Normal Forms Theory

CDS140B Lecturer: Wang Sang Koon

Winter, 2004

1 Normal Form Theory

Introduction. To find a coordinate system where the dynamical system take the "simplest" form.

- The method is local in the sense that the coordinate transforms are generated near a know solution, such as a fixed point.
- The coordinate transformation will be nonlinear, but these transformation are found by solving a sequence of linear problem.
- The structure of the normal form is determined entirely by the nature of the linear part of the problem.

Preliminary Preparation. Consider

$$
\dot{w}=G(w)
$$

where $w \in R^{n}, G$ is C^{r}, and the system has a fixed point at $w=w_{0}$. Then it can be written as $\left(^{*}\right)$

$$
\dot{x}=J x+F(x)=J x+F_{2}(x)+F_{3}(x)+\cdots+F_{r-1}(x)+O\left(|x|^{r}\right)
$$

where $F_{i}(x)$ represent the order i terms in the Taylor expansion of $F(x)$.

1.1 Simplification of the Second Order Terms

Introduce the coordinate transformation

$$
x=y+h_{2}(y)
$$

where $h_{2}(y)$ is second order in y.
If $h_{2}(y)$ can be found to satisfy the following homological equation

$$
\frac{\partial h_{2}}{\partial y} J y-J h_{2}(y)=F_{2}(y)
$$

then the $F_{2}(y)$ can be eliminated.

The Space of Vector-Valued Homogeneous Polynomials of Degree k, H_{k}.

The Linear Map $L_{J}^{(k)}$ on H_{k}.
Finding Solution of Homological Equation for h_{2}. Notice that

$$
H_{2}=L_{J}^{(2)}\left(H_{2}\right) \oplus G_{2}
$$

where G_{2} represent a space complementary to $L_{J}^{(2)}\left(H_{2}\right)$. We can choose $h_{2}(y)$ such that only second order terms that are in G_{2} remain. We denote these terms by

$$
F_{2}^{r}(y) \in G_{2} .
$$

Simplification of the Third Order Terms. Similar computation can be done to simplify the third order terms.

1.2 The Normal Form Theorem

Normal Form Theorem): By a sequence of analytic coordinate changes equation $\left(^{*}\right)$ can be transformed into equation $\left({ }^{* *}\right)$

$$
\dot{y}=J x+F_{2}^{r}(x)+F_{3}^{r}(x)+\cdots+F_{r-1}^{r}(x)+O\left(|x|^{r}\right)
$$

where $F_{k}^{r}(y) \in G_{k}, 2 \leq k \leq(r-1)$, and G_{k} is a space complementary to $L_{J}^{(k)}\left(H_{k}\right)$. Equation ($\left.{ }^{* *}\right)$ is said to be in normal form through order $(r-1)$.

Remarks:

1. The terms $F_{k}^{r}(y), 2 \leq k \leq(r-1)$ are referred to as resonance terms.
2. The structure of the nonlinear terms in $\left({ }^{* *)}\right.$ is determined entirely by the linear part (i.e., $J)$.
3. Notice that in simplifying the terms fo order k, any lower order terms do not get modified. However, terms of order higher than k are modified.

Example 2.1.2

1.3 Normal Form for Hopf Bifurcation

