Center Manifold Theory

CDS140B Lecturer: Wang Sang Koon

Winter, 2004

Introduction to Bifurcation Thoery. In this chapter, we will cover the following materials:

- Center Manifold Theory allows us to reduce the dimension of a problem, you will most likely still be left with a nonlinear system.
- Normal Form Theory can be used to "simplify" the nonlinear system by (removing as much nonlinearity as possible. This involves nonlinear coordinate transformation.
- Local Bifurcation Theory uses the above techniques to determine when the system changes qualitatively as parameters are varied.

1 Center Manifold Theory

1.1 Existence

Theorem 13.3 (Existence). Consider

$$
\dot{x}=A x+f(x)
$$

where

1. $x \in R^{n}$ and A is a constant $n \times n$ matrix; $x=0$ is an isolated critical point; the vector function $f(x)$ is $C^{k}, k \geq 2$, in a neighborhood of $x=0$ and $\lim _{\|x\| \leftarrow 0} \quad\|f(x)\| /\|x\|=0$;
2. the stable and unstable manifolds of equation

$$
\dot{y}=A y
$$

are E_{s} and E_{u}, the space of eigenvectors corresponding with eigenvalues with zero real part is E_{c}.

Then there exists a C^{k-1} invariant manifold W_{c}, the center manifold, which is tangent to E_{c} near $x=0$; if $k=\infty$, then W_{c} is in general C^{m} with $m \leq \infty$.

Example 13.6

$$
\begin{aligned}
\dot{x} & =-x+y^{2} \\
\dot{y} & =-y^{3}+x^{2}
\end{aligned}
$$

Example 13.7 (W_{c} is not unique).

$$
\begin{aligned}
& \dot{x}=x^{2} \\
& \dot{y}=-y
\end{aligned}
$$

1.2 Stability

Theorem 13.4 (Stability) Consider equation (13.19)

$$
\begin{aligned}
& \dot{x}=A x+f(x, y) \\
& \dot{y}=B y+g(x, y)
\end{aligned}
$$

where A has only eigenvalues with zero real part and B has only eigenvalues with negative real part; f and g have a Taylor expansion near $(0,0)$. Then the flow in the center manifold is determined by the following equation (13.20)

$$
\dot{u}=A u+f(u, h(u)) .
$$

where $y=h(x)$ represents the center manifold of equation (13.19) near the isolated critical point $(0,0)$. If the solution $u=0$ of the equation 13.20 is stable (unstable), then the solution near $(0,0)$ of equation 13.19 is stable (unstable).

1.3 Approximation

The center manifold $h(x)$ can be approximated by substituting a Taylor expansion into the following PDE:

$$
\frac{\partial h}{\partial x}(A x+f(x, h))-B h-g(x, h)=0 .
$$

Example 1.1.1

$$
\begin{aligned}
& \dot{x}=x^{2} y-x^{5} \\
& \dot{y}=-y+x^{2}
\end{aligned}
$$

Remark: The failure of the tangent space approximation.

Example 1.1.2

$$
\begin{aligned}
\dot{x} & =-x y-x^{6} \\
\dot{y} & =-y+x^{2}
\end{aligned}
$$

Example 13.8

$$
\begin{aligned}
\dot{x} & =x y+a x^{3}+b x y^{2} \\
\dot{y} & =-y+c x^{2}+d x^{2} y .
\end{aligned}
$$

1.4 Center Manifolds Depending on Parameters

The Lorenz Equations.

$$
\begin{aligned}
\dot{x} & =\sigma(y-x), \\
\dot{y} & =\bar{\rho} x+x-y-x z, \\
\dot{z} & =-\beta z+x y .
\end{aligned}
$$

