Background

Interdisciplinary effort:
Towards Discrete Exterior Calculus » Computer Science/Computer Graphics

+ Applied Mathematics

Mathieu Desbrun Anil Hirani Melvin Leok  Jerry Marsden Common denominator:
USC/Caltech Applied Geometry
reliable « ompuiailons on discrel Feomelr)

e\

Overview

How to compute continuous quantities (e.g.,
curvatures) on a discrete surface?

Motivation

Many applications require quantities from
differential geometry, but on triangle meshes

FOWE COMLA use polynomial reconsiricion

» Leads to oscillations (more so for tregular sampling)
w Inconsstent view of the surface

Smoothing, Simphfication, Remes

1€ MEsn 15 offen the only Teliable  data, herelong

We proposed discrete operators satisfying discrete
versions of continuous properties, using:

» Averaging Voronoi cells over the presh itvelf

» Mixed Finite Element / Finite Volume method

5till no consensus on how to
= compute basic surface propertie:
] -‘\ (normals, curvatures,...)
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Some Previous Work 1

Global geometric quantities:

Some Previous Work 11

Local geometric quantities:

0 Normal = Weighted Average of Face Normals

0 Discrete Analogies of Continuous Quantities
« Stemner polynomial, Minkowski's Quenmassintegrale

g WEIgENIE [ TharmerdWarthrich "98]
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SR P, ; S ssume surface locally approximates a sphere [Max 99
Hadwiger, Wintgen, Zihle, Fu, Morvan

Integrals of geometric gquanhties; area, curvatures

0 Harmonic map, Minimal surfaces

Inkall & e

o Curvature Tensor Estimation

1al and tensor estunaf

Defined as critical pomnt of Dirichlet energy

Few Relevant Results

Computing mean, Gaussian, and principal curvatures




Exterior Calculus Why “Discrete” Exterior Calculus

Foundation of calculus on smooth manifolds Foundation for discrete computations!

+ Historically, purpose was to extend div, curl, grad » basic discrete operators
+ Basis of differential and integral computation onsistently derived
» easy to compute, given a discrete mesh

» Hodge decomposition, modern diff. geometry
» A hierarchy of basic operators are defined ~ Other computations easy using basic ops
W ‘-I. .. -"‘\-.-E*. ﬂn‘:\'. f-:- 1] |5X A dﬁ T I"_:bd. '\-'I' dfu_....
. See [Abraham, Marsden, Ratiu] , ch. 6-7 » Hopefully, will provide the “natural” discrete
computations we want:

» Convergence, consistent results, etc. ..
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Previous Work Let’s get right to it

Driven by need for improved numerics We will work on discrete manifolds
- Mimetic Differencing: [Shashkov,Hyman) » no notion of differential surface
» 2D — “easy™ case
#» 3D — very useful in graphics and sumulation
» any finite dimension

w Importance of adjoints, but mostly for 2D and quads
» Lots of work for EMF (Maxwell’s equations)

w Ddscretization of fields and their equations

» Importance of “coherence” of derivation Basic assumptiut‘m:

» Few work on pure DEC: + arbitrary simplificial complex (called primal mesh)

w [Hiptmair, Dezin, Hydon] » we will assume a “nice” triangulation for now
# Chains/cochaing for simplices/forms, notion of dual » o obluse angle, for instance
» PWL interpolation of forms over simplices

?;- %> Discrete Mechanics [Lew, Marsden, Ortiz, West] & Y

Notion of Dual Mesh I1

We use the circumeentric dual
In 3D
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Now, What is a Discrete Form?

Notion of Dual Mesh I

We use the circumecentric dual
In 2D

A prnimal simplex corresponds a dual vertex

A primal edge corresponds to a dual edge

- A primal vertex corresponds to a dual cell

Notion of Dual Mesh II1

In general:

2 Chain = set of cells (primal or dual)
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a primal o* corresponds to a dual g™* - v i ;"'_____.-
{and vice-versa) w - : e
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PR X P Lo 5 i 2 Form: cochain (maps a number to a chain)

(Yes, it looks like a Hodge star) i : ;
0 Pairing: integration

4k n-k j
3 o » Forms you heard about: dx, dy, dz, dA, dV etc
kG - ghk « @ k-form needs a k-simplex to pair up with
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Computing Forms on Meshes

Using linearity of integration:

Im =Z:[m

split up k-chains into a set of simplicial k-chaing
a form 15 defined by its value on each simplex

no need for pointwise defimtion

=
¥,

Hodge Operator

Important operator to “dualize™ a form:

primal k-forms turn into dual (n-k)-forms
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» well-known idea

» new evaluation, though. ..

same gverages — requires an induced metric

E . % > forms can now be seen as living on central points

Wedge Product 1

Purely combinatorial definition of A:

ata g =
B+
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On a triangle:

Wedge Product 111

Properties respected:

- Anti-commutativity (simple)
» Associativity (unsure, maybe not true &)

» Leibniz rule (fairly simple)

» No need for interpolated forms
» no baryeentric coordinates involved
+» Could be used as the “real” definition of the
) Hodge star
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Exterior Derivative

We deal with d by assuming Stokes’ theorem:
_[ dao = J @
o dar .

= simple “rewriting” rule

» d and & are dual with respect to the natural pairing
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~ careful orientations are needed, obviously

A Hands-on Derivation
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Laplace-Beltrami as defined in [DMSB99]
using variational approach...

Wedge Product 11

Purely combinatorial definition of A:

ata g =
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» Comes in two flavors:
» Primal x Primal < Primal
» Dual x Dual & Dual

» Try it on a triangle for dx ~ dy if you want!

& - % > Reminiscent of Crofton’s formula. ..

Vector Fields

We need to map vectors and 1-forms,
and vice-versa
» & vector field into a 1-form
» # 1-form into a vector field

Natural definition of a vector field:
Average vector values over cells
» lives at dual O-simplices (primal vector fields)

» or at primal O-simplices (dual vector fields)
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Vector Fields
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Divergence and Curl

Once b and # is defined, we have:
divV =+d+ V"
curl V =(-dv*)" (in3D..)
Interesting connection:
Straightforward variational approach [Polthier]
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Interpretation of Div and Curl

Divergence: 4%
“Flux" through the Voronoi cell o :

Curl: \
“Circulation™ on Voronoi boundanes #_,) ",
A2

Implications: LN

» b primal 0 % dual 1, or dual 0 9 primal 1

E‘ > # dual 1 = primal 0, or primal 1 % dual 0

Lie Derivative

Just use Cartan magic formula:

Ly =iydo +diyw

- still not tested
+ but should satisfy all continuous properties
» should also lead to advection on discrete meshes

» flows are next

A Word About Numerics

Mesh quality:

» clearly, Delaunay criterion makes numerics better
Otherwise, there are some negative weightings
But global integrals remain fime!
So only local degeneracy happens

» linear accuracy if mesh is of poor quality

# super-accuracy if symmetries

Full-blown accuracy study needed
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Contraction of Form

Home-brewed formula:
iy@ = (=1)*"F ey AX")

+ dualize the form, add a “slot” by wedging it,
then dualize it back: a slot is taken. ..

» no need for extra operator

+ only primal/dual or dual/primal

Recap

Discrete Exterior Calculus
» Averaged integrals — seems to be *the* key
» Purely combinatonal, no interpolation needed
» Subtle interplay between primal and dual
» Simple “rewnting” rules » mathematica code?

» Seems like all basic ops carry over just fine

Almost complete
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What’s next

+ Differential geometry
» Defining n, shape operator, etc. ..
+ Multigrid methods
» Remeshing cochains, mapping between manifolds
» Discrete Connections
+ Piecewise linear shells (w/ Peter and Eitan)
» Revisiting old techniques (primal/dual)?
» Staggered grids n fluid simulation

» Leapfrog integration
]

&> Develop a discrete ‘know-how’...




