Towards Discrete Exterior Calculus

Mathieu Desbrun

Melvin Leok Jerry Marsden

USC/Caltech

Anil Hirani

Motivation

Many applications require quantities from differential geometry, but on triangle meshes

- Smoothing, Simplification, Remeshing, Parameterization, Simulation,...
- Subdivision surfaces
- » "Digital Geometry Processing"
 - » Schroder, Weldens, Zorin, Desbrun

Still no consensus on how to compute basic surface properties (normals, curvatures,...)

Some Previous Work I

Global geometric quantities:

- Discrete Analogies of Continuous Quantities
- » Steiner polynomial, Minkowski's Quermassintegrale » Weyl, Hadwiger, Wintgen, Zähle, Fu, Morvan...
- > Integrals of geometric quantities: area, curvatures
- □ Harmonic map, Minimal surfaces...
- > Pinkall & Polthier
- » Defined as critical point of Dirichlet energy

6

Few Relevant Results

Computing mean, Gaussian, and principal curvatures

Background

Interdisciplinary effort:

- > Computer Science/Computer Graphics
- Applied Mathematics

Common denominator:

Applied Geometry

for reliable computations on discrete geometry

Overview

How to compute continuous quantities (e.g., curvatures) on a discrete surface?

- > We could use polynomial reconstruction
 - » Leads to oscillations (more so for irregular sampling)
 - » Inconsistent view of the surface
- > The mesh is often the only "reliable" data, therefore ...

We proposed discrete operators satisfying discrete versions of continuous properties, using:

- > Averaging Voronoi cells over the mesh itself
- > Mixed Finite Element / Finite Volume method

> [Meyer02]

Some Previous Work II

Local geometric quantities:

Normal = Weighted Average of Face Normals

- > Use incident angles as weights [Thurmer&Wurthrich '98]
- > Assume surface locally approximates a sphere [Max '99]

Gaussian Curvature

6

> Alekhsandrov, Polthier & Schmies, etc ...

Curvature Tensor Estimation

- > Weighted normal and tensor estimation [Taubin '95]
- > Least squares paraboloid fitting [Hamann '93, Clarenz et al. '00]

Exterior Calculus

Foundation of calculus on smooth manifolds

- » Historically, purpose was to extend div, curl, grad
- » Basis of differential and integral computation » Hodge decomposition, modern diff. geometry...
- » A hierarchy of basic operators are defined:

» d, *, \land , b, #, i_X , \mathcal{L}_X

» See [Abraham, Marsden, Ratiu], ch. 6-7

5

Previous Work

Driven by need for improved numerics

- Mimetic Differencing: [Shashkov,Hyman]
 » Importance of adjoints, but mostly for 2D and quads
- > Lots of work for EMF (Maxwell's equations)
 - » Discretization of fields and their equations
 - » Importance of "coherence" of derivation
- Few work on pure DEC:
 - » [Hiptmair; Dezin; Hydon]
 - » Chains/cochains for simplices/forms, notion of dual
 - » PWL interpolation of forms over simplices
- Discrete Mechanics [Lew, Marsden, Ortiz, West]

Notion of Dual Mesh I

We use the circumcentric dual

In 2D:

- > A primal simplex corresponds a dual vertex
- » A primal edge corresponds to a dual edge
- » A primal vertex corresponds to a dual cell

Notion of Dual Mesh III

In general:

6

a primal σ^k corresponds to a dual ^Δσ^{n-k} (and vice-versa)

We will denote this mapping: *

(Yes, it looks like a Hodge star)

$$\star \sigma^{k} = \hat{\sigma}^{n \cdot k}$$
$$\star \hat{\sigma}^{k} = \sigma^{n \cdot k}$$
$$\star \sigma^{k} = (-1)^{k(n - k)} \sigma^{k}$$

Why "Discrete" Exterior Calculus

Foundation for discrete computations!

- basic discrete operators
 - » consistently derived
 - » easy to compute, given a discrete mesh
- > Other computations easy using basic ops
- » Ex: $\Delta = d\delta + \delta d$, $\nabla f = df^{\#}$,...
- » Hopefully, will provide the "natural" discrete computations we want:

» Convergence, consistent results, etc ...

Let's get right to it

We will work on discrete manifolds

- » no notion of differential surface
- » 2D "easy" case
- » 3D very useful in graphics and simulation
- » any finite dimension

Basic assumptions:

- > arbitrary simplificial complex (called primal mesh)
- » we will assume a "nice" triangulation for now » no obtuse angle, for instance

5

6

Notion of Dual Mesh II

We use the circumcentric dual

In 3D:

Now, What is a Discrete Form?

Chain = set of cells (primal or dual)

- Form: cochain (maps a number to a chain)
- Pairing: integration

 $\mathfrak{H}^{\diamond} < \omega, \sigma > =$

- > Forms you heard about: dx, dy, dz, dA, dV etc
- » a k-form needs a k-simplex to pair up with

Ø

Computing Forms on Meshes

Using linearity of integration:

$$\int_{\bigcup_{j}\sigma_{j}}\omega=\sum_{j}\int_{\sigma_{j}}\omega$$

- » split up k-chains into a set of simplicial k-chains
- > a form is defined by its value on each simplex...
- > no need for pointwise definition

5

Hodge Operator

Important operator to "dualize" a form:

primal k-forms turn into dual (n-k)-forms

- » well-known idea
- » new evaluation, though...
- > same averages requires an induced metric
- forms can now be seen as living on central points

Wedge Product I

Wedge Product III

Properties respected:

6

- Anti-commutativity (simple)
- Associativity (unsure, maybe not true ⁽³⁾)
- Leibniz rule (fairly simple)
- » No need for interpolated forms » no barycentric coordinates involved
- > Could be used as the "real" definition of the Hodge star

Exterior Derivative

We deal with d by assuming Stokes' theorem:

$$\int_{\sigma} \mathrm{d}\omega = \int_{\partial\sigma} \omega$$

» simple "rewriting" rule

>∂(<u>___</u>)= /

6

- > d and ∂ are dual with respect to the natural pairing
- > careful orientations are needed, obviously

Laplace-Beltrami as defined in [DMSB99]

Wedge Product II

- > Comes in two flavors:
 - » Primal x Primal → Primal
 - » Dual x Dual \rightarrow Dual
- > Try it on a triangle for dx ∧ dy if you want!
- Reminiscent of Crofton's formula...

Vector Fields

6

We need to map vectors and 1-forms, and vice-versa

- » b: vector field into a 1-form
- » #: 1-form into a vector field

Natural definition of a vector field:

Average vector values over cells

- lives at dual 0-simplices (primal vector fields)
- > or at primal 0-simplices (dual vector fields)

Vector Fields

Interpretation of Div and Curl

Divergence:

» "Flux" through the Voronoi cell

Curl:

» "Circulation" on Voronoi boundaries

Implications:

- b: primal 0 → dual 1, or dual 0 → primal 1
- #: dual 1 \rightarrow primal 0, or primal 1 \rightarrow dual 0

Lie Derivative

Just use Cartan magic formula:

 $\mathcal{L}_{\mathbf{X}}\omega = i_{\mathbf{X}}\mathbf{d}\omega + \mathbf{d}i_{\mathbf{X}}\omega$

- > still not tested
- > but should satisfy all continuous properties
- > should also lead to advection on discrete meshes
- > flows are next...

5

5

A Word About Numerics

Mesh quality:

- » clearly, Delaunay criterion makes numerics better
 - Otherwise, there are some negative weightings
 - But global integrals remain fine!
 - So only local degeneracy happens
- » linear accuracy if mesh is of poor quality
- » super-accuracy if symmetries

Full-blown accuracy study needed

» convergence study

Divergence and Curl

Once b and # is defined, we have:

$div \mathbf{V} = \mathbf{*d} \mathbf{*V}^b$

$curl \mathbf{V} = (*d\mathbf{V}^b)^{\#}$ (in 3D...)

Interesting connection:

Straightforward variational approach [Polthier] (discrete Helmhotz-Hodge decomposition)

2222222222	12 12 12 12 12 12 12 12 12 12 12 12 12 1	
11222222222	الدائد الدائي الوطي طي الاسالي	
223322222		
1		2224122222
A. R. P. S. P. C. =	+	1
	221144222	
=	2222222222	1
5		11112221111
		111111111111

Contraction of Form

Home-brewed formula:

$$i_{\mathbf{X}}\omega = (-1)^{k(n-k)} (*\omega \wedge \mathbf{X}^b)$$

- > dualize the form, add a "slot" by wedging it, then dualize it back: a slot is taken...
- > no need for extra operator
- > only primal/dual or dual/primal

6

Recap

Discrete Exterior Calculus

- > Averaged integrals seems to be *the* key
- > Purely combinatorial, no interpolation needed
- > Subtle interplay between primal and dual
- > Simple "rewriting" rules → mathematica code?
- > Seems like all basic ops carry over just fine

> Almost complete ...

What's next

>> ...

- » Differential geometry:
- » Defining n, shape operator, etc...
- > Multigrid methods
 - » Remeshing cochains, mapping between manifolds
- Discrete Connections
- Piecewise linear shells (w/ Peter and Eitan)
- » Revisiting old techniques (primal/dual)?
 - » Staggered grids in fluid simulation
 - » Leapfrog integration

> Develop a discrete 'know-how' ...