Overview of CDS 140B: Introduction to Dynamics

Wang Sang Koon Control and Dynamical Systems, Caltech

koon @cds.caltech.edu

Textbook, Other Book and Papers

► Textbook

 Stephen Wiggins [2003]: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second Edition.

▶ Other Books and Paper

- Ferdinand Verhulst: Nonlinear Differential Equations and Dynamical Systems.
- Lawrence Perko: Differential Equations and Dynamical Systems.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000]: Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, *Chaos*, 10, 427-469.

Goals and Description of CDS 140B

- A continuation of CDS 140A.
 80% covers basic tools from nonlinear dynamics
 - perturbation theory and method of averaging;
 - bifurcation theory;
 - global bifurcation and chaos;
 - Hamiltonian systems.
- Besides standard examples (van der Pol, Duffing, and Lorenz equations), 20% applies dynamical system tools in space mission design
 - periodic and quasi-periodic orbits,
 - invariant manifolds,
 - homoclinic and heteroclinic connections,
 - symbolic dynamics and chaos.
- Examples: Genesis Discovery Mission and Low Energy Tour of Multiple Moons of Jupiter

Outline of Presentation

► Main Theme

• how to use dynamical systems theory of 3-body problem in space mission design.

Background and **Motivation**:

- NASA's Genesis Discovery Mission.
- Jupiter Comets.
- ▶ Planar Circular Restricted 3-Body Problem.
- ► Major Results on Tube Dynamics.
- ► Lobe Dynamics & Navigating in Phase Space.
 - A Low Energy Tour of Jupiter's Moons.
- **Conclusion** and **Ongoing Work**.
 - Two Full Body Problem and Astroid Pairs.
 - Looking into Chemical Reaction Dynamics.

Acknowledgement

- ► H. Poincaré, J. Moser
- ► C. Conley, R. McGehee, D. Appleyard
- ► C. Simó, J. Llibre, R. Martinez
- ► G. Gómez, J. Masdemont
- ▶ B. Farquhar, D. Dunham
- ▶ E. Belbruno, B. Marsden, J. Miller
- ▶ K. Howell, B. Barden, R. Wilson
- ► S. Wiggins, L. Wiesenfeld, C. Jaffé, T. Uzer
- ▶ V. Rom-Kedar, F. Lekien, L. Vela-Arevalo
- ▶ M. Dellnitz, O. Junge, and Paderborn group

Genesis Discovery Mission

► Genesis spacecraft

- is collecting solar wind samples from a L_1 halo orbit,
- will **return** them to Earth later this year for analysis.

► Halo orbit, transfer/ return trajectories in rotating frame.

Genesis Discovery Mission

▶ Follows natural dynamics, little propulsion after launch.

Return-to-Earth portion utilizes heteroclinic dynamics.

Jupiter Comets

Rapid transition from outside to inside Jupiter's orbit.
 Captured temporarily by Jupiter during transition.

 $\blacktriangleright Exterior (2:3 resonance). Interior (3:2 resonance).$

Jupiter Comets

▶ Belbruno and B. Marsden [1997]

▶ Lo and Ross [1997]

• Comet in **rotating frame** follows **invariant manifolds**.

▶ Jupiter comets make **resonance transition** near L_1 and L_2 .

Planar Circular Restricted 3-Body Problem

► **PCR3BP** is a good starting model:

- Comets mostly **heliocentric**, but their perturbation dominated by **Jupiter's gravitation**.
- Their motion nearly in Jupiter's **orbital plane**.
- Jupiter's small **eccentricity** plays little role during transition.

Planar Circular Restricted 3-Body Problem

\triangleright 2 main bodies: **Sun** and **Jupiter**.

• Total mass normalized to 1: $m_J = \mu$, $m_S = 1 - \mu$.

- Rotate about center of mass, angular velocity normalized to 1.
- ► Choose a **rotating** coordinate system with (0, 0) at center of mass, **S** and **J** fixed at $(-\mu, 0)$ and $(1 - \mu, 0)$.

Equilibrium Points (PCR3BP)

► Comet's equations of motion are

$$\ddot{x} - 2\dot{y} = -\frac{\partial U}{\partial x} \quad \ddot{y} + 2\dot{x} = -\frac{\partial U}{\partial y} \quad U = -\frac{x^2 + y^2}{2} - \frac{1 - \mu}{r_s} - \frac{\mu}{r_j}$$

► Five equilibrium points:

- 3 **unstable** equilbrium points on S-J line, L_1, L_2, L_3 .
- 2 equilateral equilibrium points, L_4, L_5 .

Hill's Realm (PCR3BP)

▶ Energy integral: $E(x, y, \dot{x}, \dot{y}) = (\dot{x}^2 + \dot{y}^2)/2 + U(x, y).$

► E can be used to determine (**Hill's**) **realm** in position space where comet is energetically permitted to move.

▶ Effective potential: $U(x,y) = -\frac{x^2+y^2}{2} - \frac{1-\mu}{r_s} - \frac{\mu}{r_j}$.

Hill's Realm (PCR3BP)

► To fix energy value E is to fix height of plot of U(x, y). Contour plots give 5 cases of Hill's realm.

The Flow near L_1 and L_2

- For energy value just above that of L_2 , Hill's realm contains a "neck" about $L_1 \& L_2$.
- ► Comet can make **transition** through these equilibrium realms.
- ► 4 types of orbits:

periodic, asymptotic, transit & nontransit.

The Flow near L_1 and L_2 : Linearization

[Moser] All the qualitative results of the linearized equations carry over to the full nonlinear equations.

▶ Recall equations of PCR3BP:

$$\dot{x} = v_x, \qquad \dot{v}_x = 2v_y + U_x,
\dot{y} = v_y, \qquad \dot{v}_y = -2v_x + U_y.$$
(1)

► After linearization,

$$\dot{x} = v_x, \qquad \dot{v}_x = 2v_y + ax, \dot{y} = v_y, \qquad \dot{v}_y = -2v_x - by.$$

$$(2)$$

► Eigenvalues have the form $\pm \lambda$ and $\pm i\nu$.

► Corresponding eigenvectors are

$$u_1 = (1, -\sigma, \lambda, -\lambda\sigma),$$

$$u_2 = (1, \sigma, -\lambda, -\lambda\sigma),$$

$$w_1 = (1, -i\tau, i\nu, \nu\tau),$$

$$w_2 = (1, i\tau, -i\nu, \nu\tau).$$

The Flow near L_1 and L_2 : Linearization

► After **linearization** & making **eigenvectors** as new coordinate axes, equations assume simple form

$$\dot{\xi} = \lambda \xi, \quad \dot{\eta} = -\lambda \eta, \quad \dot{\zeta}_1 = \nu \zeta_2, \quad \dot{\zeta}_2 = -\nu \zeta_1,$$

with **energy function** $E_l = \lambda \eta \xi + \frac{\nu}{2}(\zeta_1^2 + \zeta_2^2).$

▶ The flow near L_1, L_2 have the form of saddle×center.

Appearance of Orbits in Position Space

- ▶ 4 types of orbits: Shown are
 - A **periodic** orbit.
 - A typical **aymptotic** orbit.
 - 2 **transit** orbits.
 - 2 **non-transit** orbits.

Invariant Manifolds as Separatrix

- ► Stable and unstable manifold tubes act as separatrices for the flow in *R*:
 - Those inside the tubes are **transit** orbits.
 - Those outside of the tubes are **non-transit** orbits.

Computation of Periodic Orbit & Invariant Manifolds

- ▶ Periodic orbit can be computed by Lindstedt-Poincaré method.
- ► Invariant manifold can be computed by finding eigenvectors of monodromy matrix.

Major Result (A): Heteroclinic Connection

- ► Found **heteroclinic connection** between pair of periodic orbits.
- ▶ Found a large class of **orbits** near this (homo/heteroclinic) *chain*.
- ► Comet can follow these *channels* in rapid transition.

■ Major Result (A): Heteroclinic Connection

Review of Horseshoe Dynamics: Pendulum

▶ Homoclinic orbits separate librational motion from rotational motion.

Review of Horseshoe Dynamics: Forced Pendulum

- Periodic forcing leads to transversal intersection and chaotic dynamics.
- For any bi-infinite sequence of itenarary (..., R, L; R, R, ...), there is an orbit whose whereabout matches the sequence.

Major Result (B): Existence of Transitional Orbits

- **Symbolic sequence** used to label itinerary of each comet orbit.
- Main Theorem: For any admissible itinerary,
 e.g., (..., X, J; S, J, X, ...), there exists an orbit whose whereabouts matches this itinerary.
- ► Can even specify **number of revolutions** the comet makes around Sun & Jupiter (plus $L_1 \& L_2$).

Major Result (C): Numerical Construction of Orbits

Developed procedure to construct orbit with prescribed itinerary.

 \blacktriangleright Example: An orbit with itinerary $(\mathbf{X}, \mathbf{J}; \mathbf{S}, \mathbf{J}, \mathbf{X})$.

Details: Construction of $(\mathbf{J}, \mathbf{X}; \mathbf{J}, \mathbf{S}, \mathbf{J})$ Orbits

- ▶ Invariant manifold **tubes** separate transit from nontransit orbits.
- ▶ Green curve (Poincaré cut of L_1 stable manifold). Red curve (cut of L_2 unstable manifold).
- ▶ Any point inside the intersection region Δ_J is a $(\mathbf{X}; \mathbf{J}, \mathbf{S})$ orbit.

Details: Construction of $(\mathbf{J}, \mathbf{X}; \mathbf{J}, \mathbf{S}, \mathbf{J})$ Orbits

- ► The desired orbit can be constructed by
 - Choosing appropriate **Poincaré sections** and
 - linking invariant **manifold tubes** in right order.

Used invariant manifolds

to construct trajectories with interesting characteristics:

- Petit Grand Tour of Jupiter's moons. 1 orbit around **Ganymede**. 4 orbits around **Europa**.
- A ΔV nudges the SC from
 Jupiter-Ganymede system to Jupiter-Europa system.

▶ Instead of **flybys**, can orbit several moons for **any duration**.

- Jupiter-Ganymede-Europa-SC 4-body system approximated as 2 coupled 3-body systems
- ▶ **Invariant manifold tubes** of **spatial** 3-body systems are linked in right order to construct orbit with desired itinerary.
- ▶ Initial solution refined in **4-body model**.

Intersection of Tubes: Poincaré Section

- ▶ Poincaré section: Vary configuration of the moons until,
 - (x, \dot{x}) -plane: Intersection found!
 - (x, \dot{y}) -plane: Velocity discontinuity since energies are different.
 - A rocket burn ΔV of this magnitude will make transfer trajectory "jump" from one tube to the other.

Look for Natural Pathways to Bridge the Gap

- **Tubes** of two 3-body systems **may not intersect** for awhile. May need large ΔV to "jump" from one tube to another.
- ▶ Look for **natural pathways** to bridge the gap
 - between z_0 where tube of one system **enters** and z_2 where tube of another system **exits** (into Europa realm) by "hopping" through **phase space**.

Transport in Phase Space via Tube & Lobe Dynamics

► By using

- **tubes** of rapid transition that connect realms
- **lobe dynamics** to hop through phase space,

New tour only needs $\Delta V = 20$ m/s (50 times less).

Tube Dynamics: Mixed Phase Space
 Poincaré section reveals mixed phase space:

- **resonance regions** and
- "chaotic sea".

Transport between Regions via Lobe Dynamics

- **Invariant manifolds** divide phase space into resonance regions.
- ► Transport between regions can be studied via **lobe dynamics**.

Transport between Regions via Lobe Dynamics

- Segments of **unstable** and **stable** manifolds form **partial barriers** between regions R_1 and R_2 .
- \blacktriangleright $L_{1,2}(1), L_{2,1}(1)$ are **lobes**; they form a **turnstile**.
 - In one iteration, only points from R₁ to R₂ are in L_{1,2}
 only points from R₂ to R₁ are in L_{2,1}(1).
- ▶ By studying pre-images of $L_{1,2}(1)$, one can find efficient way from R_1 to R_2 .

Hopping through Resonaces in Low Energy Tour

Guided by lobe dynamics, hopping through resonances (essential for low energy tour) can be performed.

Tube/Lobe Dynamics: Transport in Solar System

- ► To use **tube** dynamics/**lobe** dynamics of **spatial** 3-body problem to **systematically** design low-fuel trajectory.
- Part of our program to study transport in solar system using tube and lobe dynamics.

Tube/Lobe Dynamics: 2FBP/Asteroid Pairs

- ► To study dynamical interacton between 2 rigid bodies where their **rotational** and **translational** motions are coupled.
 - formation of binary asteroids (shown below are Ida and Dactyl)
 - evolution of asteroid rotational states

Multi-scale Dynamics of Biomolecules (ICB)

- Carry out model reduction (POD) for simple biomolecules, keeping chains of molecules and more complex systems in view.
- ► Indentify **conformations** in simple molecular models using techniques of *AIS* and **set oriented** methods.
- Compute transport rates between different conformations by both lobe dynamics and set oriented methods.
- ► Collaborate with Institute of Collaborative Bio-Technologycd (ICB).

