-1-convex f with f(A) = 0}.

Strain

Relaxed energy
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Separately Convex Hulls:
A Graph-Theoretical Approach 

Algorithm.
Input: Finite set A in Rn (think of A as set of matrices).
Output: Separately convex hull of A.

1. Define coordinate set xj(A) := {xj(A) : a ∈ A}
and grid(A) := x1(A)×L xn(A).

2. Construct graph: 
o Vertices := grid points
o Edges:= sep. convex lines between 

neighboring grid points.
o Orientation: on edges entering or leaving 

points in A (pointing away from A).
3. Search for loops. Loops + interior + points with 

connections leading to loops belong to sep. 
convex hull. 

4. Update orientation in 2., enlarged by points 
obtained in 3.

Theorem (Chenchiah, Kreiner, Z. ’02). This algorithm computes the 
separately convex hull.
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Towards Rank-1-Convex Hulls 
Previous work: Dolzmann 1999,  Aubry, Fago, Ortiz 2002
General strategy:
1. Guess direction in which you want to convexify (optional).
2. Discretize space and rank-1-directions. Apply successive convexifications.

Advantage: Works very well if one has information about micostructure.

Drawbacks:
1. High complexity, computationally expensive.
2. Quality of the approximation depends on orientation of the grid.
3. Often it is hard to find starting point; algorithm might fail if crucial points are 

missing.

Our approach: make explicit use of 
mathematical structure.

One approach, ongoing:
o Rank-1 lines are algebraic objects (determinantal

varieties), as are their intersections.
o Use tools from computational algebraic geometry.
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Towards Rank-1-Convex Hulls 
Idea: Use structure of rank-1-convexity. Here: Krein-Milman type theorems.

Definition. A point e ∈ A is rank-1-extreme if it is not in the interior of a rank-1
line in A. 

Lemma (Chenchiah, Kreiner, Z. ’02). Suppose A ∈ Rd is compact. Then the
extreme points of the rank-1-convex hull of A are in A.

Current work, inspired by work by Matousek and Plechac on separate convexity:

o Start with grid comprising A.
o Compute rank-1-extreme grid points. Discard if not in A.
o Consider intersections of (discretized) rank-1-cones emanating from extreme 

points.
o Examine extensibility of rank-1-convexity from cone to entire space

(might require complicated interpolation).
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Third Continuum Approach: Dynamics
1. Regularized dynamics: e.g., purely thermoviscous system (no capillarity)

Three-dimensional thermoviscoelastic bar with constant density, nonconvex
Helmholtz free energy density.

(Balance laws of momentum and energy; u is the displacement and θ the
temperature)

Difficulties:
o Several space dimensions (very low regularity of the strain).
o Viscosity allows to deal with nonconvexity of the energy,

but introduces strong nonlinearity in heat equation.

Theorem (Z., ’00). Under suitable growth assumption on the energy, there exists
a weak renormalized solution.
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Third Continuum Approach: Dynamics

2. Dynamics without regularization:

Dynamics of a one-dimensional thermoelastic bar with constant density,
nonconvex Helmholtz free energy density.

Balance laws of momentum and energy:

Here u: I×[0,T] →R is the displacement, 
θ: I×[0,T]→R the absolute temperature

Mathematical difficulties arise from nonconvexity of the potential and the
nonlinearity of the equations.
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Young measures I
The concept of (gradient) Young measures:

A Young measure ν gives a “one-point-statistics” for {∇ uk}k.

In the example:

50% probability each that ∇ uk(x)=(-1,0) or (+1,0).

Intuitively: Young measure solutions to nonconvex PDEs can be defined by 
replacing the variable with oscillations by a Young measure.
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Young measures II

Definition: A Young measure is a family of probability 
measures {νx}x∈Ω on RN associated with a sequence of 
measurable functions {fj}j with fj: Ω⊂ Rn → RN such that
for any continuous function φ:RN→ R the function

is measurable, and such that for every weakly-converging 
sequence {fj}j we have

A gradient Young measure is a Young measure generated 
by a sequence fj=∇ uj, where uj∈ W1,2(Ω).
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Young Measure Solution for Thermoelasticity

Definition: For thermoelasticity, we define a Young 
measure solution in the following way:

Let T > 0, let 
u ∈ W1,∞ (0,T),L2(I)) ∩ L∞((0,T),W1,6(I)), 
θ ∈ W1,∞((0,T),L1(I)) ∩ L2(0,T),H1(I)).     

and let ν be a gradient Young measure with <Id,ν> =ux
a.e., then (u,ν,θ) is a Young measure solution if for all ξ ,ζ∈
H0

1((0,T)× I):
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Approximate Solutions

Consider a sequence of approximating systems:

(Regularization as in First Continuum Approach!)

Assume bound θ(x,t) > θmin>0 for all x ∈ I, t∈[0,T] uniform 
in ε.

(Exclude absolute temperatures close to zero, where 
classical equations of thermoelasticity do not hold).
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Global Existence for Thermoelasticity
Theorem (Rieger, Z. ’02). Suppose u0,u1,θ0∈ H1(I) and f,g∈ L2(L2(I)).
Then there exists a Young measure solution (u,ν,θ) to (1)-(2),
provided the a priori assumption on the temperature bounds holds
and the sequence θε converges strongly in t. 
The solution is global in time, and the initial data can be arbitrarily
large.

Sketch of proof:Sketch of proof:
1. Prove a priori bounds for approximate systems, independent of 

epsilon.
2. Passage to the limit.
3. Show limiting objects give Young measure solution.

Main difficulty: no control of higher order derivatives.  
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Some Details of the Proof I
1. Energy estimate:

This implies convergence of

Additionally, uε
x generates gradient Young measure ν.
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Some Details of the Proof II

2. Passage to the limit:
o Convergence of uε: sufficient regularity
o Convergence of θε uε

x: Div-Curl-Lemma for (θε,0) and (uε
x, uε

t).
o Convergence of ln(θε)t and θε

x/θε needs additional assumption
(Possible improvement: parabolic regularity)
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Conclusions
1. Crystalline Level: Symmetry dictates energy landscape.

Difference between weak and non-weak transformations: 
Phase transitions with two maximal subgroups of GL(3,Z) 
o cannot be described locally by Ericksen-Pitteri neighborhood,
o cannot resist shear (fluid-like). 

2. Continuum level:
o Analysis and numerical simulation for regularized system

with capillarity gives some insight, but regularization heavily 
influences behavior.

o Alternative approach: compute effective energy 
(=quasiconvex envelope). Approximate by rank-1 convexity 
and separate convexity.

o Evolution of microstructures: Analysis in terms of Young 
measures.

3. Future work: Passage from crystalline to continuum level:
o Traveling wave solution in bistable systems.
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