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Abstract

In the summer of ����� we supervised two undergraduate students during a nine�week

summer program at the Geometry Center� They worked on a project using dynamical

systems techniques to compute and visualize orbits in the circular restricted three�body

problem� This project was motivated by recent interest in the space science community

to send missions near to the Sun�Earth libration points� A fuller understanding of the

geometry of the phase space of the circular restricted three�body problem could provide

new possibilities for baseline trajectory design� To this end� the goal of this project

was to develop computational and visualization tools to aid in trajectory design� In

particular� we wanted to be able to easily and interactively explore the geometry of the

halo orbits and their stable and unstable manifolds� This report provides a summary of

the mathematics underlying the project and a brief discussion of the results�
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� Introduction

For six consecutive years� the Geometry Center has sponsored a Summer Institute for undergraduate

students� who work individually or in small groups under the direction of Geometry Center sta	

members� In the summer of ����� we supervised two students for the nine�week period of the

program on a dynamical systems project� Essentially� the focus of the project was to use dynamical

systems techniques to compute and visualize new spacecraft trajectories and was motivated by our

interaction with mathematicians at NASA
s Jet Propulsion Laboratory� This report provides the

mathematical background that we provided our students as well as a brief discussion of their results�

An online HTML document ��� created by our students further illustrates these results� in addition

to describing the software tools they developed�

Recently� the space science community has shown considerable interest in missions which take

place in the vicinity of the libration points of the Sun�Earth system� Designing trajectories for

these missions is challenging because conic approximations �solutions of the two�body problem� are

inadequate and� in the past� manual numerical searches have been the only recourse� Recent work of

Barden� Howell� and Lo �
� has shown that a greater understanding of the dynamics of the restricted

three�body problem could lead to innovative baseline mission concepts� Dynamical systems theory

could provide insights into the qualitative nonlinear behavior� Knowledge of the geometry of phase

space and the existence of stable and unstable manifolds which both separate regions of space and

provide natural transfer mechanisms can all aid in trajectory design� Once a preliminary trajectory

design has been accomplished within the framework of the restricted three�body problem� the �nal

solution is computed using a model that incorporates ephemeris data and solar radiation pressure�

The primary goal of our project was to develop computational and visualization capabilities for

the study of trajectories near the libration points in the restricted three�body problem� This goal was

to be accomplished by extending the capabilities of the dynamical systems software package DsTool

��� and using the Geometry Center software Geomview ���� for the visualization� We wanted to

create a software environment where it was easy to interactively explore and visualize the dynamics

of the restricted three�body problem� Thus for the summer� our �rst goals were to provide such an

environment for the computation of the libration points and the symmetric halo �periodic� orbits

surrounding the collinear libration points� Our �championship goals� were to compute and visualize

the stable and unstable manifolds of these halo orbits with an emphasis on being able to discover

new trajectories which would transfer a spacecraft naturally from a parking orbit about the Earth

to the vicinity of one of the libration points�

This paper contains the basic mathematics needed to accomplish the goals outlined above� Most

of the mathematics is generally well�known� though it is sprinkled throughout the literature� We

have thus tried to bring together the basic ideas� in a manner which is accessible to undergraduates�

The details are sketchy in many parts� but all the ideas we found necessary to formally convey to

our students have been included� We have ignored the long history of the study of the restricted

three�body problem which is covered quite completely by Szebehely ����� We have also failed to give

a complete description of Lagrangian and Hamiltonian mechanics and any formal introduction to

dynamical systems�

An overview of the contents is as follows� In Sections � and 
� we discuss the central force

�



problem and the two�body problem� From here� we derive the equations of motion for the circular

restricted three�body problem in Section �� In the next section we calculate the libration points and

then we present the Jacobian integral� Following this we discuss the symmetries of the equations

of motion� since we will take advantage of these in our numerical calculations� In Section �� we

present the Lagrangian formulation of the equations of motion� and in the following section� the

Hamiltonian formulation� We present Richardson
s technique for analytically approximating halo

orbits in Section ��� including many of the gory details not included in his published work� In

working through this� we discovered an error in his calculations and present the corrected version

here� Following this is a section on the numerical computation of periodic orbits� In particular�

an algorithm is given for the computation of the symmetric halo orbits in which we are interested�

In Section �� we present an e�cient method for computing the monodromy matrix of the periodic

halo orbits� Following this we give a naive� yet e	ective� algorithm for approximating the stable and

unstable manifolds of the halo orbits� Finally� we discuss some of the results of our students
 work

and point out a variety of interesting questions which we were unable to resolve in the nine�week

period�

We found it useful to provide our students �and ourselves� with a number of exercises as a means

of �getting our hands dirty� with the background material� We have left these exercises embedded

in the document� Solutions are given in Appendix D�

Acknowledgments
 Motivation for this project originated from discussions we had with sci�

entists and mathematicians at the Jet Propulsion Laboratory� Martin Lo� in particular� has been

instrumental in pushing for a dynamical systems approach to spacecraft trajectory design� and our

thanks go to him for both inspiring the project� and providing us with the known techniques for

computing libration point halo orbits�

The great success of this project was due primarily to the work of our students� Molly Megraw

and Christopher Sinclair� It was a joy to stand back and watch them take o	 with the project

after we provided them with the basic background material� The striking pictures of manifolds that

appear in this document were created with their software�

� The central force problem

Newton was the �rst to discover that the gravitational force due to a massive central object is

one example of a force vector �eld whose magnitude is inversely proportional to the square of the

distance to the object� and directed towards it� F �X� � �kX�jX j�� where X � �x� y� z�� and the

object is located at the origin� In such a case� F has a potential function V � R� � R given by

V �X� � �k�jX j� so that F � �rV �
Exercise �
�
 Verify this�

The equations of motion for a particle of unit mass under the in�uence of F are given by Newton
s

second law� which says that F � ma� With m � � and a � �X�t�� we have

�X�t� � �kX�jX j��
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This is a � dimensional system� a solution is uniquely determined by six initial conditions � 
 for

position and 
 for velocity�

Exercise �
�
 Write down the equations of motion as a system of � �rst�order equations�

The motion is planar

It shouldn
t be too surprising that the motion of an object in a central force �eld stays in a plane�

that spanned by the object
s initial position and velocity vectors�

Exercise �
�
 Show this� To do so� compute

d

dt
�X�t�� �X�t��

for a solution X�t�� Recall that the normal product rule holds for the derivative of cross�products�

Now think geometrically� The vector mX � �X for a mass m is the angular momentum vector�

Explain the phrase �angular momentum is conserved� for this motion�

Circular solutions

It can be shown that the path of the object is not only planar but in fact traces out a conic section

�see� for example� ��� Chapter �� Section ������ The proof is not di�cult� but involves changing to

polar coordinates along with a little trickery� For our purposes� we will just verify that a circular

trajectory is indeed one possible solution�

Exercise �
�
 Verify that �a cos�t� a sin�t� �� is a solution� How does the angular velocity � depend

on a and k�

An important aside� The discovery of conics as solutions involves changing to polar coordinates

�r� �� in the plane of motion� and then transforming the equations of motion and eliminating time

as the dependent variable� The resulting equation can be solved explicitly for r in terms of �� Thus

it is possible to deduce from initial conditions precisely which conic section path an object under

the in�uence of a central force will follow� It is not in general possible� however� to �nd an explicit

parameterization� using elementary functions� of the path with time as the dependent variable� To

do so involves inverting a transcendental function� We have to resort to numerical approximations

to �nd this parameterization� Clearly� the family of circular orbits is an exception�

� The two�body problem

The two�body problem is to describe the motion of two bodies� of mass m� and m�� under the

in�uence of the gravitational �eld induced by each� Let X� be the vector position of m� and X� the

position of m�� Newton
s law of gravitation says that the force on m� due to m� is

F�� �
Gm�m�

jrj� r�






where r � X��X� is the vector from m� to m�� and G is the �universal gravitational constant� �see

Appendix A for its value�� The force on m� due to m� is F�� � �F��� Newton
s second law allows
us to write the equations of motion for the two objects� After dividing out the common masses from

both sides of the equations� we get

�X� �
Gm�

jrj� r �

�X� � �Gm�

jrj� r �

The following series of exercises illustrate how the two�body problem may be reduced to the

central force problem�

Exercise �
�
 Write down the equations of motion for the relative position vector r and show that

the problem of two bodies reduces to a central force problem� This means that the motion of one

body relative to another traces out a conic�

Exercise �
�
 Assume the Earth
s orbit around the sun is circular� and use what you
ve learned so

far to determine the angular rotation rate and period of the Earth
s orbit� How does this compare

with the �experimental� value� �Assume the mass of the Earth is negligible� The radius of Earth
s

orbit is � A�U� �astronomical unit�� See Appendix A��

Exercise �
�
 Towards further analysis� compute the location r� of the center of mass of m� and

m�� in terms of X� and X�� The center of mass is the location on the line connecting the masses

at which point the moments m�jr� �X�j and m�jr� �X�j are equal� �Answer� r� � X�m��X�m�

m��m�
�

Then compute the equations of motion for r� and show that the center of mass always moves along

the linear path r��t� � at b� for arbitrary constants a and b� Thus we can assume that the center

of mass remains stationary at the origin�

Exercise �
�
 Write X� and X� in terms of r� assuming r� � ��

� The circular restricted three�body problem

The restricted three�body problem �RTBP� introduces a third body whose motion is a	ected by

but does not a�ect the original two bodies� called the primaries� The primaries move along a

conic section� as described above� and the potential well �which evolves with time� generated by

the primaries controls the motion of the third body� In the circular restricted three�body problem

�CRTBP� we assume a circular orbit for the primaries� This problem� especially restricted to motion

of the third body in the plane of motion of the primaries� has been well studied �����

The equations of motion

Let the center of mass of the primaries constitute the origin of our �x� y� z� coordinate system� and

assume that the primaries orbit in the �x� y��plane� Let X�t� denote the position of the third body

with mass m and let X��t� and X��t� denote the positions of the primaries�

�



Exercise �
�
 For the moment� assume the positions X� and X� are �xed� and use the fact that

the potential �and force� due to two masses is just the sum of the individual potentials �and forces�

to write down the two�body potential �and force� in terms of X� and X��

For the CRTBP we assume the primaries move in circles �of radius a for m� and b for m�� say�

about the origin� with common angular velocity ��

Exercise �
�
 Use this to write down the time�dependent equations of motion for X � Assume at

t � � that X� is on the positive x�axis� and X� on the negative x�axis�

Dimensionless coordinates

Through a sequence of coordinate transformations� we can reduce the number of free parameters in

the equations of motion to one� The �nal coordinates are called dimensionless coordinates�

We can write the equations of motion in terms of the potential as

�X � �rXV�

where

V �X� t� � �G
�

m�

jX �X�j  
m�

jX �X�j
�
�

and

X��t� � �a cos�t� a sin�t� ��

X��t� � ��b cos�t��b sin�t� ���
Normalize length
 First� we normalize so that the distance l � a b separating the primaries

is one� Thus we want to substitute � � X�l� This means �� � �X�l� so that the new equations of

motion become
�� � ��

l
rXV �l���

But now let !���� t� � �
l�V �l�� t�� Then

r�
!� �

�

l�
rXV �l��

dX

d�

�
�

l
rXV �l���

which allows us the compact notation �� � �r!��
Normalize time
 Next we normalize the time so that the angular velocity of the primaries is

one� by substituting !t � �t� We have

d��

d!t
�

�

��
d��

dt�

� � �

��
r!�

�
!t

�

�
� �r��

�



where

���� !t� �
�

��
!���� !t��� � � G

��l�

�
m�

j� � �
lX��!t�j

 
m�

j� � �
lX��!t�j

�
�

As discovered in Exercise ���� the angular velocity � satis�es �� � GM
l� � whereM � m� m�� Thus

���� !t� � � �

M

�
m�

j� � �
lX��!t�j

 
m�

j� � �
lX��!t�j

�
�

Normalize mass
 Finally we normalize so that the total mass of the primaries is one� Substi�

tuting � � m��M and �� � m��M � �� �� we get

���� !t� � �
�

�

j� � �
lX��!t�j

 
�� �

j� � �
lX��!t�j

�
�

And since none of the dependent variables depends on the masses� the equations of motion remain
�� � �r��
Furthermore� we have the relations b

l �
m�

M and a
l �

m�

M �

Exercise �
�
 Show this�

Thus

�

l
X��!t� �

�
��� �� cos !t� ��� �� sin !t� �

�
�

l
X��!t� �

��� cos !t��� sin !t� �� �
Set X � �x� y� z� � � and !t � t� and de�ne

�� � jX �X�j
�� � jX �X�j �

where we rede�ne X� and X� to be the normalized primary vectors �� � ���cos !t� sin !t� ��� and

���cos !t� sin !t� ��� respectively� Then

��x� y� z� t� � �
�
�

��
 
�� �

��

�

and the �nal equations of motion are

�x�t� � ��x � �
x� ��� �� cos t

���
 ��� ��

x � cos t

���

�y�t� � ��y � �
y � ��� �� sin t

���
 ��� ��

y  � sin t

���

�z�t� � ��z � �
z

���
 ��� ��

z

���

The only free parameter is �� which is usually taken to be less than or equal to �"� to represent the

smaller of the two primary masses�
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Rotating coordinates

A disadvantage of the above representation is that the independent variable t appears explicitly in

the potential function �� We will now introduce another change of coordinates which takes out the

rotation of the primaries� and removes time explicitly from the di	erential equations�

Let R� denote the matrix of rotation �clockwise� by angle � about the z�axis�

R� �

�
� cos � sin � �

� sin � cos � �

� � �

�
A

Since at time t the primaries lie on a line at angle t measured counterclockwise from the x�axis� we

want to make the change of coordinates W � RtX �

Exercise �
�
 Show that under this change of coordinates� the equations of motion become

�W � �K �W  K�W � �rWU�W ��

where

K �

�
� � � �

�� � �

� � �

�
A �K� �

�
� �� � �

� �� �

� � �

�
A �

and

U�W � � �
�

�

jR�tW �X��t�j  
�� �

jR�tW �X��t�j
�

� �
�

�

jW � ��� ��e�j  
�� �

jW  �e�j
�
�

and where e� � ��� �� ��� U is the transformed potential�

Re�introduce the variable X � �x� y� z� for W � and de�ne

#�X� � ��
�

	
K�X�X


� U�X��

Then the equations of motion become

�X � �K �X � rX#�

or

�x� � �y � #x ���

�y  � �x � #y ���

�z � #z� �
�

�



� Libration points

The CRTBP� when expressed by �����
� in rotating coordinates� has �ve equilibrium points� called

Lagrangian� or libration points�

Exercise �
�
 Find them� Show that equilibrium solutions occur when #x � #y � #z � �� Argue

that all solutions lie in the x� y�plane� and show that two of the solutions �called L� and L�� form

equilateral triangles with the primaries� The other three libration points �L��L�� lie on the x�axis�

bracketing the masses� Show that the x�coordinates of these points can be found by solving quintic

polynomials�

� The Jacobian integral

An integral of a second order system is a non�constant function G�x�� � � � � xn� �x�� � � � � �xn� that is

constant on solutions to the system� Thus� every solution lies on some level set of G� This is

expressed mathematically by the equation

d

dt
G�x��t�� � � � � xn�t�� �x��t�� � � � � �xn�t�� � �

for any solution �x��t�� � � � � xn�t���

Exercise �
�
 Verify that

J � �#�x� y� z�� � �x�  �y�  �z�� ���

is an integral for the CRTBP� It is called the Jacobian integral� and the value it takes on a solution

is called the Jacobian constant�

The Jacobian integral allows one in principle to reduce the equations of motion in the CRTBP

from a �th order system to a �th order system� Another immediate application of the Jacobian

integral is the following� A given set of initial conditions de�nes a particular value for the Jacobian

constant� say C� The simple observation that the square of the velocity �x� �y� �z� must be positive

implies with ��� that the range of motion in x� y� z�space for that particular solution must lie on one

side of the surface de�ned by #�x� y� z� � C��� This surface is called the surface of zero velocity for

the Jacobian constant C� �See ���� Chapter �� Section ����� for properties of #� and a discussion of

curves and surfaces of zero velocity��

Note that despite the name� if a particle is on a surface of zero velocity� it does not necessarily

have zero velocity� The surface represents a barrier through which solutions for a particular value

of the Jacobian constant cannot pass� Solutions with di	erent Jacobian constants will have di	erent

surfaces of zero velocity�

Exercise �
�
 Use Maple or Mathematica to graph some surfaces of zero velocity for various Jaco�

bian constants� and identify the regions of possible motion�

�



� Symmetries

Symmetries in the equations of motion allow us to �nd new solutions when some solutions are given�

We present two symmetries here� The �rst symmetry is a re�ection across the �x� y��plane and the

second is a re�ection across the �x� z��plane with a time�reversal� Assume that �x�t�� y�t�� z�t�� is a

solution to the CRTBP� then the following are also solutions�

�x�t�� y�t���z�t��
�x��t���y��t�� z��t�� �

There is also a symmetry involving parameters in the equation� This is given by�

�x�t�� y�t�� z�t�� �� �� ��x�t���y�t�� z�t�� �� ���

This means that in fact we only need to study the equations in the parameter range � 	 � 	 ����

We will take advantage of the symmetry properties of the CRTBP equations in the later analysis�

Exercise �
�
 Verify these three symmetries�

� The Lagrangian formulation

We digress slightly to present two reformulations of the equations of motion which will be of use to

us later� The Lagrangian formulation will be used to develop Richardson
s analytic approximation

to the �ow in the neighborhood of a libration point� The Hamiltonian formulation will be of use in

our numerical scheme to �nd actual halo orbits�

The motion of a point mass in a Newtonian potential system can be formulated in terms of a

Lagrangian function� The Lagrangian function is de�ned by

L�x� �x� t� �
�

�
�x� � U�x� t� �

where �x��� is the kinetic energy and U�x� t� is the potential energy� The equations of motion are

given by the Euler�Lagrange equations�

d

dt


L


 �x
� 
L


x
� � �

Exercise �
�
 Verify that the Lagrangian equations of motion correspond to Newton
s equations

of motion �x � �rU �

The beauty of this formulation arises from the fact that it is independent of the coordinates�

The Lagrangian can be written as the di	erence of the kinetic and potential energies in generalized

coordinates and the equations of motion may be easily derived using the Euler�Lagrange equations�

This fact follows from Hamilton
s principle and formulating variational equations for the action of

the system� See any standard mechanics book for a detailed discussion �e�g�� ��� �� ����

�



The CRTBP in dimensionless non�rotating coordinates has a Lagrangian which is given by

L�X� �X� t� �
�

�
�X� � U�X� t��

where

U�X� t� � � �

jX �X��t�j �
�� �

jX �X��t�j �

We can write the Lagrangian in rotating coordinates W � RtX � First calculate X � R�tW and
�X � �R�tW  R�t �W and substitute into the equation for L to get

L �
�

�
� �W �KW �� � U�W � �

where

U�W � � � �

jW � TtX��t�j �
�� �

jW �RtX��t�j
� � �

jW � ��� ��e�j �
�� �

jW  �e�j �

Exercise �
�
 Verify that the equations of motion in rotating coordinates derived from using this

Lagrangian and the Euler�Lagrange equations are the same as the ones we derived earlier�

	 The Hamiltonian formulation

The CRTBP is a Hamiltonian dynamical system� This means that there exist coordinates p� q and

a function H�p� q� t� such that the equations of motion are given by

�q � 
H�
p

�p � �
H�
q � ���

This is often written in the compact form

�z � JrzH�z� �

where z � �q� p� and J is the matrix of four square blocks given by

J �

�

 �

�� 


�
�

For a discussion of this extensive theory� see� for example� ��� �� �� ����

We will write down the Hamiltonian and corresponding canonical coordinates in rotating variables

since this will be most useful for us� Typically this is done by starting from the Lagrangian written

using the traditional coordinates q� �q� Thus� we start with

L�q� �q� t� �
�

�
� �q �Kq�� � U�q� �

��



The generalized momenta p are given by p � 
L�
 �q� so

p � �q �Kq �

The Hamiltonian is de�ned by H�p� q� t� �	 p� �q � �L� so we compute

H �
�

�
p� 	 p�Kq �  U�q� �

The equations of motion are given by applying Equation � to this Hamiltonian�

Exercise 	
�
 Verify that these equations of motion coincide with those from the Lagrangian for�

mulation�

Since the Hamiltonian for this problem is independent of time� it is a constant of the motion�

This can be veri�ed by computing dH�dt � �H
�q �q  

�H
�p �p � ��

Exercise 	
�
 Verify that H � �J ��� where J is the Jacobian integral introduced in Section ��

�
 Richardson�s approximations for halo orbits

In this section we discuss a third�order analytic approximation to the equations of motion which

produces periodic solutions about the collinear libration points� Our discussion follows the work of

D� L� Richardson ���� ��� ���� who used this technique successfully in designing orbits for the ISEE


mission to L� in the late ����s�

Yet another change of coordinates

We will discuss �ow in a neighborhood of L� and L�� recalling that �ow near L� is the same as that

near L� but for a di	erent parameter value� In order to study the motion near a libration point it is

easiest to choose a coordinate system that is centered at the libration point� We will also normalize

distances so that the distance between the libration point and the mass M� is one unit�

In the rotating coordinate system� let the locations of the libration points Li be given by

Li � �ie� �

where the �i are roots of the appropriate quintic as discussed in an earlier section� Let the vectors

from Li to the masses M� and M� be given by

r� � ��� ��e� � Li � ��� �� �i�e� �

r� � ��e� � Li � ��� �i�e� �

New rotating coordinates centered at the libration point Li and rescaled by jr�j are given by

� � �W � Li��jr�j �

��



We write the Lagrangian in these new coordinates as

L��� ��� �
jr�j�
�
� ���K���  �ijr�j 	 �� e� � �U���

 �ijr�j 	 ��� e� �  
�

�
��i �

with

U��� �
���jr�j
j�� e�j  

���� ���jr�j
j� jr�j

jr�j
e�j

�

where from now onwards the top sign is taken for L� and the bottom for L�� We want to develop

this as a power series in j�j and thus want jr�j � jr�j� Consequently� this analysis will give results
for L� when � 	 � � ��� and for L� when � 	 � 	 �� From the symmetry discussed earlier we can

produce orbits for L� when ��� 	 � 	 � by applying the analysis for L� using �� �� Similarly� we

can study orbits around L� by using the symmetry applied to orbits about L��

Note that rescaling of the Lagrangian by a constant does not a	ect the equations of motion so

we shall divide by jr�j�� Also� constants and linear terms which contain only �� play no role in the
equations of motion� so the �nal two terms may be discarded� We now write the Lagrangian as

L��� ��� �
�

�
� ���K���  �i

�x
jr�j � U��� �

with

U��� �
��
jr�j� �

�

j�� e�j  
���� ��

jr�j�jr�j �
jr�j�jr�j
j� jr�j

jr�j
e�j

�

The next step is to write the potential function U using a power series of Legendre polynomials�

To introduce Legendre polynomials we recall a couple of identities� First an application of the

law of cosines gives

jrj
j�� rj �

�
�� � j�jjrj cos �  

j�j�
jrj�

�����
�

where � is the angle between � and r� Then we recognize that ��� �zx z������ is the generating

function for the Legendre polynomials� In other words�

��� �z cos �  z������ �

�X
n��

Pn�cos ��z
n �

and
jrj

j�� rj �
�X
n��

Pn�cos ��
j�jn
jrjn �

The Legendre polynomials can also be developed from a recursion relation given by

P��cos �� � �

P��cos �� � cos �

Pn�cos �� �

�
�n� �
n

cos �

�
Pn�� �

�
n� �
n

�
Pn�� �

��



Note that Pi is even or odd in cos � exactly when i is even or odd� Also recall the formula for the

derivative of a Legendre polynomial�

dPn�C�

dC
�

X
��k��n��	���k�Z

��n� �k � ��Pn��k���C� �

Applying this to terms in our potential function we see that

�

j�� e�j �

�X
n��

Pn�	�x�j�j�j�jn �

jr�j�jr�j
j� jr�j

jr�j
e�j

�

�X
n��

Pn���x�j�j� jr�j
n

jr�jn j�j
n �

When introducing the expansions into the Lagrangian we can once again neglect the constant terms

and we will collect the linear terms� This results in a Lagrangrian of

L��� ��� �
�

�
� ���K���  

�

jr�j�
�X
n��

Pn�	�x�j�j�j�jn

 
��� ��

jr�j�jr�j
�X
n��

Pn���x�j�j� jr�j
n

jr�jn j�j
n

 
�x
jr�j

�
�i 	 �

jr�j� �
�� �

jr�j�
�

�

Now recall that

�i 	 �

jr�j� �
�� �

jr�j� � �i 	 �

��i � ��� ����
� �� �

��i  ���
� � �

since this is the equation which de�nes the libration point� Of course we know this quantity will be

zero simply because we have placed the origin of the coordinate system at an equilibrium point thus

guaranteeing that linear terms will not exist�

Combining the sums in the Lagrangian� we write

L��� ��� �
�

�
� ���K���  

�X
n��

cnPn��x�j�j�j�jn �

where

cn � �	��n �

jr�j�  ����
n ��� ��jr�jn��

jr�jn��

� �	��n �

j�i � ��� ��j�  ����
n��� ��

j�i � ��� ��jn��
j�i  �jn�� �

If you insist on �nding the equations of motion in a neighborhood of L�� then in the coordinates

� � �L� �W ��jr�j the above Lagrangian holds and the cn are the same as those for L� except they

�




must be computed for parameter value �� �� Performing this computation� we �nd that the cn for

the Lagrangian at L� are given by

cn � ����n �� �

jr�j�  ����
n�jr�jn��
jr�jn�� �

The equations of motion are derived from the Lagrangian using the Euler�Lagrange equations�

Consequently� the equations of motion are

��� �K �� K�� �
�X
n��

ncnPn��x�j�j�j�jn���

 

�X
n��

cnP
�
n��x�j�j�j�jn���j�je� �

�x
j�j�� �

We can now approximate the dynamical system near the libration points by using perturbation

methods� Essentially� we will expand all quantities in a power series of a small parameter �e�g�� the

amplitude of the solution� and consider only a �nite number of terms in the in�nite sum� We can

then attempt to �nd explicit solutions for these dynamical systems and hope that they approximate

solutions of the full problem�

The linear approximation

First we will study a linear approximation to the equations of motion just developed� We show

that solutions to such an approximation are inadequate in the sense that they are not� in general�

periodic� We will require these solutions� however� when we move to higher�order approximations�

The linear approximation involves taking only the quadratic terms in the Lagrangian� This gives

us

L���� ��� �
�

�
� ���K���  c��
�

�
x � �����

with

c� �
�

j�i � ��� ��j�  
�� �

j�i  �j� �

Using the Euler�Lagrange equations we write down the equations of motion to get

��� �K �� 
�
� ���c�  �� � �

� c� � � �

� � c�

�
A � � � �

This is a linear degree two system of ordinary di	erential equations which we can solve by spectral

methods� Note that the z�component is decoupled from the other two� We compute the characteristic

polynomial to be

�$�  c���$
�  $���� c��  �  c� � �c��� � ��

and solving for $ �nd

$ � 	jpc��$ � 	
s
c� � �	

p
�c�� � �c�
�

��



where j represents the complex involute� If c� � � then �c
�
� � �c� � �c� � ��� and there will be two

pairs of purely imaginary eigenvalues and one pair of real eigenvalues�

Exercise �

�
 Show that c� � ��

We can thus write the solution to the linear equation in the form�

x�t� � A�e
�t  A�e

��t  A� cos
t A� sin
t

y�t� � �k�A�e
�t  k�A�e

��t � k�A� sin
t k�A� cos
t

z�t� � A� cos
p
c�t A
 sin

p
c�t �

where

� �

s
c� � �  

p
�c�� � �c�
�


 �

s
�c� � ��

p
�c�� � �c�
�

k� � ��c�  �� ������

k� � ��c�  �  
����
 �

and A�� � � � � A
 are arbitrary constants determined by the initial conditions�

Since we are interested in periodic and quasiperiodic solutions we take A� � A� � �� Then the

solution to the linear problem can be written in terms of amplitude and phase as

x�t� � �Ax cos�
t ��

y�t� � kAx sin�
t ��

z�t� � Az sin�
p
c�t �� �

with k � k�� For out of plane solutions �Az 
� ��� we do not expect 
 and c� to be rationally related
and thus expect quasiperiodic solutions� We must therefore include nonlinearities if we hope to �nd

periodic solutions�

The method of Lindstedt�Poincar�e

To �nd better approximations to the nonlinear problem in a neighborhood of the equilibrium point

solutions we will use the perturbation techniques of Lindstedt�Poincar%e �����

The �rst thing we do is allow for a frequency correction by setting � � �t and letting 
�
 denote

d�d� � We will then truncate the equations of motion at degree 
� Doing this we get

��x�� � ��y� � ��  �c��x �



�
c���x

� � y� � z��

 �c���x
� � 
y� � 
z��x

��y��  ��x�  �c� � ��y � �
c�xy � 

�
c���x

� � y� � z��y

��z��  
�z � �
c�xz � 

�
c���x

� � y� � z��z  &z �

��



where

& � 
� � c� �

We continue the perturbation analysis by assuming solutions of the form�

x��� � �x����  ��x����  ��x����  � � �

y��� � �y����  ��y����  ��y����  � � �

z��� � �z����  ��z����  ��z����  � � �

and letting

� � �  ���  ����  � � � �

We substitute these quantities into the equations of motion and equate components of the same

order� Here we make the assumption that & � O���� and set � � ��

The �rst order equations

The O��� equations are the linearization of the vector �eld which we solved in the previous section�

with a modi�ed frequency for the out of plane oscillations�

x��� � �y�� � ��  �c��x� � �

y���  �x
�
�  �c� � ��y� � �

z���  
�z� � � �

Since we are only interested in bounded solutions we write the solutions

x���� � �Ax cos�
�  ��

y���� � kAx sin�
�  ��

z���� � Az sin�
�  �� �

Later� in order to avoid secular solutions we will need to put constraints on the constants Ax� Az � �� ��

but for now they are arbitrary�

The second order equations

The O���� equations depend on the above solutions and are given by

x��� � �y�� � ��  �c��x� � �����x��� � y���  



�
c���x

�
� � y�� � z���

y���  �x
�
�  �c� � ��y� � �����y���  x���� 
c�x�y�

z���  
�z� � ����z��� � 
c�x�z� �

��



Substituting in the solutions for x�� y�� z�� we get

x��� � �y�� � ��  �c��x� �  ���
Ax�k � 
� cos ��

 ��  �� cos ���  �� cos ���

y���  �x
�
�  �c� � ��y� � ���Ax
�k
 � �� sin ��

 �� sin ���

z���  
�z� � ���Az

� sin ��

 �� sin���  ���  �� sin��� � ��� �

where

�� � 
�  �

�� � 
�  � �

and the expressions for the other coe�cients are given in Appendix C� These are a set of inhomo�

geneous linear di	erential equations whose solutions are summarized in Appendix B� We know the

bounded homogeneous solution which is incorporated into the solution to the �rst order equations

and simply need to �nd a particular solution� The secular terms �those responsible for producing un�

bounded solutions� are the sin ��� cos �� and sin �� terms which are all eliminated by setting �� � ��

Thus we �nd the solution

x� � ���  ��� cos ���  ��� cos ���

y� � ��� sin ���  ��� sin ���

z� � ��� sin���  ���  ��� sin��� � ��� �

where the expressions for the coe�cients are given in Appendix C�

The third order equations

The O���� equations are �after setting �� � ��

x��� � �y�� � ��  �c��x� � �����x��� � y���

 
c���x�x� � y�y� � z�z��

 �c�x���x
�
� � 
y�� � 
z���

y���  �x
�
�  �c� � ��y� � ��w��x

�
�  y��� �

�
c��x�y�  x�y��

�

�
c�y���x

�
� � y�� � z���

z���  
�z� � ����z���  
&

��
z�

�
c��x�z�  x�z��

�

�
c�z���x

�
� � y�� � z��� �

��



Substituting in the solutions for x�� y�� z�� x�� y�� z�� we get

x��� � �y�� � ��  �c��x� � ���  ���
Ax�k � 
�� cos ��

 �� cos 
��  �� cos���  ����

 �� cos���� � ���

y���  �x
�
�  �c� � ��y� � ���  ���
Ax�
k � ��� sin ��

 �� sin 
��  �� sin���  ����

 �� sin���� � ���

z���  
�z� � ���  Az����

�  &����� sin ��

 �� sin 
��  �� sin����  ���

 �� sin���� � ��� �

where the expressions for the coe�cients are given in Appendix C� There are secular terms in the

x�� y� equations and in the z� equations which can no longer be removed by simply setting a value

for the frequency correction ��� We start by examining the secular terms in the z� equations more

closely�

To remove the �� sin���� � ��� term we would need �� � �� Since we cannot freely adjust this

parameter� we can attempt to remove the secular term by adjusting the phases of �� and �� so that

sin���� � ��� � sin ��� To do this we need

� � �  n
�

�
�

where n � �� �� �� 
� Then the z� solution will be bounded if

��  Az����

�  &����  ��� � � �

where � � ����n� This phase constraint a	ects the x� � y� equations� which now each contain one

secular term� Instead of forcing the removal of these terms with two additional constraint equations�

we see from Appendix C that we can simultaneously eliminate the unbounded terms from both

particular solutions with a single constraint equation� The requirement is

���  ���
Ax�k � 
�  ����� k���  ���
Ax�
k � ��  ���� � � �

We satisfy this last equation by setting

�� �
�� � k��  ���� � k���

�
Ax�
��  k��� �k�
� s�A

�
x  s�A

�
z �

where the expressions for s�� s� are given in Appendix C� Substituting this into the �rst constraint

we get

l�A
�
x  l�A

�
z  &��

� � � �

��



with l�� l� given in Appendix C� and thus can satisfy this constraint by letting one amplitude be

determined by the other�

Assuming these constraints the third order equations reduce to

x��� � �y�� � ��  �c��x� � k�
 cos ��  ���  ���� cos 
��

y���  �x
�
�  �c� � ��y� � �
 sin ��  ���  ���� sin 
��

z���  
�z� �



����n�����  ��� sin 
�� n � �� �

�����n��	����� � ��� cos 
�� n � �� 
 �

where �
 � ��  ���
Ax�
k � ��  ���� The solution to this is given by

x� � ��� cos 
��

y� � ��� sin 
��  ��� sin ��

z� �



����n����� sin 
�� n � �� �

�����n��	����� cos 
�� n � �� 
 �

where the expressions for the coe�cients are given in Appendix C� Richardson
s solution ���� ��� ���

neglected the �
 terms and thus did not include the ��� correction � a cubic correction to the

amplitude of the primary frequency�

The �nal approximation

Applying the mapping Ax �� Ax�� and Az �� Az�� will remove � from all the equations� Then we

can use Ax or Az as a small parameter� Combining the solutions we have computed to third order�

we get

x��� � ��� �Ax cos ��  ����  ����� cos ���  ��� cos 
��

y��� � �kAx  ���� sin ��  ����  ����� sin ���  ��� sin 
��

z��� �



����n��Az sin �� n � �� �

�����n��	��Az cos �� n � �� 


 



����n������ sin ���  ��� sin 
��� n � �� �

�����n��	������ cos ���  ���  ��� cos 
��� n � �� 
 �

��



These equations may be rewritten to more clearly see the dependence on the small parameters Ax

and Az � This is

x��� � �Ax cos ��  a��A
�
x  a��A

�
z  �a��A

�
x  �a��A

�
z� cos ��� ���

 �a��A
�
x  �a��AxA

�
z� cos 
��

y��� � kAx sin ��  �b��A
�
x  �b��A

�
z� sin ���

 �b��A
�
x  �b��AxA

�
z� sin 
�� ���

 �b��A
�
x  b��AxA

�
z  �b��AxA

�
z� sin ��

z��� �



����n��Az sin �� n � �� �

�����n��	��Az cos �� n � �� 


 



����n��d��AxAz sin ��� n � �� �

�����n��	��d��AxAz�cos ��� � 
� n � �� 

���

 



����n���d��A�

z  d��A
�
xAz� sin 
�� n � �� �

�����n��	���d��AzA
�
x � d��A

�
z� cos 
�� n � �� 
 �

The expressions for the coe�cients are given in Appendix C�

�� Numerical computation of halo orbits

In this section we discuss some strategies for the numerical computation of periodic orbits� The

method we will discuss is basically a Newton
s method scheme� with the idea that Richardson
s

analytic approximation will provide convergent initial seeds for the method� We will �rst examine

the problem of computing periodic orbits in the ��degrees of freedom CRTBP � that is� orbits which

lie in the �x� y��coordinate plane� Then we will look at out�of�plane orbits� In both cases we will

restrict the discussion to �nding orbits which have a symmetry across the x� z�plane�

Symmetric periodic orbits for the ��degrees of freedom CRTBP

We would like to �nd a periodic orbit which lies in the x� y�coordinate plane and is symmetric about

the x�axis� There are families of such orbits surrounding the collinear libration points� We shall

de�ne one of these orbits by the location of its intersection with the x�axis and its velocity� Thus

if a point in phase space is given by X � �x� y� vx� vy�� then a periodic orbit can be speci�ed by

�x� �� �� vy�� We have set y � � to specify the intersection of the orbit with the x�axis� and we set

vx � � in order to satisfy the symmetry condition�

Suppose that the orbit only crosses the x�axis in two points� Then the second point will be

halfway around� We can then use the symmetry of the problem to generate the entire orbit from

the half of the orbit lying to one side of the x�axis�

Let �X � f�X� be the equations of motion� We are of course here only interested in the CRTBP�

but these techniques will work in a great variety of problems� Let '�X� t� be the solution to the

di	erential equation� which means that '�X� �� � X and 
'�X� t��
t � f�'�X� t���

��



Let X � �x� �� �� vy� be an initial guess for a point on a symmetric planar periodic orbit of the

CRTBP� Flow the point under the vector �eld until y � � again and let T��� be the time of the �ow�

Thus '�X�T���� � �!x� �� !vx� !vy�� If !vx � � then the initial guess is part of the periodic orbit and we

are done� if not then we need to improve the initial guess in order to attempt to drive !vx to zero�

Thus we compute

'�X  &X�T���  &t� � '�X�T����  

�

'�X�T����


X

�
�&X

 

'�X�T����


t
�&t h�o�t� �

Since we wish to restrict our choice of initial conditions� we let &X � �&x� �� ��&vy� and solve the

following equations which come from the approximation found by dropping the higher order terms

in the above equation�

�

'


X

��BB�
&x

�

�

&vy

�
CCA f�'�X�T����� �&t �

�
BB�

�
�

�!vx
�

�
CCA �

We use 
�
 in the above equation to indicate quantities whose values do not concern us� So we end
up with exactly two equations and three unknowns� This is expected since we will �nd a family

of periodic solutions which can be parameterized by� for example� the intersection with the x�axis�

Fixing this quantity� we must take &x � � and then can solve for &vy and &t� This will give us a

new guess for the initial velocity vy  &vy and an estimate of T���  &t for the return time� The

whole process may be repeated�

We have not yet discussed the quantity
�
��
�X

�
� Since we do not have an explicit formula for

'�X� t�� we cannot compute this matrix of functions explicitly� In the next section we discuss this

quantity� which is known as the fundamental solution matrix�

The fundamental solution matrix

Let '�X� t� solve the n�dimensional di	erential equation �X � f�X�� so '�X� �� � X and 
'�X� t��
t �

f�'�X� t��� If we wish to see how a small change in initial condition X will a	ect the solution after

time t� then to approximate this to �rst order we must compute
�
��
�X

�
� This matrix of functions is a

particular fundamental solution matrix� The role of this matrix should be clear from the following

calculation�

'�X  &X� t &t� � '�X� t�  

�

'�X� t�


X

�
�&X  


'�X� t�


t
�&t

 h�o�t�

Since '�X� �� � X � we compute �

'�X� ��


X

�
� � �

��



Thus for t � � the matrix is the identity matrix� We can then see how the matrix evolves in time

by computing





t

�

'


X

�
�





X


'


t
�





X
f�'� �

�

f


X

�
jX��

�

'


X

�
�

Thus we have a linear� nonautonomous di	erential equation in n� dimensions which describes the evo�

lution of a fundamental solution matrix� These are sometimes called the �rst variational equations�

We can set up a system to simultaneously compute the solution ' and the fundamental solution

matrix
�
��
�X

�
� by augmenting the initial n dimensional vector �eld by n� dimensions� Letting M

denote the fundamental solution matrix� the resulting n� n dimensional initial value problem that

we solve is�

�X � f�X�

�M �

�

f


X

�
M �

with initial conditions

X��� � X�

M��� � � �

When the solution is a periodic orbit and this fundamental solution matrix is computed at a time

equal to one period� then the resulting matrix is called the monodromy matrix� The eigenvalues of

this matrix determine the stability of the periodic orbit�

Halo orbits � symmetric periodic orbits for the ��degrees of freedom CRTBP

In this section we extend the previous discussion regarding the computation of periodic orbits to

the full 
 degrees of freedom problem� This is nearly identical to the previous discussion� except

that the dimensions are increased� These orbits surrounding the libration points L�� L�� and L� are

called halo orbits�

Let X � �x� y� z� vx� vy� vz�� An initial guess is now located on the �x� z��plane with a component

of velocity only in the y direction� Let X � �x� �� z� �� vy� �� be an initial guess� If T��� is the time

of �rst return to the �x� z��plane� then we compute '�X�T���� � �!x� �� !z� !vx� !vy� !vz�� We are looking

for initial conditions that give us !vx � !vz � � in order to give us the �rst half of a periodic orbit�

Adjusting the initial condition and �ow time we get�

'�X  &X�T���  &t� � '�X�T����  

�

'�X�T����


X

�
�&X

 

'�X�T����


T
�&t h�o�t� �

��



Restricting &X to &X � �&x� ��&z� ��&vy� ��� we �nd a new guess by solving�

�

'


X

�
�
BBBBBBB�

&x

�

&z

�

&vy
�

�
CCCCCCCA
 f�'�X�T���� �&t �

�
BBBBBBB�

�
�

�
�!vx
�
�!vz

�
CCCCCCCA

�

The 
�
 represent quantities we do not care about� so we end up with three equations and four
unknowns� Thus we can parameterize the family of solutions by one quantity� say the out of plane

amplitude z� in which case we require that &z � �� This allows us to solve for a new initial x�position

x  &x and new initial y�velocity vy  &vy � This process is repeated in the expectation of having

found a better approximation to a periodic orbit� In Section �� we present the results of applying

this algorithm�

Another type of symmetric periodic orbit is suggested by cases n � �� � in the Richardson

approximation ��� � ���� These orbits cross the x�axis perpendicularly at �� � �� �� Any solution to

the CRTBP with this characteristic would necessarily be symmetric across the x�axis� Nevertheless�

we have been unable to apply techniques similar to those above to locate solutions with this symmetry

close to the n � �� � Richardson approximation�

�� Stability of the periodic orbits

In order to compute the stability of a periodic orbit� one must compute the eigenvalues of the

monodromy matrix� Recall that the monodromy matrix is a particular fundamental solution matrix

for the variational equations along a periodic orbit evaluated after one period of the orbit� Although

the monodromy matrix is de�ned in terms of a speci�c point on the periodic orbit� all the monodromy

matrices �for di	erent points on the orbit� are related by similarity transformations� Thus the

eigenvalues of the monodromy matrix are an invariant quantity� The monodromy matrix M from

a volume preserving Hamiltonian system is a symplectic mapping ( that is� it satis�es M�� �

�JM�J � where � denotes matrix transpose and J is the matrix introduced in Section � �see �����

for example�� Symplectic matrices have the following properties�

�� det�M� � � �

�� If 
 is an eigenvalue of M � then so is ��
�

In practice the monodromy matrix is computed by numerical integration� When the periodic orbit

is symmetric� as are those we are interested in computing� then one can take advantage of the

symmetry to more e�ciently compute the matrix�

Let S be the matrix that represents the symmetry of the periodic orbit we are considering� If

X � �x� y� z� vx� vy� vz�� then SX � �x��y� z��vx� vy��vz� de�nes the time�reversal symmetry for
the halo orbits we are interested in� It is a simple check to prove

�




Lemma �
 If X�t� is a solution to �X � f�X�� and �Sf � f 
 S� then SX��t� is also a solution�

We veri�ed earlier that the CRTBP in rotating coordinates has this symmetry� We now show

that the variational equations also have this symmetry�

Lemma �
 Assume that �Sf � f 
S� Let F �X� � 
f�
X and let �M � F �X�M � then �SF �X� �
F �SX�S�

Thus� we have

Lemma �
 If �X�t��M�t�� is a solution to

�X � f�X�

�M � F �X�M �

then so is �SX��t�� SM��t���
Now suppose that X��� is part of a periodic orbit with period �T that is symmetric� i�e�� X�t�

and SX��t� are the same orbits� Further� assume that X��� � SX���� a point of symmetry� Now

letM�t�X�t���M�t��� t�� denote the solution to the variational equations for the periodic orbit X�t��

The monodromy matrix is given byM��T �X������ ��� We wish to use the symmetry of the periodic

orbit in order to write the monodromy matrix in terms of the solution for only halfway around the

orbit� M�T �X������ ��� We will prove the following

Theorem �
 ���

M��T �X������ �� � S

�
� �

�� �K

�
M�T �X������ ���

�
�K ��
� �

�
SM�T �X������ �� �

where the � represents matrix transpose�

Proof� We start by noting that

M��T �X������ �� �M��T �X�t���� T �M�T �X����� �� �

Next we use the symmetry to write

M��T �X�T ���� T � �M���X��T �����T � �

Since �X�t�X�T �� T ��M�t�X�T ���� T � is a solution� then we can apply our symmetry to get a

solution �SX��t�X��T ���T �� SM��t�X��T �����T ��� At time T � this new solution takes on the
values �SX��T �� S�� Thus by uniqueness of solutions we have the equalities�

SX��t�X��T ���T � � X�t�SX��T �� T �
SM��t�X��T �����T � � M�t�SX��T �� S� T � �

Evaluating at t � � and using the periodicity and symmetry of X�t� we get

SM���X��T �����T � �M���X�T ���� T �S �

��



So now we have

M��T �X������ �� � SM���X�T ���� T �SM�T �X����� �� �

We are in principle done with expressing the monodromy matrix in terms of the fundamental solution

matrix evaluated at time T since M���X�T ���� T � � M�T �X����� ����� But we can do a little

better than this� since M�T �X����� ���� may be written in terms of M�T �X����� ���� This is done

by recalling that the fundamental solution matrix for a Hamiltonian system is symplectic ����� Thus

we can perform a change of coordinates and use the symplectic property to write the inverse in terms

of a transpose�

Writing M in symplectic coordinates we get

!M �

�
� �

�K �

�
M

�
� �

K �

�
�

For symplectic !M � we have !M�� � �J !M�J � where J �

�
� �

�� �

�
� Thus we compute that

M�� �

�
� �

�� �K

�
M�

�
�K ��
� �

�
�

Putting this all together we get the conclusion of the theorem�

�� Stable and unstable manifolds of the halo orbits

In this section we give a rough method to approximate the stable and unstable manifolds of the

halo orbits� Very brie�y� the stable manifold of a periodic orbit is the set of points which converge

to the periodic orbit in forward time� Conversely� the unstable manifold consists of those points

which converge to the orbit in backwards time� In general� these are manifolds and their smoothness

depends on the smoothness of the dynamical system� The idea of our algorithm is to �nd a linear

approximation in the neighborhood of the periodic orbit and then to globalize this approximation

by �owing points on it under the vector �eld�

The stable manifold of a periodic orbit is tangent to the space of eigenvectors of the mon�

odromy matrix whose eigenvalues have magnitude less than one� It is also tangent to the periodic

orbit� For the nearly planar halo orbits in the Sun�Earth system� there is only one eigenvalue with

magnitude less than one so the stable manifold is two�dimensional� The unstable manifold is also

two�dimensional� Eigenvectors of the monodromy matrix are used to construct the local linear ap�

proximations� At each point along the trajectory� the eigenvectors of the monodromy matrix may be

calculated� A small step in the direction of the appropriate eigenvector will provide an approximation

of a point on the stable or unstable manifold�

We note that this method cannot in general be expected to work well� In particular� computa�

tional di�culties in computing a good approximation of the stable manifold include

� disparate growth scales�

��



� poor initial guesses from the linear approximation� and

� an exponential growth of errors�

In general there are di�culties with trying to evolve even a smooth curve in a smooth vector �eld in

that the resulting surface need not be smooth� Some of these issues are discussed in Guckenheimer

and Worfolk ���� For the Sun�Earth system� the stretching away from the periodic orbit is strong

enough that the manifold appears to grow nicely� There are complications in the computation of

the manifold when it comes close to Earth due to the singularity in the vector �eld� In the following

section we will present some manifolds that were computed using this algorithm�

�� Results

In this section we summarize some of the discoveries our students made in the implementation of the

schemes discussed in the earlier sections� For more details on these results� we urge you to examine

the online documents of our students ���� All these calculations were done for the Sun�Earth system

which we take to be given by � � 
��
���� ���
�
The analytic approximation for halo orbits should work well in a neighborhood of the libration

points� Since the �out of plane� halo orbits have a minimum amplitude� it is not clear whether the

approximation is valid� However for the Sun�Earth system and for halo orbits where n � �� 
� we �nd

that the approximation works very well and provides a convergent seed for our Newton
s method for

orbits with an out of plane amplitude of up to approximately ����� AU � ��� million kilometers� In
Figure � we give one family of halo orbits� The analytic orbits and the numerically converged ones

are� on the scale of this �gure� indistinguishable� The family of orbits can be numerically continued

beyond the size where good analytic approximations are provided� Doing this we �nd that the orbits

become stable� but we have not yet explored further details of the extension of this family�

In the analytic approximation to the CRTBP� there are also halo orbits with a second symmetry

given by taking n � �� � in Equations �� Recall that n��� is the phase di	erence between the

oscillation in the x direction and the z direction� For the Sun�Earth system� these orbits are much

larger than the others and we have not been able to numerically �nd any periodic orbits which

are similar to these� Thus� they are either an artifact of the truncated analytic model or not well

approximated by the analytic model� Further exploration may be able to resolve this question�

Stable and unstable manifolds for class n � �� 
 halo orbits were successfully computed by our

students using the method described in Section �
� Visualization of the projection of the manifolds

into 
�dimensional position space was provided using Geomview ����� A few coloring schemes were

implemented to indicate stability of the manifolds� and to provide velocity information at each point

on the manifold� See the online HTML document ��� for details and pictures� Some examples are

given in Figures �� 
 and ��

In Figure � the halo orbit bounds the open end of the half of the manifold trailing away from

the Earth� which is located at the origin of the coordinate axes� L� appears as the small sphere

at the center of the orbit� A coloring scheme has been chosen so that each dark band on the

manifold represents a trajectory asymptotically approaching the halo orbit� Figures 
 and � depict

��



Figure �� The n � � family of halo orbits around L� in the Sun�Earth system� L�� the Earth� and

L� are represented by small spheres�

the Earth�side branch of the stable manifold of the same halo orbit� The manifold passes close to

the Earth before doubling back and intersecting itself in physical space �but not phase space��� A

single trajectory on the manifold has been superimposed in Figure ��

The potential for further investigations is great� Future projects of interest include

� a study of the geometry of the surfaces of halo orbits�
� a study of how the stable and unstable manifolds change along the family of halo orbits�
� an exploration of the structure of the manifolds in the proximity of the Earth in a search for
low energy transfers from Earth parking orbits to the stable manifold of a halo orbit�

� similar explorations for transfers between halo orbits about L� and L��

� an exploration of the geometry of the phase space for other mass ratio parameters� say for the
Sun�Jupiter system� and

� the computation and visualization of invariant tori in the vicinity of the libration points which
give rise to �Lissajous� orbits�

��



Figure �� One branch of an L� halo orbit
s stable manifold� extending away from Earth�

��



Figure 
� The other branch of the halo orbit
s stable manifold� extending towards Earth�

Figure �� A di	erent view of the same stable manifold� with a trajectory emphasized�

��
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A Astronomical constants

Taken from ��
�� except where noted�

G � ������ �����m�kg��s��

MS �mass of the Sun� � ������� ����kg
ME �mass of the Earth� � ������ ����kg

� �Earth"Sun� � 
���
�� ���

� �Earth�Moon"Sun� � 
������ ���

� �Earth�Moon"Sun� � 
��
��� ���
 �from �����

� �Jupiter"Sun� � 
����
� ����
� A�U� � ������� ����m

B Solving the inhomogeneous linear equation

In this section we discuss how to solve the inhomogeneous linear equations which arise in the

Poincar%e�Linstedt method for this problem� First note that the x� y equations and the z equations

are completely decoupled� so we can consider them independently�

The x� y equations

Consider the following linear inhomogeneous di	erential equations with c� � � �

x�� � �y� � ��  �c��x � A cos�qt p� �

y��  �x�  �c� � ��y � B sin�qt p� �

The homogeneous solution is given by

xh�t� � �C� cos�
t ��  C�e
�t  C�e

��t �

yh�t� � k�C� sin�
t ��� k�C�e
�t  k�C�e

��t �

where

� �

s
c� � �  

p
�c�� � �c�
�

�


 �

s
�c� � ��

p
�c�� � �c�
�

�

k� � ��c�  �� ������ �

k� � ��c�  �  
����
 �


�



There are two cases for particular solutions� depending on whether on the forcing is at the natural

frequency 
 or not� Thus� we have

xp�t� � �qB��q����c�	A
q��q��c���	��c���c���

cos�qt p�

yp�t� � �qA��q�����c�	B
q��q��c���	��c���c���

sin�qt p�
� when q 
� 
 �

and

xp�t� � A�kB
���k�����k	 t sin�qt p�

yp�t� � k A�kB
���k�����k	 t cos�qt p�  k�A����k	�B���k		

����k�����k	 sin�qt p�
� when q � 
 �

The z equation

For the z equation� we simply have

z��  
�z � A sin�qt p�

The homogeneous solution is given by

zh�t� � C sin�
t �� �

Once again there are two cases for the particular solution given by

zp�t� �
A


� � q�
sin�qt p� � q 
� 
 �

and

zp�t� � � A

�

t cos�qt p� � q � 
 �


�



C Coe�cients and quantities from Section �
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s�
�� c�  

q
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��
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�kD�
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�kD�
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k�
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�
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�D�

�
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k
���
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�D�
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�D�
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�D�

�
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D Solutions to exercises

Solution �
�

If

U�x� �
�k
jX j �

�k
�
P

X�
i �

���
�

then


X�
Xi � ��
�

�k
�
P

X�
i �

���
�Xi �

kXi

jX j� �

Thus

�rU�X� � � kX

jX j� �

Solution �
�

Let u � X and v � �X� then

�u � v

�v � �ku�juj� �

Written component�wise� this is a system of � �rst�order ordinary di	erential equations�

Solution �
�

d

dt
�X�t�� �X�t�� � �X�t�� �X�t�  X�t�� �X�t�

� �  � �

This implies that X � �X is a constant of the motion and thus the motion is in a plane which has

normal X � �X �


�



Solution �
�

Substituting X�t� � �a cos�t� a sin�t� �� into the equation of motion we compute�

�a��
�
� cos�t

sin�t

�

�
A � �ka

a�

�
� cos�t

sin�t

�

�
A �

This equation is satis�ed when

�� �
k

a�
�

Solution �
�

Since r � X� �X��

�r � �X� � �X�

� ��Gm�  Gm��r�jrj� �
This is the central force motion equation with k � G�m�  m���

Solution �
�

In Exercise ���� we found that � �
p
k�a�� Using k � G�m�  m�� � ������ ����� � �������

���� m�s�� and a � ������ ����m� we �nd that
� � ������ ����s��

and the period T � ���� is

T � 
����� ���sec � 
����� days �

Solution �
�

The center of mass r� is given by solving the following equation�

�m�  m��r� � m�X�  m�X� �

Thus�

�r� � �m�
�X�  m�

�X����m�  m�� �

Substituting in the equations of motion for X� and X� we �nd that �r� � �� Thus we can integrate

and solve explicitly to get r��t� � at  b� where a and b and the initial velocity and position�

respectively�

Solution �
�

Since r� � �� we have m�X�  m�X� � �� By de�nition� r � X� �X�� We �rst eliminate X� to

�nd

X� � �m�

M
r �


�



and then �nd

X� �
m�

M
r �

Solution �
�

The potentials U� and U� from the masses m� and m� located at X� and X�� respectively� acting

on a mass m located at X are given by

U� � �Gm�m�jX �X�j � U� � �Gm�m�jX �X�j �
The full potential U is given by U � U�  U�� The force on the mass m is given by F � �rU �
�rU� �rU��

Solution �
�

Let X��t� � a�cos�t� sin�t� �� and X��t� � �b�cos�t� sin�t� ��� Then

�X � � Gm�

jX �X��t�j� �X �X��t��� Gm�

jX �X��t�j� �X �X��t�� �

Solution �
�

Recall that l � a  b and M � m�  m�� Because the center of mass is at the origin� we have

the relation am� � bm�� Then

b

l
�

m�a�m�

a b
�

m�a

m�a m�a
�

m�

M

and
a

l
�

m�b�m�

a b
�

m�b

m�b m�b
�

m�

M
�

Solution �
�

Recall that R��
t � RT

t � R�t� Let W � RtX � then

�W � �RtX  Rt
�X

� �RtR�tW  Rt
�X

and solving for �X we �nd
�X � R�t �W �R�t �RtR�tW �

Next�

�W � �RtX  �Rt
�X  �Rt

�X  Rt
�X

� �RtR�tW  �� �RtR�t �W � �RtR�t �RtR�tW �  Rt��rX��X� t��

� � �RtR�t � � �RtR�t �RtR�t�W  � �RtR�t �W

�Rt�R
T
�t�

��rW��R�tW � �


�



Now let

K � �RtR�t �

�
� � � �

�� � �

� � �

�
A �

and notice that

�� �RtR�t � � �RtR�t �RtR�t� �

�
� �� � �

� �� �

� � �

�
A � K� �

Thus� letting U�W � � ��R�tW� t� we �nd that

�W � �K �W  K�W � �rU�W � �

Solution �
�

The libration points are stationary points and are solutions to r# � �� This is equivalent to
x� Ux � �

y � Uy � �

Uz � � �

Let �� � jX � ��� ��e�j and �� � jX  �e�j be the distances from the primary masses to X � Then
the above equations for the equilibrium points are

x� ��x� ��� ���

���
� ��� ���x  ��

���
� �

y � �y

���
� ��� ��y

���
� �

��z
���
� ��� ��z

���
� � �

From the third equation� we discover that z � �� From the second� we �nd there are two types of

solutions� one type for y 
� � and another for y � �� We will �rst solve for the solutions with y 
� ��
For y 
� ��

�� ����� � ��� ������ � � �

We use this equation to eliminate �� from the �rst equation� thus discovering that �� � �� Using

this� we �nd that also �� � �� Thus the two points which are unit distance from both masses are

libration points� Since the masses are unit distance apart� these libration points lie on the vertices

of an equilateral triangle whose other two vertices are the locations of the masses� Solving explicitly�

we �nd they are given by ����� ��	p
��� �� �
When y � �� then we are looking for stationary points which lie on the line connecting the two

masses ( the collinear libration points� We are reduced to solving for x in the following equation�

x� ��x� ��� ���

jx� ��� ��j� �
��� ���x  ��

jx �j� � � �


�



By considering the three di	erent regions separated by the location of the primary masses

�� 	 x 	 �� �

�� � 	 x

x 	 �� �

this equations may be written as

x� s�
�

�x� ��� ����
� s�

�� �

�x ���
� � �

where the si have the following values in the three regions� respectively�

s� � ��� s� � �

s� � �� s� � �

s� � ��� s� � �� �
This in turn leads to solving a �fth�order algebraic equation �for each region��

Solution �
�

Let

J � �#�x� y� z�� � �x�  �y�  �z�� �
We compute

dJ �dt � � 	 rX#� �X � �� 	 �X� �X �

� � 	 rX#� �X� �X �

� � 	 ��� �y��� �x� ��� � �x� �y� �z� �
� � �

So J is an integral�

Solution �
�

The following Maple code does the job�

with�plots��

mu �� �����

rho	 �� sqrt��x
�	
mu�����
y���
z�����

rho� �� sqrt��x
mu����
y���
z�����

U �� 
�mu�rho	
�	
mu��rho���

Omega �� �����x���
y����
U�

C �� ����

implicitplot�d�Omega�C��� x�
����� y�
����� z�
�����

title�cat��Mu���convert�mu�string���� C���convert�C�string���

axes�boxed��

��



Solution �
�

Assuming that �x�t�� y�t�� z�t�� satis�es the equations of motion� we must show that the sym�

metric solutions do also� Doing this for �x�t�� y�t���z�t�� we get

�x�t�� � �y�t� � #x�x�t�� y�t���z�t��
�y�t�  � �x�t� � #y�x�t�� y�t���z�t��

��z�t� � #z�x�t�� y�t���z�t�� �

Since

#x�x�t�� y�t���z�t�� � #x�x�t�� y�t�� z�t��

#y�x�t�� y�t���z�t�� � #y�x�t�� y�t�� z�t��

#z�x�t�� y�t���z�t�� � �#z�x�t�� y�t�� z�t�� �

the above equations hold� and �x�t�� y�t���z�t�� is indeed a solution�
Similarly substituting �x��t���y��t�� z��t�� into the equations of motion� we get

�x��t�� � �y��t� � #x�x��t���y��t�� z��t��
��y��t�� � �x��t� � #x�x��t���y��t�� z��t��

�z��t� � #z�x��t���y��t�� z��t�� �

Now�

#x�x��t���y��t�� z��t�� � #x�x��t�� y��t�� z��t��
#x�x��t���y��t�� z��t�� � �#x�x��t���y��t�� z��t��
#z�x��t���y��t�� z��t�� � #z�x��t�� y��t�� z��t�� �

so the equations hold �at time �t�� and �x��t���y��t�� z��t�� is a solution�
We verify the third symmetry in the same fashion�

Solution �
�

For the Lagrangian

L �
�

�
�x� � U�x��

we have� from the Euler�Lagrange equations�

� �
d

dt


L


 �x
� 
L


x

�
d

dt
�x�rU�x�

� �x�rU�x��

which is the same as the Newton formulation�

��



Solution �
�

The Lagrangian in rotating coordinates is

L �
�

�
� �W �KW �� � U�W ��

The equations of motion are given by the Euler�Lagrange equations

d

dt


L


 �W
� 
L


W
� ��

We have


L


 �W
� �W �KW

d

dt


L


 �W
� �W �K �W


L


W
� � �W �KW ���K��rU�W ��

Now use the fact that KT � �K to see

� �
d

dt


L


 �W
� 
L


W

� �W �K �W  �WK �KWK  rU
� �W � �K �W  K�W  rU�

which are the equations of motion we know and love�

Solution 	
�

Let p � 
L�
 �q� where L�q� �q� is the Lagrangian� Then set H�p� q� �	 p� �q � �L and compute


H�
p � �q�

So the �rst Hamiltonian equation of motion �q � 
H�
p is trivially satis�ed�

We then compute


H�
q � �
L�
q
and see that the second Hamiltonian equation of motion �p � �
H�
q becomes

d

dt


L


 �q
�


L


q
�

which is the Lagrangian form of the equations of motion�

Solution 	
�

The Jacobian integral is

J �q� �q� � �#�q�� �q� � � 	 K�q� q � ��U�q�� �q��

��



The Hamiltonian is

H�q� �q� �
�

�
� �q �Kq�� 	 �q �Kq�Kq �  U�q�

�
�

�
�q�� 	 �q�Kq �  

�

�
	 Kq�Kq �  	 �q�Kq � � 	 Kq�Kq �  U�q�

�
�

�
�q� � �

�
	 Kq�Kq �  U�q�

�
�

�
�q�  

�

�
	 K�q� q �  U�q� �

and we see H � �J ���

Solution �

� �Solution due to Molly Megraw��

Let x � �i be the x�coordinate of the collinear libration point Li� Then x solves

x� �

jx� ��j� �x� ���� ��

jx �j� �x �� � ��

where �� � �� �� Set

S� �
�

jx���j� � S� �
��

jx��j� �

Then

S� �
x� S��x ��

x� ��
�

and we are trying to show S�  S� � �� But

S�  S� � � ��
S�

�
�� x �

x� ��

�
� �� x

x� ��
��

S�
��� � �

x� ��
�

���
x� ��

��

S�
��

x� ��
�

���
x� ��

�

Now if x is at L�� then x� �� � �� and the above holds if and only if

S� 	 �� ��
�

jx �j� 	 � ��
jx �j � ��

But this holds� since the distance between the primaries is �� and the mass at � � � separates L�

from the mass at ��� The inequalities above are reversed for x at L�� leading to the inequality

jx �j 	 �� This inequality holds trivially� since L� is between the primaries�

�




Corrections list for Richardson�s work

In this section we list the di	erences between the formulae presented here and those in the original

work of Richardson �����

Typographical errors

These �rst corrections to ���� appear to simply be typos� We shall present them here for complete�

ness�

�� The �rst term in the formula for �� is missing a factor of ���� This also shows up in the

parameter d��� The formula for d�� is corrected in the journal paper �����

�� The expressions for a�� and b�� have a factor of � which should not be there� The journal

paper only uses � � �� and thus does not have this factor� the expressions for a�� and b�� are
given correctly�


� In equations ����� the �rst occurrence of ��� should be ����

�� In equations ����� the term cos 
�� with coe�cient d��AxAx should be cos ����

�� In equations ���� and ����� the term sin �� in the z equation should switch between sin and

cos with various signs depending on the value of n�

Removal of the third order secular terms

The next corrections are due to the fact that the secular terms in the third�order equations were

removed incorrectly� This a	ects both the third order equations and the third order solutions� The

reader can easily refer back to the text to see the di	erences between the expression in this paper

and the original ����� Essentially� this results in an additional term with coe�cient ��� being added

to the expression for y�� which in turn results in third order corrections to the amplitude of sin ��
in the �nal expression for y��� �with new coe�cients b��� b��� b����

��


