Overview of CDS 140B:
 Introduction to Dynamics

Wang Sang Koon
Control and Dynamical Systems, Caltech

koon@cds.caltech.edu

■ Textbook, Other Book and Papers

- Textbook
- Stephen Wiggins [2003]:

Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second Edition.

- Other Books and Paper
- Ferdinand Verhulst: Nonlinear Differential Equations and Dynamical Systems.
- Lawrence Perko:

Differential Equations and Dynamical Systems.

- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000]: Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 10, 427-469.

Goals and Description of CDS 140B

- A continuation of CDS 140A. 80% covers basic tools from nonlinear dynamics
- perturbation theory and method of averaging;
- bifurcation theory;
- global bifurcation and chaos;
- Hamiltonian systems.
- Besides standard examples
(van der Pol, Duffing, and Lorenz equations), 20% applies dynamical system tools in space mission design
- periodic and quasi-periodic orbits,
- invariant manifolds,
- homoclinic and heteroclinic connections,
- symbolic dynamics and chaos.
- Examples: Genesis Discovery Mission and Low Energy Tour of Multiple Moons of Jupiter
- Outline of Presentation
- Main Theme
- how to use dynamical systems theory of 3-body problem in space mission design.
- Background and Motivation:
- NASA's Genesis Discovery Mission.
- Jupiter Comets.
- Planar Circular Restricted 3-Body Problem.
- Major Results on Tube Dynamics.
- Lobe Dynamics \& Navigating in Phase Space.
- A Low Energy Tour of Jupiter's Moons.
- Conclusion and Ongoing Work.
- Two Full Body Problem and Astroid Pairs.
- Looking into Chemical Reaction Dynamics.
- H. Poincaré, J. Moser
- C. Conley, R. McGehee, D. Appleyard
- C. Simó, J. Llibre, R. Martinez
- G. Gómez, J. Masdemont
- B. Farquhar, D. Dunham
- E. Belbruno, B. Marsden, J. Miller
- K. Howell, B. Barden, R. Wilson
- S. Wiggins, L. Wiesenfeld, C. Jaffé, T. Uzer
- V. Rom-Kedar, F. Lekien, L. Vela-Arevalo
- M. Dellnitz, O. Junge, and Paderborn group
- Genesis spacecraft
- is collecting solar wind samples from a L_{1} halo orbit,
- will return them to Earth later this year for analysis.
- Halo orbit, transfer/ return trajectories in rotating frame.

- Genesis Discovery Mission
- Genesis Discovery Mission
- Follows natural dynamics, little propulsion after launch.
- Return-to-Earth portion utilizes heteroclinic dynamics.

■ Jupiter Comets

- Rapid transition from outside to inside Jupiter's orbit.
- Captured temporarily by Jupiter during transition.
- Exterior (2:3 resonance). Interior (3:2 resonance).

- Belbruno and B. Marsden [1997]
- Lo and Ross [1997]
- Comet in rotating frame follows invariant manifolds.
- Jupiter comets make resonance transition near L_{1} and L_{2}.

- PCR3BP is a good starting model:
- Comets mostly heliocentric, but their perturbation dominated by Jupiter's gravitation.
- Their motion nearly in Jupiter's orbital plane.
- Jupiter's small eccentricity plays little role during transition.

- 2 main bodies: Sun and Jupiter.
- Total mass normalized to $1: \quad m_{J}=\mu, \quad m_{S}=1-\mu$.
- Rotate about center of mass, angular velocity normalized to 1 .
- Choose a rotating coordinate system with $(0,0)$ at center of mass, \mathbf{S} and \mathbf{J} fixed at $(-\mu, 0)$ and $(1-\mu, 0)$.

- Equilibrium Points (PCR3BP)

- Comet's equations of motion are

$$
\ddot{x}-2 \dot{y}=-\frac{\partial U}{\partial x} \quad \ddot{y}+2 \dot{x}=-\frac{\partial U}{\partial y} \quad U=-\frac{x^{2}+y^{2}}{2}-\frac{1-\mu}{r_{s}}-\frac{\mu}{r_{j}}
$$

- Five equilibrium points:
- 3 unstable equilbrium points on S-J line, L_{1}, L_{2}, L_{3}.
- 2 equilateral equilibrium points, L_{4}, L_{5}.

- Energy integral: $E(x, y, \dot{x}, \dot{y})=\left(\dot{x}^{2}+\dot{y}^{2}\right) / 2+U(x, y)$.
- E can be used to determine (Hill's) realm in position space where comet is energetically permitted to move.
- Effective potential: $U(x, y)=-\frac{x^{2}+y^{2}}{2}-\frac{1-\mu}{r_{s}}-\frac{\mu}{r_{j}}$.

- To fix energy value E is to fix height of plot of $U(x, y)$. Contour plots give 5 cases of Hill's realm.

- For energy value just above that of L_{2}, Hill's realm contains a "neck" about $L_{1} \& L_{2}$.
- Comet can make transition through these equilibrium realms.
- 4 types of orbits:
periodic, asymptotic, transit \& nontransit.

(a)

(b)
- [Moser] All the qualitative results of the linearized equations carry over to the full nonlinear equations.
- Recall equations of PCR3BP:

$$
\begin{array}{ll}
\dot{x}=v_{x}, & \dot{v}_{x}=2 v_{y}+U_{x} \\
\dot{y}=v_{y}, & \dot{v}_{y}=-2 v_{x}+U_{y} \tag{1}
\end{array}
$$

- After linearization,

$$
\begin{array}{ll}
\dot{x}=v_{x}, & \dot{v}_{x}=2 v_{y}+a x \\
\dot{y}=v_{y}, & \dot{v}_{y}=-2 v_{x}-b y . \tag{2}
\end{array}
$$

- Eigenvalues have the form $\pm \lambda$ and $\pm i \nu$.
- Corresponding eigenvectors are

$$
\begin{aligned}
u_{1} & =(1,-\sigma, \lambda,-\lambda \sigma), \\
u_{2} & =(1, \sigma,-\lambda,-\lambda \sigma), \\
w_{1} & =(1,-i \tau, i \nu, \nu \tau), \\
w_{2} & =(1, i \tau,-i \nu, \nu \tau) .
\end{aligned}
$$

- After linearization \& making eigenvectors as new coordinate axes, equations assume simple form

$$
\dot{\xi}=\lambda \xi, \quad \dot{\eta}=-\lambda \eta, \quad \dot{\zeta}_{1}=\nu \zeta_{2}, \quad \dot{\zeta}_{2}=-\nu \zeta_{1}
$$

with energy function $E_{l}=\lambda \eta \xi+\frac{\nu}{2}\left(\zeta_{1}^{2}+\zeta_{2}^{2}\right)$.

- The flow near L_{1}, L_{2} have the form of saddle \times center.

- Appearance of Orbits in Position Space

- 4 types of orbits: Shown are
- A periodic orbit.
- A typical aymptotic orbit.
- 2 transit orbits.
- 2 non-transit orbits.

- Stable and unstable manifold tubes act as separatrices for the flow in \mathcal{R} :
- Those inside the tubes are transit orbits.
- Those outside of the tubes are non-transit orbits.

Computation of Periodic Orbit \& Invariant Manifolds

- Periodic orbit can be computed by Lindstedt-Poincaré method.
- Invariant manifold can be computed by finding eigenvectors of monodromy matrix.

- Major Result (A): Heteroclinic Connection

- Found heteroclinic connection between pair of periodic orbits.
- Found a large class of orbits near this (homo/heteroclinic) chain.
- Comet can follow these channels in rapid transition.

- Homoclinic orbits separate librational motion from rotational motion.

- Periodic forcing leads to transversal intersection and chaotic dynamics.
- For any bi-infinite sequence of itenarary (..., $R, L ; R, R, \ldots$), there is an orbit whose whereabout matches the sequence.

- Major Result (B): Existence of Transitional Orbits

- Symbolic sequence used to label itinerary of each comet orbit.
- Main Theorem: For any admissible itinerary, e.g., (..., X, J; S, J, X, ...), there exists an orbit whose whereabouts matches this itinerary.
- Can even specify number of revolutions the comet makes around Sun \& Jupiter (plus $L_{1} \& L_{2}$).

- Major Result (C): Numerical Construction of Orbits

- Developed procedure to construct orbit with prescribed itinerary.
- Example: An orbit with itinerary ($\mathbf{X}, \mathbf{J} ; \mathbf{S}, \mathbf{J}, \mathbf{X})$.

Details: Construction of (J, X; J, S, J) Orbits

- Invariant manifold tubes separate transit from nontransit orbits.
- Green curve (Poincaré cut of L_{1} stable manifold). Red curve (cut of L_{2} unstable manifold).
- Any point inside the intersection region Δ_{J} is a $(\mathbf{X} ; \mathbf{J}, \mathbf{S})$ orbit.

■ Details: Construction of (J, X; J, S, J) Orbits

- The desired orbit can be constructed by
- Choosing appropriate Poincaré sections and
- linking invariant manifold tubes in right order.

- Petit Grand Tour of Jupiter's Moons

- Used invariant manifolds
to construct trajectories with interesting characteristics:
- Petit Grand Tour of Jupiter's moons. 1 orbit around Ganymede. 4 orbits around Europa.
- A ΔV nudges the SC from

Jupiter-Ganymede system to Jupiter-Europa system.

- Instead of flybys, can orbit several moons for any duration.

- Petit Grand Tour of Jupiter's Moons
- Petit Grand Tour of Jupiter's Moons

- Petit Grand Tour of Jupiter's Moons

- Jupiter-Ganymede-Europa-SC 4-body system approximated as 2 coupled 3 -body systems
- Invariant manifold tubes of spatial 3-body systems are linked in right order to construct orbit with desired itinerary.
- Initial solution refined in 4-body model.

- Poincaré section: Vary configuration of the moons until,
- (x, \dot{x})-plane: Intersection found!
- (x, \dot{y})-plane: Velocity discontinuity since energies are different.
- A rocket burn ΔV of this magnitude will make transfer trajectory "jump" from one tube to the other.

(a)

(b)

- Look for Natural Pathways to Bridge the Gap

- Tubes of two 3-body systems may not intersect for awhile. May need large ΔV to "jump" from one tube to another.
- Look for natural pathways to bridge the gap
- between z_{0} where tube of one system enters and z_{2} where tube of another system exits (into Europa realm) by "hopping" through phase space.

- By using
- tubes of rapid transition that connect realms
- lobe dynamics to hop through phase space,

New tour only needs $\Delta V=20 \mathrm{~m} / \mathrm{s}$ (50 times less).
Low Energy Tour of Jupiter's Moons
Seen in Jovicentric Inertial Frame

(a)

(b)

- Poincaré section reveals mixed phase space:
- resonance regions and
- "chaotic sea".

- Transport between Regions via Lobe Dynamics
- Invariant manifolds divide phase space into resonance regions.
- Transport between regions can be studied via lobe dynamics.

- Segments of unstable and stable manifolds form partial barriers between regions R_{1} and R_{2}.
- $L_{1,2}(1), L_{2,1}(1)$ are lobes; they form a turnstile.
- In one iteration, only points from R_{1} to R_{2} are in $L_{1,2}$
- only points from R_{2} to R_{1} are in $L_{2,1}(1)$.
- By studying pre-images of $L_{1,2}(1)$, one can find efficient way from R_{1} to R_{2}.

- Hopping through Resonaces in Low Energy Tour

- Guided by lobe dynamics, hopping through resonances (essential for low energy tour) can be performed.

- To use tube dynamics/lobe dynamics of spatial 3-body problem to systematically design low-fuel trajectory.
- Part of our program to study transport in solar system using tube and lobe dynamics.

Low Energy Tour of Jupiter's Moons

Seen in Jovicentric Inertial Frame

(a)

(b)

- Tube/Lobe Dynamics: 2FBP/Asteroid Pairs

- To study dynamical interacton between 2 rigid bodies where their rotational and translational motions are coupled.
- formation of binary asteroids (shown below are Ida and Dactyl)
- evolution of asteroid rotational states

(a)

(b)
- Carry out model reduction (POD) for simple biomolecules, keeping chains of molecules and more complex systems in view.
- Indentify conformations in simple molecular models using techniques of $A I S$ and set oriented methods.
- Compute transport rates between different conformations by both lobe dynamics and set oriented methods.
- Collaborate with Institute of Collaborative Bio-Technologycd (ICB).

