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B Textbook, Other Book and Papers

» Textbook

e Stephen Wiggins [2003]:
Introduction to Applied Nonlinear Dynamical Systems and
Chaos, Second Edition.

» Other Books and Paper

e Ferdinand Verhulst:
Nonlinear Differential Equations and Dynamacal Systems.

e Lawrence Perko:
Differential Equations and Dynamical Systems.

e Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000]:
Heteroclinic Connections between Periodic Orbits and Reso-

nance Transitions in Celestial Mechanics, Chaos, 10, 427-469.



B Goals and Description of CDS 140B

» A continuation of CDS 140A.
80% covers basic tools from nonlinear dynamics

e perturbation theory and method of averaging;
e bifurcation theory:
e global bifurcation and chaos;
e Hamiltonian systems.
» DBesides standard examples
(van der Pol, Duffing, and Lorenz equations),
20% applies dynamical system tools in space mission design
e periodic and quasi-periodic orbits,
e invariant manifolds,
e homoclinic and heteroclinic connections,
e symbolic dynamics and chaos.

» Examples: Genesis Discovery Mission and
Low Energy Tour of Multiple Moons of Jupiter



B Outline of Presentation

» Main Theme

e how to use dynamical systems theory of 3-body problem
In space mission design.

» Background and Motivation:
e NASA’s Genesis Discovery Mission.

e Jupiter Comets.
» Planar Circular Restricted 3-Body Problem.
» Major Results on Tube Dynamics.
» Lobe Dynamics & Navigating in Phase Space.
e A Low Energy Tour of Jupiter's Moons.
» Conclusion and Ongoing Work.
e T'wo Full Body Problem and Astroid Pairs.

e Looking into Chemical Reaction Dynamics.
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B Genesis Discovery Mission

» Genesis spacecraft

e is collecting solar wind samples from a L1 halo orbit,

e will return them to Earth later this year for analysis.

» Halo orbit, transfer/ return trajectories in rotating frame.
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B Genesis Discovery Mission

» Follows natural dynamics, little propulsion atter launch.

» Return-to-Earth portion utilizes heteroclinic dynamics.
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B Jupiter Comets




B Jupiter Comets

» Rapid transition from outside to inside Jupiter’s orbit.
» Captured temporarily by Jupiter during transition.

» Exterior (2:3 resonance). Interior (3:2 resonance).
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» Belbruno and B. Marsden [1997]

Jupiter Comets

» Lo and Ross [1997]

e Comet in rotating frame follows invariant manifolds.

» Jupiter comets make resonance transition near L1 and Lo.
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B Planar Circular Restricted 3-Body Problem
» PCR3BP is a good starting model:

e Comets mostly heliocentric, but
their perturbation dominated by Jupiter’s gravitation.

e Their motion nearly in Jupiter’s orbital plane.

e Jupiter’s small eccentricity plays little role during transition.
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B Planar Circular Restricted 3-Body Problem

» 2 main bodies: Sun and Jupiter.

e Total mass normalized to 1:  mj=pn, mg=1—p.

e Rotate about center of mass, angular velocity normalized to 1.

» Choose a rotating coordinate system with (0, 0) at center of mass,
S and J fixed at (—pu,0) and (1 — u,0).
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B Equilibrium Points (PCR3BP)
» Comet’s equations of motion are
oU oU P4yt 1—u p

Y or 0y 2 s T

» Five equilibrium points:

e 3 unstable equilbrium points on S-J line, Ly, Lo, L3.
e 2 equilateral equilibrium points, Ly, Ls.
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B Hill’s Realm (PCR3BP)

» Energy integral: E(z,y,z,7) = (&% + 3°)/2 + Uz, y).

» E can be used to determine (Hill’s ) realm in position space
where comet is energetically permitted to move.

» Effective potential: U(z,y) = —% _le




B Hill’s Realm (PCR3BP)

» To fix energy value E is to fix height of plot of U(z,y).
Contour plots give 5 cases of Hill’s realm.

Case 1: Cc>C, Case2: C;>C>C,




B The Flow near [ and L9

» For energy value just above that of Lo,
Hill’s realm contains a “neck” about L{ & Lo.

» Comet can make transition through these equilibrium realms.

» 4 types of orbits:
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B The Flow near Ly and Lo: Linearization

» [Moser| All the qualitative results of the linearized equations carry
over to the full nonlinear equations.

» Recall equations of PCR3BP:

x = Vg, Vg = 20y + Uy,

Yy = vy, Uy=—2v;+U. (1)
» After linearization,

T = Uy, Uy = 20y + ax,

Yy = vy, Uy=—2v;—by. (2)
» Eigenvalues have the form A and +iv.

» Corresponding eigenvectors are

= (1,—0,\, =)o),
1,0,—\, —\o),

= (1,
(1, —iT,iv,vT),
(

1,47, —iv, vT).



B The Flow near L and L9: Linearization

» After linearization & making eigenvectors as new coordinate
axes, equations assume simple form

E=X, ==Xy, (=vl (=-v(,
with energy function E; = Ané + (¢ + (3).
» The How near Lq, Lo have the form of saddle x center.




B Appearance of Orbits in Position Space

» 4 types of orbits: Shown are

e A periodic orbit.

e A typical aymptotic orbit.

e 2 transit orbits.

e 2 non-transit orbits.
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B Invariant Manifolds as Separatrix

» Stable and unstable manifold tubes act as
separatrices for the flow in R
e Those inside the tubes are transit orbits.
e Those outside of the tubes are non-transit orbits.
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B Computation of Periodic Orbit & Invariant Manifolds

» Periodic orbit can be computed by Lindstedt-Poincaré method.

» Invariant manifold can be computed by finding
eigenvectors of monodromy matrix.




B Major Result (A): Heteroclinic Connection

» Found heteroclinic connection between pair of periodic orbits.

» Found a large class of orbits near this (homo/heteroclinic) chain.

» Comet can follow these chanmnels in rapid transition.
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B Major Result (A): Heteroclinic Connection




B Review of Horseshoe Dynamics: Pendulum

» Homoclinic orbits separate librational motion from
rotational motion.
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B Review of Horseshoe Dynamics: Forced Pendulum

» Periodic forcing leads to transversal intersection and
chaotic dynamics.

» For any bi-infinite sequence of itenarary (..., R, L; R, R, ...),
there is an orbit whose whereabout matches the sequence.

MAGES P"(Hg),0<n<N




B Major Result (B): Existence of Transitional Orbits

» Symbolic sequence used to label itinerary of each comet orbit.

» Main Theorem: For any admissible itinerary,
e.g., (..., X, J;S,J, X ...), there exists an orbit whose
whereabouts matches this itinerary.

» Can even specify number of revolutions the comet makes
around Sun & Jupiter (plus Ly & Lo).




Developed procedure to construct orbit
with prescribed itinerary.

Example: An orbit with itinerary (X, J; S, J, X).
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B Details: Construction of (J,X:;J,S,J) Orbits

» Invariant manifold tubes separate transit from nontransit orbits.

» Green curve (Poincaré cut of L stable manifold).
Red curve (cut of Ly unstable manifold).

» Any point inside the intersection region A 7 is a (X;J,S) orbit.
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B Details: Construction of (J,X;J,S,J) Orbits

» The desired orbit can be constructed by

e Choosing appropriate Poincaré sections and

e linking invariant manifold tubes in right order.




B Petit Grand Tour of Jupiter’s Moons

» Used invariant manifolds

to construct trajectories with interesting characteristics:

e Petit Grand Tour of Jupiter’s moons.
1 orbit around Ganymede. 4 orbits around

e A AV nudges the SC from
Jupiter-Ganymede system to Jupiter-

system.

» Instead of flybys, can orbit several moons for any duration.
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B Petit Grand Tour of Jupiter’s Moons




B Petit Grand Tour of Jupiter’s Moons




B Petit Grand Tour of Jupiter’s Moons

» Jupiter-Ganymede-Europa-SC 4-body system approximated
as 2 coupled 3-body systems

» Invariant manifold tubes of spatial 3-body systems
are linked in right order to construct orbit with desired itinerary:.

» Initial solution refined in 4-body model.

Spacecraft
transfer
trajectory

AV at transfer
patch point

Ganymede



B Intersection of Tubes: Poincaré Section

» Poincaré section: Vary configuration of the moons until,

o (z,x)-plane: Intersection found!

o (z,y)-plane: Velocity discontinuity since energies are different.

e A rocket burn AV of this magnitude will make transfer trajec-
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B Look for Natural Pathways to Bridge the Gap

» Tubes of two 3-body systems may not intersect for awhile.
May need large AV to “jump” from one tube to another.

» Look for natural pathways to bridge the gap

e between zg where tube of one system enters
and >» where tube of another system exits (into Europa realm)
by “hopping” through phase space.
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B Transport in Phase Space via Tube & Lobe Dynamics

» By using
e tubes of rapid transition that connect realms

e lobe dynamics to hop through phase space,
New tour only needs AV = 20m/s (50 times less).

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame
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B Tube Dynamics: Mixed Phase Space

» Poincaré section reveals mixed phase space:

e resonance regions and
e “chaotic sea’.
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B Transport between Regions via Lobe Dynamics

» Invariant manifolds divide phase space into resonance regions.

» Transport between regions can be studied via lobe dynamics.
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B Transport between Regions via Lobe Dynamics

» Segments of unstable and stable manifolds
form partial barriers between regions R and Rs.

» Ljo(1), Lo (1) are lobes; they form a turnstile.

e In one iteration, only points from Rj to Ro are in Lj o

o only points from Ry to R are in L9 1(1).

» By studying pre-images of Ly o(1),
one can find efficient way from Ry to Rs.

Ly 1(1) Ry




B Hopping through Resonaces in Low Energy Tour

» Guided by lobe dynamics, hopping through resonances
(essential for low energy tour) can be performed.
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B Tube/Lobe Dynamics: Transport in Solar System

» To use tube dynamics/lobe dynamics of spatial 3-body problem
to systematically design low-tuel trajectory.

» Part of our program to study transport in solar system
using tube and lobe dynamics.

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame
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To study dynamical interacton between 2 rigid bodies
where their rotational and translational motions are coupled.

formation of binary asteroids (shown below are Ida and Dactyl)

evolution of asteroid rotational states
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B Multi-scale Dynamics of Biomolecules (ICB)

» Carry out model reduction (POD) for simple biomolecules,
keeping chains of molecules and more complex systems in view.

» Indentify conformations in simple molecular models
using techniques of AIS and set oriented methods.

» Compute transport rates between different conformations
by both lobe dynamics and set oriented methods.

» Collaborate with Institute of Collaborative Bio-Technologyed (ICB).

d CH,NH, @GHSI:.IHS 'd

Methylamine Methylammonium ion



